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Abstract

Alternative end-joining (alt-EJ) is an errorprone DNA repair pathway that cancer cells deficient in homologous recombination rely on, making them
vulnerable to synthetic lethality via inhibition of poly(ADP-ribose) polymerase (PARP). Targeting alt-EJ effector DNA polymerase theta (POLO),
which synergizes with PARP inhibitors and can overcome resistance, is of significant preclinical and clinical interest. However, the transcriptional
regulation of alt-EJ and its interactions with processes driving cancer progression remain poorly understood. Here, we show that alt-EJ is
suppressed by hypoxia while positively associated with MYC (myelocytomatosis oncogene) transcriptional activity. Hypoxia reduces PARP1 and
POLQ expression, decreases MYC binding at their promoters, and lowers PARylation and alt-EJ-mediated DNA repair in cancer cells. Tumors with
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HIFTA mutations overexpress the alt-EJ gene signature. Inhibition of hypoxia-inducible factor 1« or HIFTA expression depletion, combined with
PARP or POLO inhibition, synergistically reduces the colony-forming capacity of cancer cells. Deep learning reveals the anticorrelation between
alt-EJ and hypoxia across regions in tumor images, and the predictions for these and MYC activity achieve area under the curve values between
0.70 and 0.86. These findings further highlight the critical role of hypoxia in modulating DNA repair and present a strategy for predicting and

improving outcomes centered on targeting alt-EJ.
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Introduction

Homologous recombination (HR) is a high-fidelity molecu-
lar mechanism crucial for accurately repairing double-strand
breaks (DSBs) during the S and G2 phases of the cell cycle,
when a sister chromatid is available as a template [1-3]. In
cancer cells with defective HR—such as those with pathogenic
variants in breast cancer gene 1 (BRCA1) or 2 (BRCA2) [4-
6]—there is increased reliance on another DNA repair mech-
anism known as alternative end-joining (alt-EJ), also referred
to as microhomology-mediated end-joining (MME]) [7-13].
This dependence forms the basis of the synthetic lethality ex-
ploited by inhibition of poly(ADP-ribose) polymerase (PARP)
[7, 8], a strategy that has revolutionized cancer care [14].
Thus, assessing HR status has made PARP inhibition (PARPi)
a standard treatment strategy for managing various cancers,
including those of the breast, pancreas, prostate, and ovary
[15-21]. Targeting alt-E]J is being extended to combination
therapies and complementary approaches, including inhibi-
tion of DNA polymerase theta (POLO), a central effector of
alt-EJ]/MME] or theta-mediated end-joining [10, 13, 22-26].
Inhibition of POLO is synthetically lethal with the loss of
BRCA1 or BRCA2, can synergize with PARPi, and can also
be applied to target cancer cells that developed resistance to
PARPi [10, 23, 24]. However, our understanding of the tran-
scriptional regulation of alt-EJ genes, particularly in the con-
text of tumorigenic processes influencing DNA repair, remains
limited [9, 27, 28].

The pleiotropic cytokine transforming growth factor f
(TGFB) can enhance the expression of HR components and
pathway functionality [29-34]. Gene expression signatures of
TGEFPB and alt-EJ competency are frequently found to be an-
ticorrelated in tumors, in a cancer cell-autonomous manner
[35]. Inhibition of TGFf signaling induces alt-EJ even in can-
cer cells that are HR-proficient [33]. TGFB inhibition results
in HR deficit because TGFP regulates BRCA1 expression via
miR182 and cells shift to alt-E]J [30, 33]. Notably, neither alt-
EJ execution nor expression of alt-EJ genes (LIG1, PARP1,
or POLQ) is miR-182-dependent, which mechanistically sep-
arates the effects of TGFB on HR from those on alt-EJ [33,
35, 36]. Here, by analyzing functional gene modules in breast
cancer, we demonstrate that TGF signaling suppresses alt-E]

via hypoxia-inducible factor 1« (HIF1«). Hypoxia downreg-
ulates the alt-EJ competency signature, including PARP1 and
POLQ genes, by altering MYC (myelocytomatosis oncogene)
binding at the corresponding promoters. Hypoxia is associ-
ated with reduced alt-EJ activity, while HIF1« inhibition in-
creases PARylation. Furthermore, inhibition of HIF1« or de-
pletion of HIF1A expression, in combination with PARPi or
POLOI, acts synergistically to reduce the colony-forming abil-
ity of cancer cells, including HR-proficient models. This in-
verse relationship between alt-E] and hypoxia is applied in
cancer treatment prediction by using deep learning of tumor
pathology images. The approach provides a framework for
classifying tumors based on alt-E], hypoxia, and MYC activity,
offering novel insights into alt-EJ regulation and its potential
for enhancing precision in cancer treatment and for advancing
effective combination therapies.

Materials and methods

Gene expression and molecular datasets

Clinical and gene expression [RNA sequencing FPKM
(fragments per kilobase of transcript per million mapped
reads) UQ (upper quartile-normalized)] data from The
Cancer Genome Atlas (TCGA) studies [37] were ob-
tained from the Genomic Data Commons (GDC) Data
Portal (https://portal.gdc.cancer.gov). The cancer types are
named using the corresponding TCGA study abbrevia-
tions (https://gdc.cancer.gov/resources-tcga-users/tcga-code-
tables/tcga-study-abbreviations). The pediatric and hemato-
logical cancer normalized gene-expression data (reads per
kilobase per million mapped reads (RPKM)) were also down-
loaded from cBioPortal [38]. The HR-deficiency scores in
TCGA breast cancer (BRCA) corresponded to the combina-
tion of loss of heterozygosity, telomeric allelic imbalance, and
large-scale transitions, computed in the HRDsum score [39,
40]. The TCGA kidney renal clear cell carcinomas (KIRC)
with driver mutations of VHL were identified from cBioPor-
tal [38], based on OncoKB annotations [41]. The TCGA tu-
mors with HIF1A mutations, including frameshift, missense,
and nonsense mutations were also identified from cBioPor-
tal [38]. The single-cell processed count matrices of cancer
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cell lines induced to epithelial-mesenchymal transition (EMT)
were downloaded from the Gene Expression Omnibus (GEO)
reference GSE147405 [42]. The PRO-seq (Precision Run-On
with sequencing) data of HIFIA~/~ and wild-type (WT)
HCT166 cells in normoxia and hypoxia were downloaded
from the GEO reference GSE145567 [43]. The Cancer Cell
Line Encyclopedia (CCLE) [44] gene expression data were
downloaded from the DepMap [45] portal (https://depmap.
org/portal/; version 22Q2). The drug sensitivity data were
also obtained from the DepMap portal, including the half-
maximal inhibitory concentration (ICsp) and area under the
dose-response curve (AUCdrug) from the CCLE [46] (version
24Q2) and the ICs( values from the Genomics of Drug Sensi-
tivity in Cancer (GDSC) screens [47-49] (release 8.1). PARP1
protein levels, as measured by mass spectrometry in the CCLE
and GDSC cell lines, were obtained from the corresponding
publications [50, 51]. The optimal number of cell line clus-
ters was computed using the elbow method [52] and samples
were clustered using the kmean function in R’s stats package
(version 4.3.1). The MYC protein expression values in cancer
cell lines were downloaded from The Cancer Proteome At-
las portal (https://tcpaportal.org/tcpa/download.html; reverse
phase protein array data, level 4) [53]. SPATA2 software [54]
was used to analyze the spatial transcriptomic data of glioblas-
toma (GBM) [55] and gene signatures were computed using its
addGeneSet function. Tissues with an average gene signature
score <20% were excluded from the analysis.

