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Machine learning-based spatial
characterization of tumor-immune
microenvironment in the EORTC 10994/
BIG 1-00 early breast cancer trial
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Balazs Acs 1,7, Hemming Johansson1, Ceren Boyaci 1,7, Caroline Boman1,3, Coralie Poncet8,
Michail Ignatiadis 9, Yalai Bai 10,11, David L. Rimm 10,11, David Cameron12, Hervé Bonnefoi13,
Jonas Bergh 1,3, Gaetan MacGrogan 14 & Theodoros Foukakis 1,3

Breast cancer (BC) represents a heterogeneous ecosystem and elucidation of tumor
microenvironment components remains essential. Our study aimed to depict the composition and
prognostic correlates of immune infiltrate in early BC, at a multiplex and spatial resolution.
Pretreatment tumor biopsies from patients enrolled in the EORTC 10994/BIG 1-00 randomized phase
III neoadjuvant trial (NCT00017095)were used; theCNN11 classifier for H&E-based digital TILs (dTILs)
quantification and multiplex immunofluorescence were applied, coupled with machine learning (ML)-
based spatial features. dTILs were higher in the triple-negative (TN) subtype, and associated with
pathological complete response (pCR) in the whole cohort. Total CD4+ and intra-tumoral CD8+
T-cells expression was associated with pCR. Higher immune-tumor cell colocalization was observed
in TN tumors of patients achieving pCR. Immune cell subsets were enriched in TP53-mutated tumors.
Our results indicate the feasibility of ML-based algorithms for immune infiltrate characterization and
the prognostic implications of its abundance and tumor-host interactions.

Breast cancer (BC) represents a clinically and biologically heterogeneous
disease ecosystem. Further characterization of the tumor microenviron-
ment (TME), its components and molecular drivers could elucidate the
complexity of tumor-host interactions and provide rationale for biomarker
development. One of the principal TME components, tumor-infiltrating
lymphocytes (TILs), are both prognostic for outcomes and predictive for
response to chemotherapy1–5.

Our understanding of the immune cell composition and spatial
interactions within the TME is evolving. Towards this end, artificial-
intelligence (AI) and machine-learning (ML) methods—which have revo-
lutionized digital pathology and diagnostics—could represent valuable tools
for studying the TME6,7. Indeed, recent studies have reported on the per-
formance, prognostic implications, advantages, and challenges of digital-
assisted scoring of TILs and multiplex immunofluorescence methods for
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TME characterization in BC8,9. However, the spatial relationships between
the various components of immune infiltrate and tumor cells still warrant
further investigation.

The aims of this study were i) to comprehensively and objectively
characterize the composition of tumor-immune microenvironment
landscape at a spatial level, ii) explore its distribution according to TP53
mutational status and iii) evaluate relevant prognostic implications by
using automated, ML-based and multispectral spatial imaging
approaches in the context of a large randomized phase III trial at the
neoadjuvant setting10.

Results
Patient characteristics
Out of the 1856 patients initially enrolled in the trial, 697 had available tissue
and were eligible for this study. Upon staining and tissue quality assessment,
587 and 478 patients had available digital TIL (dTIL) and multiplex immu-
nofluorescencedata, respectivelyand included in thefinal analysis.Thepatient
disposition presenting the eligibility criteria and data availability is shown in
Fig. 1. The demographic/clinicopathologic characteristics of the different
patient populations according to the methods used are presented in Supple-
mentary Table 1. At the time of the latest data cutoff (9th October 2018),
median follow-up was 11.4 years (interquartile range = 10.16–12.41 years).

Digital imageanalysis-basedenumerationofTILsandcorrelation
with outcomes
Using the previously validated CNN11 image-analysis algorithm on
hematoxylin & eosin (H&E)-stained tissue microarrays (TMA), we
calculated different digital TILs (dTILs) metrics based on the various
cell annotations (Fig. 2A). Among the dTILs variables, the median

expression of easTILs was 11% (range: 0.01–76.7) (Fig. 2B, Supple-
mentary Table 2). The different dTILs metrics were overall strongly
and statistically significantly correlated with each other (Fig. 2C).
DTILs abundance was generally higher in the triple-negative subtype
compared to the HER2+ and HR+/HER2- (Fig. 2D, Supplementary
Table 2).

