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Abstract

Small-animal diffusion MRI (dMRI) has been used for methodological develop-
ment and validation, characterizing the biological basis of diffusion phenomena,
and comparative anatomy. The steps from animal setup and monitoring, to
acquisition, analysis, and interpretation are complex, with many decisions that
may ultimately affect what questions can be answered using the resultant data.
This work aims to present selected considerations and recommendations from
the diffusion community on best practices for preclinical dMRI of in vivo ani-
mals. We describe the general considerations and foundational knowledge that
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must be considered when designing experiments. We briefly describe differences
in animal species and disease models and discuss why some may be more or less
appropriate for different studies. We, then, give recommendations for in vivo
acquisition protocols, including decisions on hardware, animal preparation, and
imaging sequences, followed by advice for data processing including prepro-
cessing, model-fitting, and tractography. Finally, we provide an online resource
that lists publicly available preclinical dMRI datasets and software packages
to promote responsible and reproducible research. In each section, we attempt
to provide guides and recommendations, but also highlight areas for which
no guidelines exist (and why), and where future work should focus. Although
we mainly cover the central nervous system (on which most preclinical dMRI
studies are focused), we also provide, where possible and applicable, recommen-
dations for other organs of interest. An overarching goal is to enhance the rigor
and reproducibility of small animal dMRI acquisitions and analyses, and thereby
advance biomedical knowledge.

K E Y W O R D S

acquisition, best practices, diffusion MRI, diffusion tensor, microstructure, open science,
preclinical, processing, small animal, tractography

1 INTRODUCTION

Diffusion MRI (dMRI) is a non-invasive technique that
exploits the hindered or restricted mobility of water
molecules in biological tissue to extract information about
tissue microstructure in both normal and abnormal states.

dMRI studies of in vivo small animals and of ex vivo
specimens derived from animal or human tissues, have
both greatly contributed to scientific knowledge. In this
work, small animal imaging refers to imaging living ani-
mal models, whereas ex vivo refers to perfused living tissue
or fixed tissue—the latter are covered in separate papers,
“Part 2”1 and “Part 3.”2 Many influential works in dMRI
were first performed in small animals or ex vivo samples.
For example, the discovery of a dramatically decreased
diffusivity in cerebral ischemia was first observed in a
cat model,3 diffusion tensor imaging formalism was orig-
inally validated on vegetables, pork loin, and rabbit mod-
els,4,5 and diffusion anisotropy was first observed again in
cat models.6 Microstructural and tractography models of
today are routinely validated against animal models, ex
vivo scans, and subsequent histological analysis.6–9

The added value of preclinical dMRI is multifold
(Figure 1). First, small animal dMRI allows correlations
with histological and other (invasive) imaging measures to
discover the biophysical basis of the dMRI signal, param-
eters, and biomarkers with the ultimate goal to act as a
non-invasive in vivo microscope. Second, small animal
imaging allows acquisition of “extreme” datasets, at the

edge of what is achievable in dMRI in terms of spatial res-
olution and/or diffusion-weighting coverage, and clearly
beyond what is currently achievable with clinical imag-
ing, leveraging the access to much stronger gradients, and
to longer scan times. Together these allow the acquisition
of more comprehensive datasets. Third, the use of animal
models allows us to study the sensitivity of dMRI to tissue
changes in diseases, disorders, and treatments in a con-
trolled way that is not always possible in humans, allowing
the knowledge gain to be applied to human studies. Small
animal MRI can be multimodal, easily longitudinal, and
supported by behavior analysis and molecular techniques
(optogenetics, omics, immunohistochemistry, etc.) from
the same animals. Fourth, the use of animal models
enables comparative anatomy, allowing the investigation
of differences between human and other mammalian
brains.