Gene signature analysis

The TGFp (genes n = 50) and alt-EJ (genes » = 36) signa-
tures have previously been reported and functionally validated
against mutational signatures and molecular markers [33, 35,
36]. The hypoxia signature consisted of a 15-gene set [56],
which was the best-performing among a group of functionally
related signatures [57]. The MYC signature (genes n = 355)
was derived from a MYC-centered regulatory network inde-
pendent of a pluripotency network [58]. The signature scores
were computed using the single-sample GSEA algorithm cal-
culated using GSVA software [59] (version 1.43.1).

Non-negative matrix factorization and machine
learning

Non-negative matrix factorization (NMF) [60] was used for
unsupervised data dimension reduction and pattern identifica-
tion in the TCGA BRCA dataset [37, 61]. The original gene-
by-tumor matrix was decomposed into the production of two
low-rank non-negative matrices, a basic matrix W and a co-
efficient matrix H. A rank of matrix factorization, k, from 2
to 50, was examined to preserve the information of the in-
put dataset. The reconstruction error was computed using the
Frobenius norm of the deviation between the original ma-
trix X and its approximation WH, expressed as error = IIX
— WHIlg. The latent features (rows of matrix H) were fed into
a neural network with a structure comprising an input layer
of the NMF ranks, two hidden layers, each composed of 128
neurons using a rectified linear unit activation function [62], a
layer with a 0.5 dropout rate to mitigate overfitting [63], and
an output layer that predicted the HRDsum score. The Adam
optimizer [64] was used for training, with a learning rate of
0.001 and batch size of 32. A validation set consisting of 20%
of the data was used to monitor overfitting during training.
Early stopping with a patience of 10 epochs was employed
to prevent overtraining [65]. Spearman correlations were cal-
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culated for the training and test datasets to assess the rela-
tionship between the predicted and real HRDsum scores [39,
40]. The SHAP (Shapley additive explanations) values were
computed as described [66] to assess the importance of each
gene module in the model, identifying the most positively and
negatively influential sets. The rank of gene weights in each
module was evaluated for associations with curated gene sets
using the GSEA algorithm (version 4.2.3) [67] with the classic
metric, accounting for the uncertain biological impact of gene
weights in NMF modules, including those with noncontribu-
tory values (i.e. equal to 0).

Multivariate regression analysis

Nineteen cancer types from TCGA were included in the anal-
ysis. The ratio of alt-E] to TGFp signature scores was cal-
culated and used as the dependent variable in the regression
model. The following independent variables were included:
age at diagnosis, cancer type, gender, tumor grade, normal-
ized expression level of HIF1A, mutation status of MYC (ge-
nomic amplification: yes/no), HRDsum score [39, 40], and
gene expression signature scores for hypoxia [56], MYC [58],
and cell cycle phases (G1-S, S, G2, G2-M, and M-G1) [68].
Analogous analyses were conducted using expression levels of
the cell proliferation marker MKI67 instead of cell cycle phase
scores. The interaction term between the hypoxia and MYC
signatures was included. The model was computed using the
Im function in R software (version 4.3.1).

Cell culture and molecular analyses

The 22Rv1, DU145, MCF10A, MDA-MB-231, PC3, and
T-47D cells were obtained from the American Type Cul-
ture Collection. The OVCAR4 and A2780 cells were a gift
from Thomas Hamilton (Fox Chase Cancer Center) and
Josefa Giménez-Bonafé (University of Barcelona), respectively.
The microarray gene expression data for the MCF10A cell
line are available under the GEO reference GSE8240 [69].
PrimePCR™ SYBR® Green Assays (Bio-Rad) were used to
assess the expression of the alt-E] genes PARP1 and POLQ
in total RNA of MCF10A cells, and gene control was pep-
tidylprolyl isomerase (PPIA). Supplementary Table S1 lists
the primer sequences of all genes examined in this study
and the TagMan assays used for validation. Gene expres-
sion values were measured using real-time quantitative poly-
merase chain reaction (QPCR) assays and differences com-
puted by the AACt method [70]. The antibodies used for
western blot were as follows: anti-actin (clone AC-15; di-
lution 1:2500; Sigma-Aldrich Merck, catalog A5441); anti-
HIF1«, (described elsewhere [71]; dilution 1:500); anti-PAR
(clone AMS80; dilution 1:1000; Merck Millipore, catalog
Ab-1/AMS0); anti-tubulin (clone B-5-1-2; dilution 1:2000;
Sigma—-Aldrich Merck, catalog T6079); and anti-vinculin (di-
lution 1:2000; Sigma—Aldrich Merck, catalog V9131).

Measurement of alt-EJ activity

U20S GFP-reporter cells (a gift from Prof. J. Stark) were em-
ployed to measure alt-EJ repair of I-Scel-induced DSBs [72].
The cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) medium supplemented with 10% fetal bovine serum
(FBS) and standard antibiotics, in an atmosphere of 95% air
and 5% CO; at 37°C, or in physiological hypoxia, as de-
tailed below. For the assays, 50 000 cells/well were seeded
in 24-well plates and transfected the next day with an I-Scel
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expression plasmid (pCBAScel; Addgene, catalog 26477) us-
ing Lipofectamine 2000 (Thermo Fisher Scientific) according
to the manufacturer’s instructions. The transfection medium
was replaced after 3 h with fresh DMEM 10% FBS and the
cells were left for 24 h in normoxic or hypoxic conditions
(21% versus 2% O; hypoxia using Whitley H35 Hypoxys-
tation, Don Whitley Scientific). The wells for the hypoxic
conditions were treated with medium plus dimethylsulfox-
ide (DMSO) or PX-478 (5 uM). The cells were trypsinized,
washed with phosphate-buffered saline (PBS), fixed with 10%
formaldehyde, and analyzed for GFP positivity using a MAC-
SQuant Analyzer 16 Flow Cytometer. Singlet cells were gated
by plotting forward scatter height against forward scatter
area. A logarithmic plot of the gated cells was obtained us-
ing PE-A (yellow fluorescence, X-axis) and FITC-A (green
fluorescence, Y-axis). Untransfected cells were used to detect
autofluorescence.