Regarding associationswith patient outcomes, easTILswere associated
with pCR rates both in univariate (ORunadjusted= 1.73, 95% CI 1.10–2.69,
p = 0.016) and multivariable (ORadjusted= 1.59, 95% CI 1.00–2.54, p = 0.05)
analysis (Fig. 2E, F). There was a significant interaction between easTIL and
IHC-based subtypes for pCR (p = 0.045), with the association mainly
observed in the HR+/HER2- subtype. However, no significant association
with PFS was noted (Supplementary Fig. 1).

Immunecell landscapecompositionat amultiplex resolutionand
correlation with outcomes
To further characterize the specific compositionof the immune infiltrate,we
performed multiplex immunofluorescence in the available TMA using an
immune-related antibody panel. We evaluated the abundance (i.e., defined
as normalized cell densities = number of marker positive cells/mm2) and
localization (total, tumor and stroma area) of the different immune cell
subpopulations based on i) the expression of single markers (CD4+ for T-
helpers, CD8+ for cytotoxic T-cells, FoxP3+ for T-regulatory cells, CD68+
for macrophages) and ii) the respective co-expression of PD-L1 and PD-1
checkpoint markers on these cells (Fig. 3A, Supplementary Table 3). Upon
the application of an established workflow and tissue/staining quality
control, immune cell quantification could be performed in a total of 478
patients (n = 468 for tumor area analysis; 10 patients had only stroma area
for analysis).

Fig. 1 | Patient disposition and data availability of the study. Flowchart depicting the data availability for the translational analyses in the present study; ITT intention-to-
treat, eTILs digitally-assessed tumor-infiltrated lymphocytes, MF-IHC multiplex fluorescent immunohistochemistry, TMA tissue microarrays.
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In thewhole patient population,CD8+ cytotoxicT-cellswere themost
abundant cell subset in the total, intra-tumoral and stromal areas. Both PD-
1 and PD-L1 checkpoint expression was highest in CD4+T-cells (T-
helpers), followed by cytotoxic T-cells (CD8+) in all tissue compartments
(Supplementary Table 3). Within IHC-based subtypes, the mean cell den-
sities of all immune cell subpopulations (i.e., T-cell and macrophages) and

also the respective co-expression of the PD-1/PD-L1 markers were sig-
nificantly enriched in the triple-negative compared to the other subtypes,
regardless of tissue localization (Supplementary Table 4, Fig. 3B). Further-
more, the different immune cell subsets derived from the multiplex
immunofluorescence analysiswere correlatedbothwith eachother andwith
digital TILs (Supplementary Fig. 2).

Fig. 2 | Digital TILs evaluation using a machine-
learning algorithm in archival H&E-stained FFPE
breast cancer tissue microarrays. A Representative
TMA images of digital TILs enumeration in patients
with low and high immune infiltration, created with
BioRender.com; B Distribution of the digital TILs
variables in the whole population (n = 587);
C Correlation matrix for the different dTILs vari-
ables, Spearman’s rank correlation coefficient;
DDistribution of dTILs variables within IHC-based
subtypes; Forest plots on prognostic effect of dTILs
on pCR in the univariate (E) and multivariable (F)
logistic regression model (adjusted for tumor size,
nodal status, treatment and stratified by subtype) in
the whole cohort.
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Among the different cell subpopulations, CD4+ T-helpers in the
total area (ORadj = 1.79, 95% CI 1.07–2.97, p = 0.026) and intra-
tumoral CD8+ cytotoxic T-cells (ORadj = 1.83, 95% CI 1.05–3.20,
p = 0.033) were associated with improved pCR (Fig. 3C, D). No
significant association with PFS was observed for any marker
(Supplementary Fig. 3).

Spatial compositionof immune infiltrate, cell-to-cell interactions,
and correlation with pathologic complete response in the triple-
negative subtype
To further explore the spatial distribution and complexity of immune-
tumor host interactions, we calculated two different ML-based metrics
using the multiplex immunofluorescence cell data, namely i) the