The science of dMRI covers many disciplines and is
continually evolving. The steps from animal setup and
monitoring, to acquisition, analysis, and interpretation
are complex, with many decisions that may ultimately
affect what questions can be answered using the data. The
present work does not serve as a “consensus” on any spe-
cific topic, but rather as a snapshot of “best practices” or
“recommendations” from the preclinical dMRI commu-
nity as represented by the authors. Recruitment for partici-
pation in this effort included two meetings of the Diffusion
Study Group of the International Society for Magnetic
Resonance in Medicine, responses to a survey (Data S1)
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F I G U R E 1 Four areas in which preclinical brain imaging adds value to the field of dMRI. It enables: (A) correlation with histology on
the same subject/sample; (B) the acquisition of richer datasets than on clinical systems thanks to more advanced hardware and longer scan
times available; (C) the study of tissue changes with disease and treatment in a more controlled setting; and (D) comparative anatomy
between species. Figures reused and adapted from (A),10,11 (B),12–15 (C),16 (D).17

distributed within the Diffusion Study Group forum, and
recommendations for recruitment from other authors. We
envision this work to be useful to imaging centers using
small animal scanners for research, sites that may not have
personnel with expert knowledge in diffusion, pharmaceu-
tical or industry employees who may want to run their own
tests and studies, or new trainees in the field of dMRI.

The review is organized as follows. We first describe
general considerations and foundational knowledge that
must be considered when designing experiments. We
briefly describe differences in species and models and
discuss why some may be more or less appropriate for
different studies. We, then, give guidelines for in vivo
acquisition protocols, including decisions on hardware,

 15222594, 2025, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.30429 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2510 JELESCU et al.

animal preparation, and imaging sequences, followed by
recommendations for data processing including prepro-
cessing, model-fitting, and tractography. Finally, we give
perspectives on the field, describing sharing of code and
data, and goals that we wish to achieve. We also high-
light areas for which no guidelines exist (and why), and
where future work should lie. An overarching goal here,
is to enhance the rigor and reproducibility of small ani-
mal dMRI acquisitions and analyses, and thereby advance
biomedical knowledge.

2 TRANSLATIONAL ASPECTS

2.1 Translation and validation
considerations

Several aspects must be considered when designing and
performing experiments to appropriately interpret sci-
entific results, including the tissue model itself, disease
and disorders, and hardware and experimental setup.
Although the diffusion process is fundamentally the same,
animal experiments must be carefully thought out to trans-
late findings to the in vivo human.

Basic constituents of the brain and other organs are
largely preserved across mammalian species, providing
a basis for translational in vivo MRI studies.18,19 In the
central nervous system, the structure of axons with a
myelin sheath makes the dMRI signal interpretation in
white matter fundamentally translatable, although there
are variations in axon diameter, myelin thickness, and
ratio of myelinated to unmyelinated axons.20,21 Brain cor-
tical layers are also largely preserved across species. How-
ever, the ratio of white-to-gray matter is very different
between rodents and primates, with predominant gray
matter, unfolded cortex and thin white matter tracts in
rodents, and relatively more white matter and folded cor-
tex in primates (see Mota et al.22 for a comprehensive
characterization across mammalian species). As a result,
partial volume effects are more challenging to mitigate in
rodent white matter and in human/primate gray matter,
respectively (Figure 2). Moreover, the complexity of white
matter organization in rodents is different from primates,
resulting in potential issues when translating modeling
and tractography approaches from the rodent brain. How-
ever, large bundles such as corpus callosum, the external
capsule and the fimbria/fornix retain structure similarity,
even in rodents.

For other organs, intrinsic differences in microstruc-
ture do exist, such as much larger hepatocytes in mouse
liver compared to humans,24,25 composition of endocrine
islets in the pancreas,26 the existence of a marginal zone

in the mouse spleen,27 etc. Therefore, potential differences
need to be considered when interpreting results.

Brain injury models, such as traumatic brain
injury (TBI), epilepsy, stroke, subarachnoid and intrac-
erebral hemorrhage, spinal cord injury, edema, or
de/re-myelination have high translational value because
the cellular responses to the external insults are similar
between species.28–40 Tumor models may also display
some translational value.10,38,39,41–43 Even if animal mod-
els are not directly translatable, they may offer partial
systemic deficits that mimic relevant aspects of the disease
(i.e., altered microstructure or connectivity) as in models
of neurodegenerative and psychiatric diseases.40,44,45

The difference in gradient strength and diffusion times
between small animal and clinical acquisitions results in
a different sensitivity to spatial scales, such as cell sizes,
packing density, etc. Hence, in addition to careful selection
of appropriate animal models relevant to the correspond-
ing clinical situation, the diffusion acquisition parameters
should be matched carefully in preclinical dMRI studies
that aim to validate clinical results.