Colony-forming cell assays and drug synergism

Colony-forming cell (CFC) assays were performed in a 12-
well format using the following cell seeding numbers: 22Rv1,
500 cells; A2780, 800 cells; DU1435, 200 cells; MDA-MB-231,
300 cells; OVCAR4, 1000 cells; PC3, 300 cells; and T47D,
1500 cells. For high-density seeding, a 20-fold increase in
cell counts was applied. In the assays, we evaluated the in-
hibitory effects of monotherapy and specified drug combi-
nations, including novobiocin (100 uM), olaparib (2 uM),
PX-478 (5 uM), rucaparib (2 uM), and talazoparib (1 nM).
Cells were treated with the indicated drugs every 24-48 h and
cultured for 6-10 days. After treatment, cells were washed
with PBS, stained with crystal violet solution, and thoroughly
rinsed with tap water. Image acquisition was performed using
QuPath software (version 0.5.0). The script for image analysis
and Bliss synergy scoring [73] has been deposited on Zenodo
and is available at https://doi.org/10.5281/zenodo.14885044.
Two-tailed Student’s unpaired #-test was used to assess the
significance of the difference between control and treatment
groups, with values of P < .05 considered significant. The
Bliss independence model [73] assumes that two given drugs
produce their effects independently and that significant de-
viation from their multiplicative effect indicates antagonism
or synergism. We implemented the Bliss synergy score from
the SynergyFinder [74]. A bootstrapping resampling method
was applied to estimate the 95% confidence interval (CI). A
score of 10 was interpreted as a 10% response beyond expec-
tation. Dose-response viability matrices were used to evalu-
ate the combination of PX-478 (1.5-40 uM) and rucaparib
(2.5-80 uM) over 72 h, with data analyzed using Combenefit
software [75].

Lentiviral production and transduction, and gene
depletion

HEK-293FT cells were obtained from Invitrogen (Thermo
Fisher Scientific) and maintained in DMEM 10% FBS at
37°C, in a 5% CO; incubator and split at 70%-80%
confluence. Lentiviral particles and transduction were pro-
duced following standard protocols as previously described
[76], using the packing plasmid psPAX2 (Addgene, cata-
log 12260) and envelope plasmid pMD2.G (Addgene, cat-
alog 12259). The MISSION®-validated short-hairpin RNA
(shRNA) against human HIF1A expression was reported [77]
(TRCN0000003810; Sigma-Aldrich) and the control vec-
tor was scrambled-pLKO.1 (Addgene, catalog 136035). The

primer sequences for gene expression quantification are de-
picted in Supplementary Table S1.

ChIP assays

Cross-linking of proteins with DNA, fragmentation, and
preparation of soluble chromatin followed by immunopre-
cipitation with specific antibodies were performed as pre-
viously described [78]. Briefly, 5 x 10°¢ cells subjected or
not to hypoxia, as indicated, were incubated with 1% (v/v)
formaldehyde in pre-warmed PBS for 10 min at 37°C. Cells
were then washed in cold PBS, harvested, and lysed to iso-
late nuclei in hypotonic buffer containing 5 mM PIPES at
pH 8.0, 85 mM KCI, and 0.5% NP-40. Nuclei were then
resuspended, lysed in a buffer containing 1% sodium dode-
cyl sulfate, 10 mM ethylenediaminetetraacetic acid (pH 8.0),
and 50 mM Tris/HCI (pH 8.1), and sonicated in 15-ml tubes
with a Bioruptor sonication device (seven cycles of 30 s ON,
30 s OFF) to yield chromatin sizes of 150-300 bp. Subse-
quently, 30 pug of DNA/sample was used for immunoprecipi-
tation with 17 ul anti-MYC (N-262; Santa Cruz Biotechnol-
ogy, catalog SC-764) and with the same amount of anti-rabbit
IgG (Cell Signaling Technology). Immunoprecipitated and in-
put DNAs were purified and subjected to qPCR analysis us-
ing the primers amplifying the MYC-bound regions found
in PARP1 and POLQ genes (Supplementary Table S1 and
Text S1). Chromatin immunoprecipitation (ChIP) was quanti-
fied by real-time PCR using Roche LightCycler® 480 RT PCR.
The fold enrichment of the target sequence in the immunopre-
cipitated (IP) relative to the input (Ref) fractions was calcu-
lated using the comparative Ct (the number of cycles required

to reach a threshold concentration) method, expressed by the
term 2~ (CHIP)-Ce(Ref)

yYH2AX immunofluorescence and quantification

PC3 and T47D cells were cultured on coverslips in six-well
plates and treated for 24 h with DMSO (control), rucaparib
(2 uM), PX-478 (25 uM), novobiocin (100 uM), or a com-
bination of PX-478 with either rucaparib or novobiocin. Fol-
lowing treatment, cells were fixed in 4% paraformaldehyde
for 15 min at room temperature, permeabilized with 0.5% Tri-
ton X-100 for 15 min, and blocked in a solution of 5% normal
donkey serum, 1% bovine serum albumin, and 0.01% Triton
X-100 for 1 h. Cells were incubated overnight at 4°C with an
anti-phospho-Ser139 yH2AX antibody (Sigma—Aldrich, cat-
alog 05-636) diluted 1:200 in blocking solution. After pri-
mary antibody incubation, cells were washed and stained
with a Cy3-conjugated donkey anti-mouse IgG secondary an-
tibody (Jackson ImmunoResearch, catalog 715-165-151) di-
luted 1:400 in blocking solution containing 1 pg/ml DAPI
for nuclear staining. Secondary antibody incubation was per-
formed at room temperature for 1 h. Coverslips were mounted
onto microscope slides using Fluoromount-G with DAPI (In-
vitrogen, catalog 00-4959-52), and images were acquired us-
ing a Zeiss LSM 980 confocal microscope. For image analysis,
a custom macro was applied to quantify the integrated inten-
sity of phospho-Ser139 YH2AX staining for individual nuclei,
as defined by DAPI staining.

Deep learning tumor image modeling

We implemented the weakly supervised method of clustering-
constrained-attention multiple-instance learning (CLAM)
[79] for whole-slide image (WSI) processing. Feature extrac-
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tion utilized the universal self-supervised model for pathology
(UNI) [80], which was not trained on the histology images
of TCGA. The TCGA WSIs were downloaded from the GDC
Data Portal (https://portal.gdc.cancer.gov) in scanned virtual
slide (SVS) format. Since SVS images contain multiple reso-
lutions, we classified the slides based on the highest magnifi-
cation level, which, for all selected cancer types, was 20x or
40x. Following the CLAM pipeline, all slides were split into
patches. Specifically, the 20 x images were divided into patches
of 256 x 256 pixels, while the 40x images were split into
512 x 512 pixels to match the 20x resolution when down-
sampling. The patches were resized to 224 x 224 pixels, which
was the input size for UNI, and the features of each patch were
extracted into a 1024-dimensional vector. The data were split
in an 80-10-10 ratio for training, testing, and validation when
each predictor was represented in at least 20% of the pri-
mary tumors of a TCGA study. Otherwise, a 60-20-20 ratio
was used to ensure enough positive samples for both testing
and validation. We applied a dropout rate of 0.5 for training,
and learning rate of 3e—5, 10-fold cross-validation, a multi-
branched CLAM model type, and a limit of 10 epochs, as the
models converged relatively quickly. Other parameters were
left at their default settings. The same parameters were used
to evaluate the algorithm’s performance. All predictions based
on signature scores utilized the top quartile as the threshold
to distinguish between high and low tumor groups. For HRD-
sum scores, a cutoff of 42 was applied to both BRCA and
serous ovarian (OV) tumors. However, for prostate (PRAD),
where very few samples exceeded a score of 42, a cutoff of
20 was used to represent the top 25% of all samples. For
generating heatmaps with attention scores, we used the same
dropout rate, an overlap of 0.5, and applied a blur effect to
produce smooth visual representations. The attention scores,
which represent the contribution of each patch within a WSI
to predict a class, were extracted for each correctly predicted
sample and subsequently Z-score normalized. The top 20%
of patches, ranked by the alt-E] score, were selected for corre-
lation analysis with the hypoxia and MYC scores in tumors.