Fig. 3 | Characterization of the immune infiltrate
at a multiplex resolution. A Representative stained
images with the multiplex immunofluorescence
antibody panel; B Distribution of cell densities/
immune cell subsets for total area (upper panel),
stroma (middle panel) and tumor (lower panel)
compartments within IHC-based subtypes. All
values are log2-transformed; Forest plots on prog-
nostic effect of multiplex immunofluorescence
immune cell subpopulations on pCR in the uni-
variate (C) and multivariable (D) logistic regression
model (adjusted for tumor size, nodal status, treat-
ment and stratified by subtype) in the whole cohort.
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Fig. 4 | Spatial characterization of the tumor-immune cell interactions (using
ML-based metrics) in the triple-negative subtype in patients that achieved pCR
versus non-pCR. A Representative images depicting the spatial phenotyping and
interactions among different immune cell subpopulations with tumor cells in a pCR
(left) and a non-pCR (right) patient; Radar plots depicting normalized mixing score
(NMS) values for different increasing radii for the interaction of overall immune-

tumor cells (B) and the specific immune cell subpopulations in patients achieving
pCR (green) versus non-pCR (red) TN (C). D Entropy gradient slope depicting
attraction-like (red lines) and repulsion-like (blue lines) patterns for the interaction
between immune and tumor cells in non-pCR (left panel) versus pCR (right panel)
patients. Figure 3B was created with BioRender.com.
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normalized mixing score (NMS) and ii) the entropy gradient. Given
that the abundance of immune cells was highest in the triple-negative
subtype, we focused on the description of their spatial patterns in this
patient subgroup. Higher baseline NMS values for the immune-tumor
cell interactions were observed in patients that achieved pCR compared
to the non-pCR ones, regardless of radius (Fig. 4A, B), indicating higher
degree of cell–cell colocalization for the pCR patients. This effect was
maintained when we tested separately the interactions of tumor cells
with cytotoxic T-cells or macrophages, but not for T-helpers or reg-
ulatory T-cells (Fig. 4C, Supplementary Table 5). Similarly, an
“attraction-like” entropy gradient slope pattern for the interaction of
immune with tumor cells was observedmostly in patients that achieved
pCR compared to the non-pCR patients who had an enriched “repul-
sion-like pattern” (Chi-squared p = 0.01; Fig. 4D). This effect was
observed for the interactions of tumor cells with most of the immune
cell subpopulations, except for macrophages (Supplementary Fig. 4).
Taken together, by using two different ML-based approaches we
observed that closer spatial interaction between tumor and immune
cells correlated with higher probability of pCR in TNBC subtype.

Association of TP53mutational status with immune infiltrate
components
Given that TP53mutational status was available for most patients included
in EORTC10994/BIG1-00, we aimed to investigate its association with the
composition of the immune infiltrate. To this end, we performed correlative
analyses in the patient subgroup with known TP53 status and available
dTILs (n = 497) or multiplex immunofluorescence (n = 415) data. Stroma
dTILsmetricswere higher in theTP53-mutatedpatient subgroup versus the
TP53 wild-type in the whole population, but not within IHC-subtypes—
although numerically higher in the TP53-mutated triple-negative group
(Fig. 5A, Supplementary Table 6). When evaluating the distribution of
immune cell subpopulations per TP53mutational status, we observed that
cell densities of cytotoxic T-cells (at total, tumor and stroma areas), intra-
tumoral T-regulatory cells, and stromal macrophages were significantly
higher in the TP53-mutated patient subgroup (Fig. 5B–D, Supplementary
Table 7). Similarly, PD-L1 expression on T-cells and macrophages was
significantly enriched in the TP53-mutated patients, regardless of their
localization. PD-1 expressing cells were also enriched in the TP53-mutated
patients, mainly the intra-tumoral T-helpers and stromal cytotoxic T-cells

Fig. 5 | Composition of immune landscape according to TP53mutational status
and prognostic correlates. A Distribution of digital TILs variables in patients with
TP53-mutated versus TP53 wild-type tumors; Expression of immune cell sub-
populations according to TP53 mutational status in the total (B), tumor (C) and

stromal (D) areas, cell densities values are log2-transformed; EKaplan-Meier curves
on the prognostic effect of the interaction between esTILs and TP53 mutational
status (p = 0.028). Higher TILs were associatedwith worse PFS in patients withTP53
wild-type but not in the TP53-mutated tumors.
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andmacrophages (Supplementary Table 7). Nevertheless, no differencewas
observed in NMS or entropy gradient score for interactions among tumor
and immune cells according to TP53 mutational status (Supplementary
Figs. 5-6, Supplementary Table 8). Lastly, in an exploratory analysis, a
significant interaction between esTIL andTP53mutational statuswas noted
forPFS (p = 0.028),wherehigher esTIL abundancewasprognostic forworse
PFS only in patients with TP53 wild-type tumors but not in mutant ones
(Fig. 5E).