2.2 Species differences

Species have different pros and cons for imaging
studies—which we briefly cover in this section. From an
ethical standpoint, it is always recommended to go with
the least evolved species that answers the research ques-
tion at stake. In particular, non-human primates (NHPs)
should only be considered when the sought effect or
structure is not present in rodents.

2.2.1 Murine models (mouse and rat)

Rats and mice have been the long-standing preferred
species for biomedical research, including dMRI. Advan-
tages include wide availability, group homogeneity,
well-characterized transgenic models simulating human
pathology, and very rapid lifespan. The ability, particularly
in mice, to insert human genes allows great flexibility
pursuing genomic functional changes that may mimic
the human condition. Rats, on the other hand, are less
challenging to image, because of larger structure sizes,
which improves field homogeneity and, therefore, image
quality, and requires lower spatial resolution to resolve
fine structures. In addition, the small physical size offers
technical advantages, fitting in the typically smaller bores
(and smaller coils) of magnets with larger field strengths.

It is, however, important to note that multiple anatom-
ical differences highlighted in Section 2.1, limit the direct
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F I G U R E 2 dMRI brain images of small animal models demonstrating different brain sizes, geometric complexity, gyrification, and tissue
constituents, ordered by increasing complexity. Different tissue types are estimated using multi-shell multi-tissue spherical deconvolution23

and color coded—CSF (red), gray matter (green), and white matter (blue). In vivo data: mouse, rat, human. Ex vivo data: raven, squirrel
monkey, macaque. Data kindly provided by Adam Anderson, Ileana Jelescu, Kurt Schilling, Ben Jeurissen, and Marleen Verhoye.

translatability of dMRI findings from murine models to
humans.

2.2.2 Primate models

NHPs include marmosets, squirrel monkeys, and
macaques. They are commonly used in neuroscience
research because their brain has a large number of white
matter and gray matter regions with homologous human
counterparts. NHPs are, therefore, well suited for studies
of cortical development, gyrification, and interrogation
of complex white matter. NHPs allow access to “ground
truth” connectivity, which has been well-documented
through the use of tracer and ablation studies.46

Controversies regarding the existence or nonexistence
of a pathway or the location of pathway terminations have
been resolved through primate models,47–50 and a num-
ber of tractography validation studies have used tracer
studies in primates,51–54 although validation is most com-
monly performed on ex vivo samples before histological
analysis.55–64

Primate species must also be considered for each exper-
iment: smaller monkeys (galago, squirrel monkey) may be
easier to work with, less cumbersome to scan, less expen-
sive to house, and the reduced gyrification makes cortical
identification easier (e.g., for injections or electrical stim-
ulation). The disadvantages of NHPs are often associated
with access costs. Requirements include complex housing,
training for transportation to the scanner and preparation
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for scanning. Last, small bore preclinical systems and high
performing gradient inserts are often not large enough for
bigger NHP brains.

2.2.3 Other models

Although murine and NHP models are most widely used
in dMRI research, other models include the pig brain,
which is comparable to the human brain in myelination
and development,65,66 and has been used to study develop-
ment,66 brain lesions,67 and tractography validation.64,65,68

Other gyrencephalic brains (e.g., ferrets) have been used to
study psychiatric diseases, cognition and brain function, or
to validate tractography.35,69,70 Songbirds have been used to
study fundamental properties of naturally occurring neu-
roplasticity.71 Of particular interest, diffusion anisotropy
and stroke were first experimentally observed and demon-
strated in cat models.3,6,72

3 ACQUISITION

Important decisions when performing dMRI of small ani-
mals concern appropriate hardware, animal preparation
and monitoring, and data acquisition (Figure 3). In this
section, we present a recommended “standard” imaging
setup and acquisition protocol that can be achieved in 20
to 30 min, and would be appropriate for a wide range of dif-
fusion applications and analyses. Longer scan times allow
for richer dMRI data, and ultimately, the chosen protocol
should be suitable for the planned analysis.