Results

A cancer cell state defined by alt-EJ-TGFf
anticorrelation

HR-deficient tumors rely on alt-E] and frequently overexpress
components of this pathway [10, 35, 81-84]. To better under-
stand the cancer cell states in which alt-E]J is active, we de-
veloped a machine-learning model to predict HR deficiency
(HRD). Using the NMF method [60, 85], we identified co-
regulated gene modules within the TCGA BRCA dataset [37,
61], resulting in 24 gene modules (Fig. 1A). These modules
were used to predict HRD based on the HRDsum score, a
genomic metric quantifying HRD in cancer cells by integrat-
ing measures of loss of heterozygosity, telomeric allelic im-
balance, and chromosomal state transitions [39]. The model
demonstrated high predictive accuracy, achieving Spearman
correlation coefficients of 0.90 and 0.81 between predicted
and observed HRDsum scores in the training and test subsets,
respectively (Fig. 1B).

To understand the contribution of each gene module to
HRD status, we calculated average SHAP values, which quan-
tify the contribution of each module to the prediction. This
analysis revealed that module 2 had the strongest positive
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association with HRDsum, while module 11 exhibited the
strongest negative association (Fig. 1C). Consistent with these
findings, the gene expression signature associated with alt-
EJ activity [33, 35, 36] was positively correlated with mod-
ule 2 and negatively correlated with module 11 (Fig. 1D, left
panels). In contrast, the signature of TGFp signaling activity
[33, 35, 36] was positively correlated with both modules (Fig.
1D, right panels). The positive correlation of TGFB signaling
activity with both modules suggests its pleiotropic function
and/or an indirect role in the transcriptional regulation of
alt-EJ, independent of small mothers against decapentaplegic
(SMAD) factors. Prior studies have shown that BRCA1 loss
promotes luminal-to-basal transformation and EMT in breast
cancer [86-88], a process mediated by TGFB receptor 2 [89].

Since module 11 exhibited the strongest negative asso-
ciation with HRDsum, we performed additional analyses
to examine its associations with curated gene sets repre-
senting various health and disease states [67]. In addition
to EMT, this module showed positive associations with
stemness-related pathways, including Hedgehog, NOTCH,
and WNT/B-catenin signaling, as well as hypoxia signaling
(Fig. 1E and Supplementary Table S2). Conversely, it displayed
negative associations with gene sets related to E2F and MYC
targets (Fig. 1E), suggesting a potential link to cell cycle regu-
lation [90, 91].

Hypoxia signaling is anticorrelated with alt-EJ

TGEB signaling is known to promote the expression and stabi-
lization of HIF1« (encoded by the HIF1A gene) [92-95]. Con-
sistently, the alt-EJ signature was found to be negatively cor-
related with both HIF1A expression and a 15-gene hypoxia
signature [56] across most cancer types analyzed (n = 25; Fig.
2A). At the single-cell level, transcriptional analysis of four
cancer cell lines exposed to TGFB-1 [42] revealed progres-
sive upregulation of both the TGFp and hypoxia signatures,
along with downregulation of the alt-E]J signature (Fig. 2B),
supporting the pan-cancer observation.

We then explored the relationship between alt-EJ and
TGEB signatures in TCGA KIRC stratified by the status of the
von Hippel-Lindau (VHL) tumor suppressor, which targets
HIF1« for proteasomal degradation [96]. While the overall
KIRC dataset did not show a significant anticorrelation be-
tween alt-E] and TGFpB [# = 534; Pearson’s correlation co-
efficient (PCC) = —0.08; P = .078], a significant anticorrela-
tion was observed in VHL-mutant tumors (7 = 173; PCC =
—0.18; P = .012; Fig. 2C). Next, we compared the alt-E] sig-
nature between tumors with frameshift, missense, or nonsense
mutations in HIF1A and those without mutations. Although
HIF1A mutations are relatively rare, a substantial number
of predicted deleterious variants are identified in TCGA by
the OncoKB mutation database [41, 97] in cBioPortal [38]
(Supplementary Table S3). The uterine corpus endometrial
carcinoma (UCEC) dataset had the largest number of HIF1A
mutations (7 = 25), with mutated tumors showing signifi-
cant overexpression of the alt-E] signature (Fig. 2D). This
pattern was also observed across all examined TCGA can-
cer types, where tumors harboring HIF1A mutations (n = 76)
exhibited significantly higher alt-EJ signature expression (Fig.
2E). To further investigate the role of HIFl« in alt-EJ sup-
pression, we analyzed transcriptomic data from HCT116 col-
orectal cancer cells comparing HIF1A-deleted (HIF1IA=/~) to
WT (HIF1A**) cells under normoxic or hypoxic (1% O,
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Figure 1. Cancer gene modules associated with HR status. (A) Graph showing the reconstruction error of the original TCGA BRCA tumor-by-gene matrix
using consecutive sets (n) of NMF modules. The set with minimum error is indicated. (B) Scatter plots showing the Spearman correlation coefficient (1
and associated P between the predicted and observed HR-deficiency score (HRDsum) using the machine learning model. Left and right panels show the
results of the training and test sets, respectively. (C) Average SHAP values of NMF gene modules, with modules 2 and 11 (highlighted with circles)
showing the strongest positive and negative contributions to HRDsum prediction, respectively. (D) GSEA outputs of the alt-EJ (left panel) and TGF3
(right panel) signatures in modules 2 (top panel) and 11 (bottom panel). The GSEA normalized enrichment scores (NESs) and statistical significance (P)
are indicated. (E) Histogram depicting the GSEA “Cancer Hallmarks” gene sets positively [false-discovery rate (FDR)-adjusted P < .05; NESs > 1.0; red
bars] and negatively (FDR-adjusted P < .05; NESs < 1.0; green bars) associated with module 11. The MYC V1 and V2 gene sets correspond to curated
MYC target sets from The Molecular Signatures Database.
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Figure 2. Hypoxia signaling anticorrelates with alt-EJ. (A) Forest plots showing the correlation (PCC and 95% Cl) between the alt-EJ signature and HIFTA
or the hypoxia 15-gene signature across various cancer types (study acronyms and tumor frequencies are displayed). Nominally significant correlations
(P < .b) are indicated in the inset. (B) Plots of the TGF 3 (left panel), hypoxia (middle panel), and alt-EJ (right panel) signature scores over time
(pseudotime) in single cancer cells (A549, lung; DU145, prostate; MCF7 breast; and OVCA420, ovarian) exposed to TGF3-1. The slopes from the
numerical differentiation of the signatures are shown at the bottom. (C) Scatter plot showing the alt-EJ-TGF 3 correlation (PCC) in TCGA KIRC tumors
stratified by VHL status, as indicated in the inset. (D) Violin plot showing the overexpression of the alt-EJ signature in HIFTA mutated (MUT) relative to
WT TCGA UCEC tumors. The significance (P) of the two-tailed Mann-Whitney test is indicated. (E) Violin plot showing the overexpression of the alt-EJ
signature in HIFTA mutated (MUT) relative to WT TCGA pan-cancer (n = 19 cancer types). The significance (P) of the two-tailed Mann-Whitney test is
indicated. (F) GSEA outputs of the alt-EJ signature in HCT116 HIFTA WT (left panel) and HIF1A-deteled (right panel) cells exposed to hypoxia versus
normoxia. The GSEA-NESs and P-values are indicated. (G) Left panel, normalized activity of alt-EJ as measured by the EJ2-GFP reporter in UOS cells
grown in hypoxia relative to hypoxia and exposed to PX-478, as indicated in the inset (n = 4 independent assays). The significance (P) of the one-way
ANOVA test with Tukey correction is indicated. There are also indicated the P-values of the two-tailed Student's paired-samples t-test. Right bottom
panel, representative western blot results of PARylation in the above conditions. (H) Top-left panel, representative western blot results of PARylation in
the following four UOS cell assays: normoxia; normoxia plus exposure to PX-478; hypoxia; and hypoxia plus exposure to PX-478, as indicated in the
inset. Bottom left panel, quantification of PARylation relative to loading control in three independent assays. The significance of the two-tailed Student’s
paired-samples t-test relative to normoxia is indicated. Bottom right panel, quantification of alt-EJ as measured by the EJ2-GFP reporter in UOS cells
grown in normoxia relative to normoxia and exposed to PX-478.
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for 90 min) conditions [43]. WT cells showed suppression of
alt-EJ under hypoxia, while this effect was absent in HIF1A-
deleted cells (Fig. 2F).