Discussion
Breast cancer is a multifaceted ecosystem comprising various cell pheno-
types and clones that may provide biological insights and hints towards
biomarker development. The best studied immune markers are the
assessment of TILs and PD-L1, which although prognostic in the early BC
setting, they lack at this time clinical utility for routine use1–5,11. In addition,
their static and visual evaluation cannot adequately grasp the complexity of
immune infiltrate and the spatial distribution of tumor-host interactions.
Toward this end, emerging powerful AI- and ML-based tools and spatial
phenotypic quantitative immunohistochemistry/fluorescence technologies
could facilitate comprehensive TME profiling7,9,12.

In this study, we investigated the immune cell composition and spatial
interactions within the BC TME using ML-based and digital pathology
algorithms and demonstrated their feasibility in early BC using small tissue
input. By using a digital-assisted classifier on H&E-stained TMA, we
showed that easTILs were associated with increased pCR rates, yet we could
not demonstrate any significant correlation with long-term survival out-
comes. Although this algorithm has been previously tested and validated in
adjuvant setting for TNBC patients and demonstrated the prognostic cor-
relation of high dTILs with improved survival13, inconsistent results have
been reported in theneoadjuvant setting. Inprevious studies, both inHER2-
negative14 and HER2+ disease15, easTILs correlated with pCR but not with
long-term outcomes. On the other hand, a recent report using another AI-
based dTILs algorithm on luminal tumors demonstrated a correlation with
worse outcome -however no patient received neoadjuvant treatment16. Of
note, a previous study using gene expression data from the EORTC 10994/
BIG 1-00 trial reported that high expression of an 8-gene TILs-related
signature correlatedwith increased pCR rates in ER-negative patients17. The
results of the present study indicate that dTILs were associated with
increased pCR in the ER+/HER2- subtype, however lowpatient numbers of
patients in the other subtypes preclude any informative conclusions. Thus, it
is unclear if these results could be attributed to biological or technical
aspects. Regarding the latter, digital TILs evaluation could be prone to
various analytical setbacks including interobserver variability, artifacts,
algorithm training and tissue recognition, thus leading to discrepancieswith
the visual assessment and further impeding clinical utility8,18. The Interna-
tional Immuno-Oncology Biomarker Working Group has previously
launched a set of recommendations on the computational TILs assessment,
for overcoming the inherent limitations of visual TILs enumeration19.
Furthermore, several versatile interpretable deep-learning algorithms for
TILs evaluation have been recently reported i.e., MuTILs20 or the Histomic
Prognostic Signature (HiPS)21, focusing jointly on tissue region and indi-
vidual cell nuclei segmentation (compared to our cell nuclei-based classi-
fication approach), and outperforming the pathologist-based visual
assessment in predicting survival outcomes.Given the increasingnumber of
AI-based models generated for TILs assessment, a recent study compared
the validity of ten AImodels on TILs scoring, confirming discrepancies and
variability in terms ofmostly analytical rather than prognostic performance
in patients with TNBC22. Therefore, future perspectives towards potential
clinical implementation include the refinement of existing or design of next-
generation AI models (i.e., foundation models)23, validation in prospective
clinical studies and integration of computational image-based tools to other
multi-omic data types for generation of comprehensive prognostic and
predictive models of treatment response24.

In order to further investigate the immune cell composition at a spatial
resolution, we performed multiplex immunofluorescence for T-cell and

macrophage markers and for the expression of PD-1/PD-L1 checkpoints.
Higher immune infiltration was seen in the TNBC subtype and similarly to
dTILs analysis, CD8+ and CD4+ T-cells were correlated with increased
pCR rates but not with long-term outcomes. Conflicting data have been
reported regarding the association of single immune markers with pCR in
early BC, highlighting thus the challenges of multiplex assays9,25. However,
these multidimensional methods could provide further directions beyond
the immune cell abundance, hence a growing body of literature is focusing
on the spatial interactions among the different cells within the TME6. In the
ARTEMIS trial on neoadjuvant chemotherapy for TNBC, a closer spatial
proximity ofT cells to cancer cellswas associatedwith increasedpCR rates25.
Similar results on spatial immune infiltrate patterns have been recently
reported in association with benefit to immunotherapy in TNBC26,27 and
other tumor types28,29, further indicating that close interaction of tumorwith
activated immune cells is a major predictor of treatment response. In line
with the aforementioned reports, we demonstrated here a higher and closer
proximity of immune cells to cancer cells in TNBC patients that achieved
pCR compared to those that did not respond to neoadjuvant chemotherapy
treatment. Therefore, coupling deep-learning features with the spatial TME
distribution in common predictive models could lead to improved patient
stratification and treatment outcomes30.