It should be emphasized that these suggestions reflect
a typical protocol as a starting point for many studies.

Detailed information on each aspect is described to justify
our recommendations and we highlight other strategies to
optimize diffusion acquisition for any desired experiment.

3.1 Hardware (species/organ specific)

3.1.1 RF Coils

The key to maximizing SNR is using an appropriate RF
coil with a high filling factor, defined as the magnetic field
energy stored inside the sample volume versus the total
magnetic energy.73,74 To this end, combinations of a vol-
ume coil for excitation and a surface coil for reception
are often used, because they ensure homogeneous excita-
tion and maximum reception sensitivity. For small bore
magnets, where the available space is limited, transceiver
surface coils can be used. Surface coils perform well when
the region of interest is located to the surface. For deeper
regions, small volume transmit/receive coils can provide
better sensitivity in addition to the improved B1

+ homo-
geneity and are recommended for whole brain studies.
Phased array coils cover a larger field of view and can be
used in conjunction with parallel imaging strategies for
acquisition speed-up.75 The use of phased arrays is recom-
mended for larger animals where one can afford to trade
SNR for acquisition time reduction.76

Cryogenic probes (cryoprobes) can increase SNR by
factors of 2.5 to 5 compared to standard room-temperature
RF coils, by minimizing thermal coil noise.77,78 Most com-
mercially available cryprobes are for mouse brain and
some for rat brain. Indeed, cryoprobes are most beneficial
on small samples where the electronic noise dominates.
Although cryoprobes operating at ultra-high field exist,79

F I G U R E 3 Small animal in vivo protocols require decisions regarding hardware, animal preparation and monitoring, and acquisition
(which include encoding, readout, spatial resolution, and q-t coverage).
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the biggest gains are obtained at lower field strengths. In
fact, the SNR gains provided by cryoprobes can bring the
signal sensitivity performance of systems operating at 7
to 9.4 T to the levels achieved with ultra-high-field sys-
tems (≥11.7 T) without the penalty in relaxation times
(shorter T2 and longer T1 at higher fields) and susceptibil-
ity artifacts.

Diffusion-weighted (DW) images are typically low
SNR. The choice of RF coil is, therefore, of critical impor-
tance for the quality of in vivo diffusion acquisitions.
Recent work by multiple teams80–82 has demonstrated
the utility of providing open source hardware designs for
radiofrequency coils and holders.

3.1.2 Gradients

Clinical systems are typically equipped with 40 to 80 mT/m
magnetic field gradients, whereas those on small animal
MRI systems are often 300 mT/m or higher, with 1 T/m
becoming increasingly widespread. Some small animal
systems are available with a high power gradient option
and dedicated inserts with up to 3 T/m (along all three
axes) are commercially available.

Strong field gradients (G) allow an independent or
largely decorrelated exploration of the two dimensions of
q-t space—where q is the spatial phase warp that intro-
duces diffusion sensitization (q=ΥδG) and t is the diffu-
sion time in which the molecules can diffuse and explore
the local environment. The combination of the two yields
the “b-value” that quantifies overall diffusion weight-
ing (b=q2t), in the narrow pulse approximation δ→ 0).
Strong field gradients with rapid switching times further
benefit diffusion experiments by enabling fast readouts
and short TE’s to compensate for shorter T2 at higher
field. Our recommendation is to select the MRI system
equipped with the strongest and fastest gradient system
that is appropriate for the size of the in vivo animal
imaging setup.

Stronger gradients present several challenges, includ-
ing calibration, gradient nonlinearities, and eddy currents.
Gradients must be well-calibrated to ensure accurate
gradient fields, and hence, accurate diffusion weight-
ings. Similarly, gradient fields are typically linear at
the center of the coil (isocenter), but may deviate at
locations further away. The gradient nonlinearity can
be mapped and corrected for during diffusion quan-
tification,83 to reduce its bias on diffusivity estimation
particularly for large samples relative to the gradient
dimensions. Finally, fast switching gradients induce cur-
rents in MRI hardware components, causing eddy current
artifacts that must be compensated for, or corrected in
processing.