To assess the impact of hypoxia on alt-EJ pathway activ-
ity, we used human osteosarcoma U20S cells with a GFP-
based reporter for alt-EJ repair [72] and measured PARyla-
tion in cell extracts [98]. PARylation, also known as polyADP-
ribosylation—the addition of ADP-ribose molecules to target
proteins—is essential for DNA repair and serves as a func-
tional indicator of alt-EJ repair [99-101]. Cells cultured un-
der hypoxia (2% O, for 24 h) exhibited a trend toward re-
duced alt-EJ repair compared with normoxia, with an aver-
age suppression of 19% (unpaired two-tailed Student’s ¢-test,
P =.061; n =4 independent assays; n = 2-3 replicates/assay;
Fig. 2G). Treatment with PX-478 (5 uM), an inhibitor of both
constitutive and hypoxia-induced HIF1a expression [102-
105], restored alt-E]J repair to an average level similar to nor-
moxia, though outliers were noted (Fig. 2G). At the molec-
ular level, hypoxia reduced PARylation, which appeared to
be restored by PX-478 treatment (Fig. 2G). To further assess
this observation, we quantified PARylation in three additional
assays under the same conditions and including cells treated
with PX-478 (5 uM) in normoxia. A significant reduction in
PARylation was only observed in cells grown under hypoxia
compared with those in normoxia (Fig. 2H).

Interplay between hypoxia and MYC influences
alt-EJ

Machine-learning modeling predicted that MYC promotes
alt-E]J gene expression in TCGA BRCA, as shown by nega-
tive GSEA-NES associations (green bars in Fig. 1E). A positive
correlation between MYC and alt-E]J expression was observed
in 11 of 25 (44%) cancer types analyzed (Fig. 3A, left panel).
When a MYC-driven gene signature [58] was analyzed, this
positive association was confirmed across all cancer types (Fig.
3A, right panel). Supporting this, 83% (30/36) of the genes in
the alt-E]J signature were predicted to be MYC targets based
on ChIP data from the ChIP-Atlas [106], and promoter se-
quences of alt-EJ genes were significantly enriched for MYC
binding across various cell types (Fig. 3B).

To experimentally assess the influence of TGF /hypoxia on
alt-EJ, we used MCF10A epithelial cells, which can undergo
EMT and acquire stemness upon exposure to TGF3-1 or hy-
poxia [107-109]. Transcriptomic analysis of MCF10A cells
exposed to TGFB-1 (500 pg/ml for 6 h) [69] revealed upregu-
lation of the TGFpB and hypoxia signatures, along with down-
regulation of the alt-EJ] and MYC signatures (Fig. 3C). Semi-
quantitative gene expression analysis in MCF10A cells under
hypoxia (2% O, for 8 h) showed significant downregulation
of PARP1 and POLQ by approximately 30%, while hypoxia-
induced genes exhibited the expected opposite trend (Fig. 3D).
Analogous TagMan-based assays showed similar downregu-
lation of PARP1 and POLQ in hypoxia, though statistical sig-
nificance was limited to POLQ suppression (Fig. 3E). In agree-
ment with prior studies demonstrating hypoxia-induced sup-
pression of HR and NHE] components [110, 111], BRCA1,
PRKDC, and RADS1 were also downregulated (Fig. 3E, mid-
dle panel). Further analysis of MCF10A cells treated with the
hypoxia mimetic CoCl, (200 uM for 24 h) showed signifi-
cant reductions in PARP1 (25%) and POLQ (70%) expres-
sion (Fig. 3F). In addition, assessing the association between
the hypoxia signature and PARP1 protein expression mea-

sured by mass spectrometry in hundreds of cancer cell lines
(CCLE and GDSC datasets [50, 51]; POLO was not reported)
showed significant anticorrelation (Fig. 3G). Akin to these
suppressions, ChIP assays demonstrated hypoxia-induced re-
ductions in MYC binding at the PARP1 and POLQ promot-
ers in MCF10A cells grown under hypoxia (2% O, for 8 h)
compared with normoxia (Fig. 3H).

The opposing roles of hypoxia and MYC in regulating alt-
EJ were further assessed using multivariate regression analy-
ses of the alt-EJ/TGFp ratio across TCGA studies, account-
ing for cell cycle signatures [68] or MKI67 expression. Hy-
poxia and MYC signatures were negatively and positively as-
sociated, respectively, with the alt-E]/TGFp ratio (g < —0.13;
P=4x10""and p > 0.38; P < 2 x 10~'%; Supplementary
Tables S4 and S5). A significant interaction between hypoxia
and MYC signatures (Pineraction = -02) further supported their
opposing roles, as confirmed by analysis across tertiles of the
alt-EJ /TGFR ratio (Fig. 31). Incorporating the HRDsum score
into the regression analysis showed that the effects of hy-
poxia (negative) and MYC (positive) on alt-E] were indepen-
dent of HR status (Supplementary Tables S6 and S7). Simi-
larly, correlations between alt-EJ and hypoxia/TGFf (nega-
tive) or MYC (positive) signatures were consistent in TCGA
BRCA and TCGA OV tumors, regardless of HRD or HR profi-
ciency as defined by HRDsum (Supplementary Fig. S1). These
findings highlight that hypoxia/TGFf and MYC exert op-
posing effects on alt-EJ gene expression, independent of HR
status.