Considering the previous reports on the link of the genetic determi-
nants with antitumor immunity and that investigating the predictive role of
TP53mutational status was a primary objective of the trial, we explored the
potential effect ofTP53mutation onTME.TP53has been shown to regulate
the PD-1/PD-L1 axis in lung cancer studies, with IHC p53 positivity being
associated with higher PD-L1 tumor cell expression31,32—a finding which
was not confirmed in the case of breast cancer andTP53mutations33.On the
other hand, it was recently shown that TP53-mutated BC exhibits sig-
nificantly higher expressionof chronic inflammationmarkers (i.e interferon
signaling, CD8+T-cell infiltration) and immune checkpoints, indicating
that TP53mut-targeting compounds could restore effective immune
surveillance34. In accordance with previous reports, we demonstrated an
increased immune cell abundance (and respective checkpoint expression) in
the TP53-mutated group of patients and especially in the TNBC subtype,
possibly indicating that the presence of the mutation contributes to a more
inflammatory phenotype. Moreover, in an exploratory analysis, we
demonstrated a significant interaction betweenTP53mutational status and
esTILs,withhigher esTIL abundancebeingprognostic forworsePFSonly in
patients with TP53 wild-type tumors. It is unclear if this prognostic effect
could solely rely on the TP53 biological effect or it reflects the association of
increased TILs with more aggressive luminal B tumors4,35.

Although the presented results stem from a randomized phase III trial
with long-term follow-up and highlight the advantages of automated and
ML-based approaches, our study has several limitations needed to be
addressed. A major limitation is the use of TMA, with cores of very small
diameter (0.6mm) which could have affected cellularity, immune cell
abundance, tumor heterogeneity aspects and spatial tissue morphology
analyses compared to whole tissue section36. The selection of representative
tumor-rich areas for TMA construction and the inherent limitations of the
used classifier couldnot distinguishbetween stromal and intratumoral TILs,
thus affecting variable definitions and outcome correlations. The multi-
centric nature of the study could have also contributed to the tissue quality
and TMA handling heterogeneity. Moreover, tumor phenotyping was
performed on TMA and by using ≥1% cut-off for ER/PR positivity37,38;
however, ER/PR cut-off ≥10% is used for positivity in some centers, based
on previous studies demonstrating that patients with tumors with ER 1–9%
and HER-2 negativity have mostly similar outcomes to those with
ER ≤ 1%39–41. Although we showed that immune infiltrate correlated with
chemosensitivity in the whole cohort, the relatively low number of patients
within subgroups precluded definite conclusions in the exploratory ana-
lyses. Moreover, due to the exploratory nature of this study, no formal
adjustment for multiplicity was performed. Lastly, at the time the trial was
conducted, neoadjuvant chemotherapy alone was standard treatment.
Therefore, anyprognostic orpredictive valueof the immune infiltrate for the
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effect of newer neoadjuvant therapies (i.e., immunotherapy, anti-HER2)
could not be evaluated.

In conclusion, our data indicate that ML-based algorithms could be
used for characterizing the immune infiltrate in situ in early BC, which in
turn contains prognostic information. Further studies are warranted in
order to provide insights into TME cell phenotype features, interactions and
underlying molecular determinants with the overall aim to improve prog-
nostication and select candidates for future therapies.