3.1.3 Where future work should lie

Parallel imaging is still very limited on preclinical scan-
ners because of the object’s small size and, therefore,
the low number of receiver coil elements (usually 1–4
for brain imaging). This limitation is due to the reduced
space around the animal, which caps the number of
pre-amplifiers that can fit in the coil. Acquisition with
rodent brain array coils typically makes use of paral-
lel imaging methods (e.g., GRAPPA84), but most often
achieves less reduction in scan time than in clinical imag-
ing where many more receive channels are available.
Progress in this field would be valuable for reducing scan
times and artifacts such as ghosting.85–87 Fortunately, rapid
advances in RF circuitry will likely lead to an increase in
the number of channels for small animal scanners.

Obstacles to standardization in preclinical studies are
the large variability in preclinical imaging instrumenta-
tion as compared to clinical MRI systems. Indeed, there
is a broader range of possible field strengths (4.7–17.2 T)
and gradient capabilities (400 mT/m–3 T/m inserts) that
will ultimately affect the achievable protocol. Although,
here, we intend to provide recommendations to avoid sub-
stantial pitfalls rather than aim at standardization, our
community should work toward proposing standardized
protocols (and processing pipelines) for preclinical settings
that would be achievable on a wide range of systems. This
could be achieved following the example of the Quan-
titative Imaging Biomarkers Alliance (QIBA) guidelines
for dMRI in the clinic.88 Preclinical dMRI standardiza-
tion may help reproducibility and harmonization for dif-
fusion metrics that are simple (e.g., DTI) and common for
characterizing animal models of disease. Such preclinical
acquisition guidelines have recently been proposed for rat
functional MRI,89 for example.

3.2 Animal preparation
and physiological monitoring

General considerations about experimental design from
the biological perspective, planning the experimental pro-
tocol, details on equipment needed for anesthesia and
monitoring are beyond the scope of this review and the
reader can refer to existing literature.90–93 We underline,
however, that maintaining stable physiological homeosta-
sis during in vivo imaging is important. Reducing stress
and physiological differences between animals helps to
reduce variability, which is particularly important for iden-
tifying group differences and for longitudinal studies.

A minimum monitoring setup should include respi-
ration rate and core temperature. Both respiration and
temperature sensors are connected to the physiological
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2514 JELESCU et al.

monitoring interface and software. Respiration rate is typ-
ically monitored using a pillow-sensor placed under the
animal’s abdomen. The temperature is monitored via a
rectal thermometer and maintained using a warm water
circulation system around the animal’s body or warm air
blown into the MRI tunnel. A key factor for animal home-
ostasis is that maintenance should be sufficient to prevent
edema or brain swelling and prevent whole body dehydra-
tion (a particular problem with small animals). A constant
core temperature is also warranted to improve consis-
tency of diffusivities and of T1-weighting throughout the
protocol, both of which are temperature-dependent.94

A rule of thumb of ΔD= 0.06 μm2/ms/◦C for free
water (interpolating between D= 2 μm2/ms at 20◦C
and D= 3 μm2/ms at 37◦C),95 translates approximately
into ΔD= 0.02 μm2/ms/◦C in living tissue (assuming
D= 1 μm2/ms at 37◦C), consistent with.94

3.2.1 Anesthesia

Isoflurane is often the anesthetic of choice given its ease
of use and stability over long periods, but others can also
be used.96 It should be noted that a stable temperature and
respiration rate of the animal are targeted, and therefore,
the anesthesia level should be adapted to maintain that.
For prolonged scans, the isoflurane concentration can be
gradually reduced if the animal respiration rate decreases.