Combined inhibition of HIF1x and PARP or polo
synergistically reduces CFC

Given that hypoxia signaling is often abnormally activated
in cancer [112], we hypothesized that targeting this pathway
could relieve suppression of alt-E] and increase sensitivity to
PARP or POLSO inhibitors. To test this, we analyzed the basal
signature scores from hundreds of cancer cell lines and their
response to PARPi (CCLE dataset [44]). Unsupervised clus-
tering of the alt-EJ, hypoxia, MYC, and TGFp signatures re-
vealed two major clusters (A and B; Supplementary Fig. S2A).
Cluster B, characterized by high alt-E] and MYC signature
expression, and low hypoxia and TGFp signature expres-
sion, showed greater sensitivity (i.e. lower ICsp) to PARPi
(Supplementary Fig. S2B, C). Similar patterns were observed
with three-cell clusters (Supplementary Fig. S2D).

We then performed CFC assays on HR-proficient hu-
man breast (MDA-MB-231, T47D) and ovarian (A2780, OV-
CAR4) cancer cell lines, as well as HR-proficient (DU1435,
PC3) and HR-deficient (22Rv1, BRCA2-mutant) prostate can-
cer cell lines, exposed to compound or drug inhibition of
HIF1« and/or PARP or POLO. For these assays, we used PX-
478, PARP inhibitors (olaparib, rucaparib, and talazoparib),
or the POL® inhibitor novobiocin [24]. In two-dimensional
viability assays, the ICso values of these drugs were fre-
quently >10 uM, consistent with large screening datasets
[45, 113] (Supplementary Tables S8 and S9). Cancer cells
frequently exhibit some degree of HIFlx activation, even
in normoxic conditions [114]. Consistently, the hypoxia sig-
nature scores of the selected cell lines (except of DU145,
which lacked CCLE gene expression data) grown under nor-
moxia were, on average, intermediate between the scores of
cancer cell lines with deleterious HIF1A and VHL variants
(Supplementary Fig. S3).
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Figure 3. Interplay between hypoxia and MYC regulates alt-EJ. (A) Forest plots showing the correlation (PCC and 95% Cl) between the alt-EJ signature
and MYC expression (left panel) or the MYC-driven signature (right panel) across various cancer types (study acronyms and tumor frequencies are
indicated). Nominally significant correlations (P < .05) are indicated in the inset. (B) Violin plot showing MYC-binding (fold change) at the promoter
regions (£5 kb from transcription start site) of alt-EJ genes, across tissue (inset). The results correspond to the tissue with >1 cell line (dots) with a
significant MYC-binding at the alt-EJ promoter set (FDR-adjusted Fisher's exact test P < .05). The cell lines with the highest MYC-binding in each tissue
type are indicated. (C) Graph showing the time-course trends of the expression of the alt-EJ, hypoxia, MYC, and TGF 3 signatures in MCF10A cells
exposed to TGF3-1 (500 pg/ml) for O to 6 h. The significance (P) of the difference in the hypoxia and TGF 3 signature slopes relative to alt-EJ (top inset)
and MYC (bottom inset) signature slopes are indicated. (D) Left panel, downregulation of PARPT and POLQ1 (quantitative reverse transcription
polymerase chain reaction (QRT-PCR) assays with specific primers and SYBR) in MCF10A cells cultured in hypoxia, as indicated in the inset. The bars
show the mean =+ standard deviation (s.d.), and the two-tailed Student’s unpaired-samples t-test P-values are indicated (n = 3 independent assays; 3
replicates/assay). Middle panel, overexpression of GLUT1, OCT4, TGFB1, and VIM in MCF10A cells cultured in hypoxia, as indicated in the inset. Right
panel, western blot showing overexpression of HIF1ocin MCF10A cells under hypoxia. The loading control, o-tubulin (TUBA), is also shown. (E) Left
panel, downregulation of PARPT and POLQT (TagMan assays) in MCF10A cells cultured under hypoxia, as indicated in the inset. The bars show the
mean + s.d., and the two-tailed Student’s unpaired-samples t-test P-values are indicated (n = 2 independent assays; 4 replicates/assay). Middle panel,
results for genes involved in HR or NHEJ pathways. Right panel, confirmation of overexpression of GLUT7 and OCT4 in the cells under hypoxia. (F) Left
panel, downregulation of PARPT and POLQT (qRT-PCR assays with specific primers and SYBR) in MCF10A cells cultured in normoxia and exposed to
CoCl,, as indicated in the inset. The bars show the mean + s.d., and the two-tailed Student’s unpaired-samples t-test P-values are indicated. Right
panel, confirmation of GLUTT overexpression in the cells exposed to CoCl,. (G) Anticorrelation between the hypoxia signature and PARP1 protein
expression in the GDSC and CCLE datasets. The correlation (PCC) and corresponding significance (P) are indicated. (H) Reduced MYC binding at the
promoters of the PARPT and POLQ genes in MCF10A cells grown under hypoxia, as indicated in the inset. The results are shown as the MYC-binding
fold change relative to normoxia, including control isotype immunoglobulin (IgG). The unpaired two-sided Student's t-test P-values are indicated (n = 2
independent assays; 3 replicates/assay). () Violin plot showing the distributions of the alt-EJ and hypoxia signature scores (inset) in the tertiles of the
ratio of the alt-EJ/TGF 3 signature scores in TCGA cancer types (n = 19). Trends in the alt-EJ and hypoxia signature are denoted by dashed lines. The
paired two-sided Student's t-test Pvalues are indicated for the signature comparisons in each tertile of the alt-EJ/TGF 3 ratio. Significance (P) of the
ANOVA of the alt-EJ/TGF 3 ratio and signature score terms and their interaction are also indicated (bottom inset).

G20z |udy | Uo Jasn uoigeH,p |leA [endsoH Aq 892£908/2004892/1///elo1e/laouedieu/woo dno-ojwepeoe)/:sdny wolj pepeojumoq



10 Espinetal.

The combination of PX-478 (5 uM; ICso values between
10 and 42 uM) with rucaparib (PARPi, 2 uM; ICso values
between 20 and 302 uM) showed evidence of synergy (Bliss
[73] scores > 16) in five cell lines (excluding A2780 and
22Rv1l; n = 2 independent assays; n = 3 replicates/assay;
Fig. 4A). In parallel, dose-response matrices over 72 h showed
synergistic effects in six cell lines (excluding OVCAR4; Fig.
4B). The synergy was also assessed by combining PX-478 (5
uM) with two other PARP inhibitors (olaparib, 2 uM, and
talazoparib, 1 nM) in three cell lines (OVCAR4, PC3, and
T47D). These CFC assays yielded Bliss synergy scores > 14
in 6/7 of the settings (# = 2 independent assays; n = 3
replicates/assay; Supplementary Fig. S4). Synergistic effects
were also observed in high-confluence settings across all cell
lines tested (Supplementary Fig. S5).