Methods
Study design and patient cohort description
The present analysis is a translational substudy of the multicenter, inter-
national, randomized phase III EORTC 10994/BIG 1-00 clinical trial
(Clinicaltrials.gov identifier NCT00017095). The study enrolled women
(<71 years) with histologically-proven locally advanced, inflammatory, or
large operable primary invasive BC who were candidates for neoadjuvant
chemotherapy. Patients were randomly assigned in a 1:1 ratio to receive six
cycles of taxane-based (docetaxel for three cycles followed by three cycles of
epirubicin + docetaxel, T-ET; 928 patients) or non-taxane-based (5-
fluorouracil, epirubicin, cyclophosphamide, FEC100 or tailored FEC; 928
patients) chemotherapy, prior to surgery. Post-surgery therapy included
hormonal treatment and radiotherapy, according to the protocol guidelines.
None of the patients received neoadjuvant trastuzumab or radiotherapy
before surgery10. Patients who had signed informed consent, with available
tissue microarray (TMA) and with IHC-based subtype defined per TMA
were included in this translational study. The analyses are reported
according to the Reporting Recommendations for Tumor Marker Prog-
nostic Studies (REMARK) guidelines42 (Supplementary Table 9). The
EORTC 10994/BIG 1-00 randomized phase III trial was registered at
ClinicalTrials.gov (NCT00017095) and approved by the Ethics Committees
in all participating centers (Supplementary Table 10). The proposed
translational study has been reviewed and approved by the EORTC
Translational Research Advisory Committee and Headquarters and the
tissue material has been handled according to the signed material transfer
agreement by the two organizations (Karolinska Institutet and EORTC).
Only the tissue from the patients who have previously provided/signed
informed consent for additional biologic research on their samples was
included and analyzed. All patients have signed informed consent -prior
registration- for inclusion in the trial and the assessment of p53 mutational
status. The present study has been performed according to the Declaration
of Helsinki, principles of Good Clinical Practice and was also approved by
the Swedish Medical Product Agency and the Regional Ethical Committee
in Stockholm (Dnr 01-387, Dnr 2005/472-32, Dnr 2005/738-32, Dnr 2008/
897-32, Dnr 2013/954-32, Dnr 2018/540-32, Dnr 2021-05174, Dnr 2022-
00657-02).

Tissue sample preparation and histopathology assessment
Formalin-fixed paraffin-embedded (FFPE) tumor tissue blocks from the
initial diagnostic biopsies (before initiation of neoadjuvant chemotherapy)
have been collected from all patients. Hematoxylin & eosin (H&E)-stained
slides were reviewed by a certified pathologist (G.M.) and representative
tumor-rich areas were selected for TMA construction, performed at Institut
Bergonié, Bordeaux, France. For each patient, up to three cores (0.6mm in
diameter each) were used for the TMA, as previously described43. TP53
mutational status analysis (assessed via a yeast functional assay and further
validated through Sanger and next-generation sequencing) has been pre-
viously performed on baseline frozen tumor biopsies from all patients
included in the study, with most (80%) having evaluable TP53 mutational
status10,43,44. Tumor IHC-based phenotyping and biomarker interpretation
were performed on TMA as follows: Estrogen receptor (ER) and proges-
terone receptor (PR) were defined as positive in case of ≥1% tumor cell
expression; high Ki67 expression was defined as ≥14% of positive cells;
human Epidermal Growth Factor Receptor 2 (HER2) was evaluated
according to the ASCO/CAP 2013 recommendations and was considered
positive if immunohistochemistry (IHC) 3+ or if IHC 2+ and ≥6 HER2

gene copies using in situ hybridization43. Tumors were classified into three
subtypes as such: hormone receptor-positive/HER2-negative (HR+/HER2-
negative), HER2-positive and triple negative (TN). Histological grade, type
as well as pathological response (after neoadjuvant chemotherapy) were
locally evaluated at each participating center.

Digital evaluation of tumor-infiltrating lymphocytes
One FFPE section (4 μm thickness) was obtained from each TMA tissue
block and stained with hematoxylin and eosin (H&E). H&E slides were
digitized using the Nanozoomer 2.0-HT (Hamamatsu Photonics K.K.)
platform at 20× magnification. TILs were subsequently enumerated using
the digitally-assisted, image-based automated scoring CNN11
algorithm13,45. This previously trained andoptimized classifier -which canbe
used with the open-source QuPath software- was used for detecting lym-
phocytes, tumor cells, stromal cells (e.g.,fibroblasts) and “other” cells and for
defining annotation and accumulative areas of each cell type (measured in
mm2). Quality control of the tissuemorphology (artifacts, necrosis) and cell
segmentation was performed and subsequently five different TILs variables
were derived from the different annotations as follows: i) eTILs (%) = 100 *
(TILs/sum of tumor cells and TILs); ii) etTILs (%) = 100 * (TILs/All
detected cells (i.e., tumor cells + fibroblasts + other cells)); iii) esTILs
(%) = 100 * (TILs/Stromal cells (i.e TILs + fibroblasts + other cells)); iv)
eaTILs (mm2) = TILs/tumor region areas analyzed; v) easTILs (%) = 100 *
(sum of TILs area (mm2)/stroma area (mm2)), mirroring the definition
provided by the International TILs Working Group guidelines)1. Intratu-
moral TILs were included in the respective calculations of all the afore-
mentioned metrics.