Data acquired under different anesthetic conditions
(anesthesia types, dosage, effective breathing rate, etc.)
should be compared with caution, especially as the litera-
ture is conflicted.97 dMRI studies that examine cellular or
tissue level effects typically have limited dependence on
the anesthetic agent. However, in the mouse brain, mean
diffusivity (MD) and mean kurtosis (MK) were both found
to be lower under isoflurane than in the awake state,98

potentially because of inhalation isoflurane decreasing the
brain extracellular space volume (cell swelling).99 In rats,
brain ADC has been reported to increase with increasing
anesthetic agent dosage for both isoflurane and medetomi-
dine.100 Furthermore, dMRI used to probe physiological
effects such as flow or exchange may require more con-
sideration of the effects of each agent on physiology
(vasodilation/constriction, hypoxia, and/or tempera-
ture), that have been well-established in the context of
functional MRI, for example.101,102

Recently, advantages in the physiological properties of
dexmedetomidine over its racemate medetomidine have
been reported and large animal laboratories have started
converting their anesthetic protocols.103,104 As effects also
vary with the duration of anesthesia, it is recommended
to keep timings consistent within an experimental cohort,
and therefore, the delay between anesthesia onset and start
of the dMRI acquisition.

For post-scan animal recovery, inhaled anesthetics
(e.g., isoflurane) have a faster elimination through the
lungs, whereas injectable ones need to be metabolized and
excreted (e.g., medetomidine). An antagonist to the latter
is recommended to speed up the recovery phase for the
animal (e.g., atipamezole).

3.2.2 Positioning

Prone is the most common positioning for the animal.
However, in the case of spine imaging, the supine position
may be preferred to minimize organ-induced motion of the
spine as well as reduce the distance between the spine and
the coil. For liver imaging, the animal may be placed on its
flank.

3.2.3 Physiological gating

Brain dMRI does not typically require respiratory or car-
diac gating provided the head is sufficiently stabilized
within an appropriate holder, which for rodents includes
both teeth and ear bars. For organs susceptible to motion,
gating strategies to limit the effects of motion are typically
imperative. Respiratory and cardiac gating are available on
most MRI systems.105–108 Prospective gating is the most fre-
quently used method that acquires data intermittently in
response to an external trigger, which serves to minimize
artifacts in body or spinal cord dMRI or to obtain images
from the same phase of motion (e.g., in cardiac dMRI). Ret-
rospective gating techniques that reorganize data after a
continuous acquisition are not routinely used for dMRI.
Gating typically prolongs acquisition times, but improves
the quality of the resulting images. Radial sampling strate-
gies instead of EPI are also an alternative to gating, because
they reduce respiration artifacts (ghosting) in abdominal
imaging, for example—but they also come at the expense
of reduced SNR.109

3.2.4 Where future work should lie

Systematic reporting of animal monitoring and anesthesia
procedures as well as the resulting physiological measures
(e.g., respiration rate and core temperature) in dMRI pub-
lications can contribute to improved reproducibility and
multisite comparison of results.

3.3 Diffusion encoding

A number of possible diffusion encoding or sensiti-
zation schemes are shown in Figure 4 (left).110 Most
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JELESCU et al. 2515

F I G U R E 4 Diffusion encoding (left) and readout (right). Pulse sequence diagrams are shown for a variety of representative encoding
(Section 3.3) and readout (Section 3.4) schemes. Left: RF pulses are represented as hollow waveforms, diffusion gradients as dark color filled
shapes (colors represent encoding axes), and the readout module as pale blue. Slice selection gradients are not shown, for simplicity. Right:
RF pulses are represented as hollow waveforms, gradients are in dark gray or thick lines. Two axes are shown for phase-encode and read-out
gradient directions.

DW sequences trace their origin to the pulsed gradient
spin-echo (PGSE)111 encoding scheme pioneered by Ed
Stejskal and John Tanner in 1965. PGSE offers a mathe-
matically elegant way to quantify diffusivity, gives access
to a biologically relevant range of diffusion times (e.g.,
10–50 ms on a preclinical MRI system at high field), and
a broad range of b-values (e.g., 0–10 000 s/mm2). For this
reason, PGSE has become the most widely used diffusion
encoding strategy in both human and animal imaging and
is the “default” encoding scheme on all current scanners.