The molecular alterations underlying the synergy between
HIF1x and PARPi were assessed in DU145 cells. PX-478 25
uM (DU145 ICs9 = 27.5 uM) for 24 h reduced HIF1 o« expres-
sion and increased PARylation, while the combination with
rucaparib strongly suppressed both HIF1« and PARylation
(Fig. 4C). An analogous assay substituting rucaparib with ola-
parib showed similar changes in PARylation and HIF1« levels
(Fig. 4D). In addition, DU145 cells exposed to hypoxia (2%
O, for 8 h) showed a significant decrease in PARylation (Fig.
4E). Furthermore, similar to MCF10A cells, MYC binding at
the promoters of PARP1 and POLQ was significantly reduced
in DU145 cells grown under hypoxia (2% O, for 8 h) com-
pared with those grown under normoxia (Fig. 4F). To deter-
mine whether the observed alteration in MYC binding was
influenced by changes in MYC expression, we analyzed MYC
expression in the seven cell lines under normoxic and hypoxic
conditions. This analysis did not reveal a consistent alteration
in MYC expression levels (Supplementary Fig. S6A). Further-
more, the expression of MYC and its gene product showed
no clear correlation with the hypoxia signature score in the
CCLE dataset (Supplementary Fig. S6B).

Next, similar CFC assays were performed using the POLO
inhibitor novobiocin [24]. This drug was applied at a con-
centration of 100 uM, selected based on its reported high
ICso values and minimal effect on HR-proficient cells [24,
115-119] (ICsp values > 269 uM in the seven cell lines ana-
lyzed; Supplementary Table S9). The combination of PX-478
(5 uM) with novobiocin showed synergistic effects (Bliss syn-
ergy scores > 12) in 4/7 of the cell lines (7 = 2 independent
assays; n = 3 replicates/assay Fig. SA). The combination of
novobiocin or rucaparib with PX-478 was also assessed using
acriflavine, which reduces HIF1« signaling [120, 121]. Bliss
synergy scores > 14 indicated synergism in 67% (4/6) of the
tests conducted in three cell lines at relative high confluence
(OVCAR4, PC3, and T47D; n = 3 independent assays; 7 = 3
replicates/assay; Supplementary Fig. S7A). In these assays, ex-
posure to acriflavine increased PARylation while rucaparib re-
duced this activity (Supplementary Fig. S7B).

To test the prediction that combined inhibition of HIF1 e
and PARP or POLO leads to increased DNA damage, we mea-
sured phospho-Ser139 yH2AX levels in PC3 and T47D cells.
Cells were treated with DMSO, rucaparib (2 puM), PX-478
(25 uM), novobiocin (100 uM), or combinations of rucaparib
and PX-478, as well as novobiocin and PX-478, for 24 h. PX-
478 treatment alone caused a substantial increase in phospho-
Ser139 yH2AX (Fig. 5B), consistent with prior findings [122].
Compared with PX-478 alone, the combination with ruca-
parib led to a slight, nonsignificant increase in YH2AX signal;

however, the combination with novobiocin resulted in a sig-
nificantly greater increase in phospho-Ser139 yH2AX in both
cell lines (Fig. 5B). The underlying basis of these differential
effects is unclear but may reflect the distinct roles of PARP1
and POLO in DSB repair and alt-EJ/MME], and the evalua-
tion of HR-proficient backgrounds.

To assess the effect of targeting HIF1A, we performed
CFC assays using a shRNA directed against its expression
(shHIF1A) [77] or a scrambled shRNA as a negative con-
trol. The combination of shHIF1A with rucaparib (2 uM)
or novobiocin (100 uM) showed a stronger inhibitory effect
(unpaired two-tailed t-test P < .05) than the single-target as-
says in the three cell lines analyzed, with evidence of synergy
in 50% (3/6) of the assays (Bliss synergy scores > 13; Fig.
5C and Supplementary Fig. S8). However, transduction with
shHIF1A alone caused strong inhibition across the three cell
lines and, unexpectedly, frequently reduced PARylation and
PARP1 expression relative to pLKO (Supplementary Fig. S9).
These findings indicate that targeting HIF1A expression may
induce additional molecular alterations that influence cell vi-
ability and drug combination effects.

Deep-learning prediction of alt-EJ and hypoxia in
tumor pathology images for precision cancer
treatment

The observed influence of HIF1x on alt-EJ offers potential
for improving predictions of targeted therapy outcomes. To
explore this, we analyzed spatial transcriptomics data from a
GBM dataset [55]. Among the tumors in this study with in-
formative expression of both alt-E] and hypoxia signatures,
63% (5/8) showed a significant negative correlation between
these signatures (PCC < —0.10; P < 1 x 10~%), while only
one tumor exhibited a positive alt-EJ-hypoxia correlation
(PCC = 0.12; Fig. 6A).

Next, we applied a deep-learning method [79, 80] to pre-
dict alt-E] and hypoxia status, as well as common gene
drivers, using tumor pathology images from TCGA BRCA
[61],0V [123],and PRAD [124] cancers. The method demon-
strated strong performance for both signatures, with area un-
der the receiver operating characteristic curve (AUCROC) val-
ues of >0.70 in all settings. The AUCROC for alt-EJ was
0.768 + 0.059, 0.702 £ 0.086, and 0.830 + 0.0638, and for
hypoxia, the AUCROC was 0.732 + 0.051, 0.719 + 0.044,
and 0.621 + 0.070 for BRCA, OV, and PRAD, respectively
(Supplementary Table S10 and Fig. S10A). The method also
performed relatively well in predicting MYC signature activ-
ity, with an AUCROC of 0.859 + 0.058, 0.698 + 0.064,
and 0.821 + 0.069 for BRCA, OV, and PRAD, respectively
(Supplementary Fig. S10B). Among other features analyzed,
the best performance were achieved in predicting TP53 mu-
tation and tumor subtype (PAMS0 [61]) in BRCA: AU-
CROC of 0.828 + 0.068 and 0.892 + 0.022, respectively
(Supplementary Fig. S10C and D).

The analysis of the spatial distribution of inferred alt-EJ
activity and hypoxia signaling in tumor images further em-
phasized their anticorrelation. This relationship was particu-
larly evident in a basal-like breast tumor from a patient with
a germline pathogenic BRCA1 variant. While the tumor was
predicted to have high levels of both alt-E]J and hypoxia, the
attention scores—indicating the model’s focus on specific tu-
mor regions during signature prediction—showed an inverse
pattern across tumor patches (Fig. 6B). To further investigate
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Figure 4. Synergy between HIF1« and PARPi in reducing cancer cell CFC. (A) Results of CFC assays in breast, ovarian, and prostate cancer cell lines
exposed to vehicle (DMSO), rucaparib (2 uM), PX-478 (5 uM), and the combination of rucaparib and PX-478. The graphs show the mean + s.d. The

unpaired two-sided Student’s t-test Pvalues for the comparisons with

the drug combination group are indicated. The Bliss synergy score (95% Cl) is

indicated at the bottom of each panel (Bliss score > 10 indicates synergism). (B) Drug dose matrix of PX-478 and rucaparib in cell viability assays. The
color scale indicates synergy or antagonism, with the numbers in the cells denoting the percent difference in loss of viability compared with expected
values assuming no synergy. (C) Left panel, western blot results of PARylation and HIF1 « levels in DU145 cells exposed for 24 h to vehicle (DMSO),

rucaparib (2 uM), PX-478 (25 uM), or the combination of the two drug
(TUBA) are also shown. Right panel, quantification (arbitrary units, AU)

s. The molecular weights, in kDa, are indicated. The results of the loading control
of PARylation under previous conditions. The significance (P) of the two-tailed