Multiplex immunofluorescence staining, image processing, and
analysis
Staining. We performed multiplex immunofluorescence staining on
FFPE TMA tumor tissue sections (thickness: 4 μm), using the OpalTM

7-color Solid Tumor Immunology Kit (Akoya Biosciences,Marlborough,
MA, USA), according to themanufacturer’s instructions. The automated
Leica Bond RXm system (Leica Biosystems, Buffalo Grove, IL, USA) was
used for sequential staining with a panel of lymphocytic andmacrophage
markers using antibodies against CD4, CD8, PD-L1, PD-1, FoxP3, CD68.
For the detection of epithelial tissue, a combination of antibodies against
cytokeratin and E-cadherin was used, as previously described36,46,47. The
list of antibodies, reagents, and experimental conditions used for the
multiplex immunofluorescence staining are listed in Supplementary
Table 11.

Imaging, image analysis, and quality control. The stained TMA were
imaged using the Vectra® PolarisTMAutomated Quantitative Pathology
Imaging System (Akoya Biosciences, Marlborough, MA, USA) in mul-
tispectral mode at a resolution of 0,496 μm/pixel, which resulted in a total
of 2350 multispectral images of size 0.93 mm × 0.7 mm. Each of the
images was manually reviewed by three investigators (I.Z., A.M., C.B.)
and curated to exclude artifacts, staining defects, and accumulation of
immune cells in necrotic areas and intraglandular structures. Any dis-
crepancies were resolved by a pathologist (A.Mez.). The number of
images used for further analysis was 1414. The vendor-providedmachine
learning algorithm, implemented in the inForm® image analysis software,
was trained to split tissue into three categories: tumor compartment,
stromal compartment, or blank areas. The training was performed on a
selection of representative cores by providing a set of samples that was
manually annotated. Cell segmentation was performed using DAPI
nuclear staining. The perinuclear region at 7 pixels from the nuclear
border was considered as the cytoplasm area.

Cell phenotyping. The cell phenotyping function of the inForm® image
analysis software was used to manually define a representative subset of
cells positive to expression of each of the markers and a subset of cells
negative to all markers (also considering the rare immune phenotypes).
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The marker expression was evaluated in the cytoplasm of the segmented
cells as the number of photons, normalized to exposure time. Exceptions
were made for i) FoxP3 (expressed in nuclei and thus its signal was
analyzed in the nuclear region of segmented cells) and ii) CD4 marker,
which demonstrated more diffuse staining (probably due to epitope
instability) often covering also nuclei regions, and thus, the average
marker expression level in total cell region (nucleus + cytoplasm) was
used48. Intensity cutoffs for the markers were determined in the R pro-
gramming environment (version 3.6.0). Themarker-specific cutoffs were
defined by analyzing the distributions of the positive intensities for the
marker in the manually-annotated cells and by controlling for the
background levels visually and in the negatively annotated cells. The
empirical cumulative distribution function was used for visual control.
Theminimal cutoff was selected asminimal recorded signal level (among
the manually annotated cells) if the empirical cumulative distribution
demonstrated steep monotonous tendency. In case of individual low-
level outliers, they were considered as negative. In case of prominent
“kneepoint” in the graph the expression of the marker was back-
controlled by reviewing the annotated images and controlling for the
marker expression. Additionally, for each of the markers the images were
screened for the areas of non-specific staining which were considered as
background. Due to the high fraction of CK-positive cells in the entire
cohort, a different approach was used to define its cutoff. The complete
dataset, containing 1,790,165 cells, was analyzed to evaluate the dis-
tribution of CK expression, measured as marker mean expression in cell
cytoplasm. The distribution had two peaks, reflecting non-CK cells (low
expression) andCK-positive cells (high expression) andOtsu algorithm49

was used to find minima between two groups.

Cell classification. Using the established cutoff levels, every cell was
characterized as positive or negative for each marker in the panel. These
data were used to classify the cell and define its immune subtype as
illustrated in Supplementary Table 12. Multiple TMA cores from the
same tumor/patient were merged and cell abundance was normalized to
the total tissue area. Cell subclasses were quantified and normalized to
tissue area thus resulting in final metric called “cell density” (units per
mm2), which was calculated in total tissue area, stroma, and tumor
regions for each cell subclass. For illustration purposes, the cell density
values were log2- transformed. The multispectral imaging/analysis
workflow is depicted in Supplementary Fig. 7.