Alternative diffusion encodings are possible, par-
ticularly on preclinical systems. Stronger gradients can
take a variety of shapes, enabling sensitivity to different
microstructural features, such as microscopic fractional
anisotropy using multidimensional diffusion encoding
(MDE) or short length scales using oscillating gradients.
Although there is no “consensus” on the best encod-
ing strategy, we describe their pros and cons, and when
possible, suggest guidelines when using these sequences.

To probe long diffusion times (e.g., >80 ms) a stim-
ulated echo acquisition mode (STEAM) sequence may
be useful, where signal recovery is limited by T1 recov-
ery rather than by T2 decay.112 The downsides of STEAM
is a twofold loss in SNR compared to PGSE (all other

factors being equal) and larger contributions from imag-
ing gradients to the diffusion-weighting via cross-terms.
The latter aspect makes the calculation of the effective
b-value mandatory as it can differ substantially from its
nominal value and can raise potential issues with large
variations in effective b-values across directions over the
same “shell”.113

Oscillating gradient spin echo (OGSE)114 can be used
to probe much shorter time and length scales (0.1–10 ms).
This comes at the cost of modest attainable b-values, and a
higher risk of nerve stimulation because of rapidly switch-
ing strong gradients. The b-value can be increased by
lengthening the duration of the oscillating waveforms,
enabling short diffusion times with moderate diffusion
weightings.

In the above-mentioned schemes, the signal is sensi-
tized to diffusion along a single gradient direction, often
referred to as a single diffusion encoding (SDE) experi-
ment. MDE techniques encode diffusion along multiple
directions within the same measurement. MDE exam-
ples include double diffusion encoding (DDE)115,116 or
triple diffusion encoding.117,118 This increases the dimen-
sionality of possible controllable parameters, and enables
probing microscopic anisotropy,119,120 compartmental
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2516 JELESCU et al.

kurtosis,121 or compartmental exchange.122–124 Further,
free gradient waveforms may be designed for investi-
gations into diffusion microscopic anisotropy, structure
size variance, and orientational coherence, and is often
referred to as q-trajectory imaging (QTI).125 Disadvantages
of these sequences include potentially longer acquisi-
tion times, long echo time, ill-defined diffusion times,
or complicated modeling and analysis. For a review of
multidimensional diffusion encoding see Topgaard118 and
Henriques et al.126

Because of the strong preclinical gradients, eddy cur-
rents can create artifacts in diffusion images. It is possible
to modify the diffusion encoding to a twice-refocused spin
echo. This eddy current nulled (ECN) encoding can min-
imize these artifacts, although at the cost of decreased
encoding efficiency and a longer TE.

There are many ways to encode diffusion into MRI
images. With tradeoffs in diffusion times, diffusion
weightings, sequence time, microstructure sensitivity, and
artifact sensitivity, the optimal encoding strategy ulti-
mately depends on the experimental question and desired
application.

3.4 Signal readout

After diffusion encoding, the signal readout module is
played out (Figure 4, right). EPI readout is a rapid acqui-
sition that minimizes effects of bulk motion on diffusion
images and acquires images in a single excitation to mini-
mize scan time needed to acquire many diffusion-weighted
volumes. The EPI readout is also compatible with all dif-
fusion encodings. A single-shot multislice pulsed-gradient
EPI sequence has, therefore, become the most popular
in humans and is also our recommended starting point
for small animal in vivo imaging. Depending on hard-
ware performance, multi-shot instead of single-shot EPI
or a smaller imaging matrix can be implemented, until
the image quality becomes acceptable in terms of spatial
distortions.

Although EPI reduces scan time and motion artifacts,
it also faces its own challenges, most prominently spa-
tial distortion because of B0 field inhomogeneity that can
be especially challenging at high field strengths, which is
typical of preclinical imaging. To alleviate this, it is possi-
ble to acquire data with a segmented readout (multi-shot,
as above), at the cost of increased scan time and possible
ghosting artifacts, or use partial Fourier acceleration in the
phase direction, at the expense of SNR and image sharp-
ness. Finally, acquiring additional reversed phase-encoded
b= 0 images can help in compensating geometrical distor-
tions during image preprocessing (see Section 4.1.1).