Mann-Whitney test is indicated (mean & s.d.; n = 4 independent assays). (D) Western blot analysis of PARylation and HIF1 « levels in DU145 cells
exposed for 24 h to vehicle (DMSO), olaparib (2 M), and/or PX-478 (25 uM). PARylation and HIF1 « levels are denoted in each condition as the ratio of

the corresponding signal to the loading control (3-actin, ACTB), norma

lized to the basal condition without drug treatment (set as 1). (E) Left panel,

western blot results of total PARylation in DU145 cells grown under normoxia or hypoxia. The results of the loading control (ACTB) are also shown. Right
panel, quantification (AU) of PARylation under previous conditions. The significance (P) of the two-tailed Mann-Whitney test is indicated (mean £+ s.d;
n = 5 independent assays). (F) Graph showing the ChIP assays of MYC binding at the promoters of the PARPT and POLQ genes in DU145 cells grown

under normoxic or hypoxic conditions, as indicated in the inset. The re
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this observation, we examined the correlation between the sig-
nature attention scores in breast tumors correctly categorized
as either “high-alt-E]J and high-hypoxia” (high—high; n = 37)
or “high-alt-EJ and low-hypoxia” (high-low; n = 44). Consis-
tent with the HIF1«-mediated suppression of alt-EJ, tumors in
the high—high category frequently showed anticorrelations be-
tween alt-EJ and hypoxia scores, whereas positive correlations
were common in the high—low category (Fig. 6C). Addition-
ally, we observed that alt-EJ and MYC scores were positively
correlated in most tumors (Fig. 6C). The molecular insights
gained from this study, combined with the deep-learning ap-
proach, have the potential to improve patient stratification for
precision treatment and guide future research on synergistic
drug combinations.

Discussion

Based on gene expression, molecular, and cellular assays con-
ducted across various cancer models and conditions, our study
demonstrates that HIF1« suppresses alt-E] gene expression
and pathway function. Consequently, depletion or inhibition
of HIF1« enhances alt-E] activity, revealing a mechanism by
which sensitivity to PARP and POL® inhibitors can be in-
creased in cancer cells, regardless of HR status. Incorporat-
ing these findings with the ability to predict alt-EJ and HIF1«
competency using tumor pathology images could improve pa-
tient stratification and enhance therapeutic outcomes with
PARPi and POLOi. Our pan-cancer observations and mech-
anistic insights build on the association between resistance to
neoadjuvant talazoparib in BRCA1-mutant breast cancer and
the basal expression of hypoxia and stem cell-related signa-
tures [125]. Furthermore, our evidence aligns with recent find-
ings that EMT, stemness, and hypoxia-related transcriptional
programs contribute to cancer cell adaptation to PARPi [126].
Collectively, our data provide a rationale for future clinical
trials combining PARPi or POL6i with HIF1«-targeting com-
pounds [127, 128], which are predicted to synergistically en-
hance efficacy even in cancers with functional HR-mediated
DNA repair.

The opposing effects of HIF1« and MYC on the transcrip-
tional regulation of alt-EJ reveal a functional interaction be-
tween these master regulators that may influence cancer cell
states and vulnerabilities. HIF1oc and MYC generally have
contrasting roles in regulating cell cycle progression and pro-
liferation in cancer cells [129-131]. HIF1 & promotes cell cycle
arrest by partially displacing MYC from the promoters of cell
cycle inhibitor genes [132]. By restricting proliferation, HIF1«x
also competes with MYC for the promoters of genes involved
in HR- and mismatch-mediated DNA damage repair [110,
133]. HIF1« further represses HR-associated genes through
additional mechanisms [111]. However, complete cell cycle
arrest is expected only under severe hypoxic conditions (ap-
proximately <0.1% O,). Most cancer cells within a tumor
reside in microenvironments of moderate or mild hypoxia,
typically between 0.5% and 5% O,, with average measure-
ments in human tumors often ranging between 1% and 2%
O, [134]. This level of oxygenation can still support HIF1«-
mediated survival signals while allowing cancer cell prolifer-
ation [135, 136]. Our assays, conducted under conditions of
mild or physiological hypoxia (2% O,), demonstrated reduc-
tions in PARP1 and POLQ expression, PARylation, and alt-EJ
activity. Additionally, cancer cells often exhibit some degree of
HIF1« function even under normoxia, which may be driven

by the rewiring of oncogenic pathways and metabolism, and
increased oxidative stress, among other factors [137-139].
Recognizing that HIF1« generally suppresses alt-EJ reveals a
mechanism by which mutagenic DNA repair processes may be
exploited to treat HIF1 «-driven aggressive cancer phenotypes
[140]. These phenotypes are often resistant to DNA-damaging
therapies, potentially due to reduced cell proliferation and the
modulation of DNA repair pathways [141-143].

The evidence aligns with the frequent amplification and
overexpression of MYC in HR-deficient breast, ovarian, and
prostate tumors [123, 144-146]. Additionally, some PARPi-
sensitive but HR-proficient cancers are characterized by MYC
overexpression [147-149], and this oncogene has been asso-
ciated with alt-EJ-mediated mutagenesis in leukemias [150].
Furthermore, synthetic lethality between PARP and MYC in-
hibition, independent of BRCA1/BRCA2 status, has been
identified in triple-negative breast cancer [151]. Increased sen-
sitivity to PARPi in MYC-driven cancers may be due to height-
ened replication stress, resulting in stalled replication forks
and DSBs, impaired DSB repair, and/or increased reliance
on alternative DNA repair mechanisms [150, 152-156]. Our
study expands on these concepts by illustrating the interplay
between HIF1a and MYC in the transcriptional regulation
of key alt-EJ components, ultimately influencing alt-EJ path-
way activity. These findings may also support the evalua-
tion of PARPi and POL®I in tumors exhibiting “high MYC”
transcriptional activity, further facilitated by the implemented
deep-learning approach. Tumors, or specific regions within
tumors, that are, or become, resistant to PARPi or POLOi
may exhibit basal activation or acquire activation of HIF1«
and/or suppression of MYC. Anticipating these mechanisms
could improve therapeutic outcome predictions and guide fu-
ture combination therapies aimed at overcoming therapeutic
resistance.

While our study provides valuable insights into how TGFf
controls transcriptional regulation of alt-E]J by inducing HIFx
and suppressing MYC, it is not without limitations. Although
consistent molecular associations were observed in tumor
data analysis, the findings are primarily derived from in vitro
and cell-based experiments conducted under specific condi-
tions that do not fully capture the heterogeneity and complex-
ity of tumors. Additionally, studies incorporating a diverse
range of cancer cell types with various genetic alterations,
alongside complementary assays, are necessary to establish
the broader applicability of these results. While we identified
significant drug synergism across several settings, definitive
causality remains to be confirmed through further mechanis-
tic studies and an expanded repertoire of precision-targeting
approaches, including those involving HIF1«. It is also con-
ceivable that other oncogenic signaling pathways suppress alt-
EJ, such those increasing cellular stress, causing metabolic
rewiring, and/or modulating of DNA damage repair choice.
In this context, synergies have been reported with the com-
bined inhibition of PARP and PI3K/mTOR or MEK signaling
[157-163]. Addressing these limitations in our study will be
critical for validating and extending the clinical relevance of
the findings.
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