Spatial image analysis and topographical interactions
ThepreviouslydescribedSpatial ImageAnalysis ofTissues (SPIAT) toolkit50

wasutilized to facilitate thedetectionof cellular interactions among immune
cells (including regulatory T-cells, cytotoxic T-cells, macrophages, and
T-helpers and the respective expression of PD-L1/PD-1 checkpoints as
reference cells) with tumor cells (target cells) and spatial cell localization.
The applied metrics included the normalized mixing score and the entropy
gradient which both evaluated the co-localization of immune and tumor
cells. The analysis was performed on single reconstructed images from
multiple patient-specific TMA stitched with a proper distance between
them to avoid potential overlaps. Normalized mixing score (NMS) and the
“aggregated entropy”were calculated as a function of different radii around
the reference cells (immune cells here), varying from 50 up (close-distance
interactions) to 600 μm to cover the whole TMA area with a step of 50μm.
TheNMSuses anormalization scale factor -accounting for cell number- and
receives a numerical value according to the following formula, described in
SPIAT: NMS = number of interactions between reference and target
cells × (total number of reference cells – 1)/2 × number of interactions
between reference cell types x total number of target cells. The higher the
score, the higher the degree of co-localization between immune and tumor
cells. Given that cell number and types in TMAs are fixed, the definition of
entropy entails mainly the variability in cell number rather than degree of
randomness. Immune cells were selected as reference, target cells were
identified for each selected radius around the reference cells and entropy

scoreswere subsequently calculated for each radius (“aggregated entropy” as
described in the SPIAT toolkit)50. Higher entropy scores correspond to high
cell colocalization between reference and target cells and vice versa for low
entropy scores (unbalanced cell types – low colocalization). Next, patient-
specific gradient entropy curves were generated from the “aggregated
entropy” values along the different radii (for illustration purposes all curves
were graphically displayed following a 10μm radius step) and classified
either as “Attraction-like” or “Repulsion-like” patterns according to the
slope of the curve. If the slope was negative close to the lowest radius, the
pattern of interaction was defined as ”Attraction”, indicating higher
aggregated entropy values close to reference cells, thus high colocalization. If
the slope was positive close to the lowest radius, the pattern of interaction is
definedas ”Repulsion”, indicatinghigher aggregated entropyvalues far from
reference cells, thus low colocalization. In case of no difference on entropy
values across the radii, therewas a zero slope50. The aforementioned analyses
were performed in the R programming environment.

Outcomes definition and statistical analysis
Pathologic complete response (pCR) was defined as in the original pub-
lication of the primary efficacy analysis of the trial as the absence of residual
invasive cancer (or very few scattered cancer cells left), with or without
residualDCIS andwithnegative axillary lymphnodes (ypT0/is ypN0).Non-
pCR patients included those who presented with tumor progression on
neoadjuvant chemotherapy or who did not undergo surgery43. Patientswith
missing information were excluded from the analysis. Progression-free
survival (PFS), which was the primary endpoint of the trial10, was defined as
the time from randomization to progression on neoadjuvant therapy,
locoregional relapse (invasive cancer), first distant metastasis, invasive
contralateral breast cancer or death from any cause, whichever occurred
first. Second primary invasive non-breast cancers, DCIS or LCIS (ipsilateral
or contralateral) were not considered as events.

Continuous outcomes were tested using the Wilcoxon rank-sum or
Kruskal–Wallis test while binary outcomes with Pearson’s chi-squared or
Fisher’s exact test. The Spearman’s rank correlation coefficient was used for
correlations between continuous variables. The different immune cell sub-
populations and digital metrics derived by dTILs and multiplex immuno-
fluorescence were correlated to pCR using univariate and multivariable
logistic regressionmodels.Median follow-upwas calculated using the reverse
Kaplan-Meiermethod. Survival (PFS)was calculatedusing theKaplan-Meier
method anddifferences inPFSwere calculatedwith the log-rank test. Time to
failurewasmodeledusing proportional hazard regression. Logistic regression
and Cox regression models are presented as odds ratios and hazard ratios,
respectively, with the respective 95% confidence intervals andWald p-values.
Multivariable models were adjusted for tumor size, nodal status and treat-
ment, and stratified for subtype since subtype violated proportionality of
hazards. All p-values were two-sided with 5% as the level of significance.
Adjustment formultiplicity was not performed. All analyses were performed
the Stata software (v. 17, StataCorp, College Station, TX, USA).

Data availability
Data shall be shared according to the EORTC data release policy (http://
www.eortc.org/datasharing/).

Code availability
The code for the multiplex immunofluorescence-based data analysis could
be found in the following link: https://github.com/gmanikis/EORTC_NPJ_
BC/tree/main.
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