Other readouts are also possible for small animal in
vivo imaging. For example, rapid acquisition with relax-
ation enhancement (RARE), sometimes called fast spin
echo (FSE) or turbo spin echo (TSE), is less prone to
susceptibility induced artifacts,127,128 or gradient and spin
echo (GRASE), which also allows acquisition accelera-
tion.128 Additionally, k-space can be sampled in a spiral
readout rather than Cartesian readout. Spiral acquisitions
have several advantages including the possibility to reduce
TE. This readout remains nonetheless sensitive to B0 field
inhomogeneities and eddy currents (yielding geometric
distortions) in the higher spatial frequencies. Although
this complicates artifact correction after image reconstruc-
tion, eddy currents can be minimized via trajectory mea-
surements.129

Other approaches combine diffusion weighting with
relaxometry measurements in a multidimensional acqui-
sition, for instance using multiple gradient echoes or
spin echoes. Such sequences as well as the respective
data reconstruction/analysis pipelines are provided in
the REMMI toolbox (https://remmi-toolbox.github.io/)
for different vendors.

3.5 q-t coverage

Unique insights into diffusion signal behavior, and there-
fore, into the underlying microstructure, have been
brought by exploring a range of q-t regimes on animal
systems, including very short diffusion times,130–133 very
strong diffusion weighting,134,135 or more complex diffu-
sion encoding schemes.136–138

The “optimal” q-t coverage is highly dependent on the
microstructure feature one wishes to maximize sensitiv-
ity to, therefore, there is no direct recommendation on
this topic.139 It is important to determine upfront the the-
oretical requirements of the data analysis framework that
will be used downstream, such as short gradient pulses
(narrow pulse approximation), short/long diffusion times,
b-value regime, etc. In general, on preclinical systems there
is a lot of flexibility in choosing the sequence parameters,
which is very handy for optimization strategies. We recom-
mend acquiring non-DW images (b= 0) at approximately
a ratio of one image for each 10 to 20 DW images.140,141

DTI is by far the most widespread analysis of dMRI
data. To maximize precision, the b-value should be chosen
such that the signal decay is substantial (e.g., such that,
in vivo the most standard b-value is b= 1000 s/mm2) as in
humans. The b-value can be adapted based on the animal’s
body temperature (e.g., songbirds have a higher body tem-
perature [40◦C–41◦C]) leading to the use of lower b-values
for DTI.
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JELESCU et al. 2517

DKI is an extension of DTI that also estimates
non-Gaussian characteristics of water diffusion in biolog-
ical tissues (diffusion kurtosis) from at least two non-zero
shells with a recommended 20 to 30 directions per shell.142

The highest b-value should be chosen as b ≅ 2000 - 2500
s/mm2 in vivo. Often the rule of thumb bmax<3/(DK) can
be used, as beyond this, the DKI signal expression starts
to increase with increasing b. Given recent advances in
acquisition efficiency and speed, we advocate a minimal
acquisition of two-shell data leading to DKI analysis as the
new “default” over simple DTI derived from single-shell
data. A two-shell acquisition also opens up data analysis
possibilities beyond DKI (e.g., for multi-compartment bio-
physical models).9 Note, however, that optimal two-shell
design may depend on the target tissue.143 For this rea-
son, it may be beneficial to use highly sampled repository
datasets for study planning.144 For reduction in DKI scan
time, strategies for “fast kurtosis” estimation decrease the
minimal number of measurements needed145,146 assuming
axial symmetry of diffusion properties in the voxel.147 DKI
and DTI rely on an empirical representation of the diffu-
sion signal and make no assumptions about the underlying
microstructure or tissue properties8 and are, therefore,
widely applicable.

q-t coverage recommendations for tractography: cur-
rent tractography methods are less sensitive to scan
parameters (b-values, number of gradient directions) than
choices in the tractography pipeline itself (i.e., fiber ori-
entation reconstruction, seeding strategies, streamline
propagations, etc.).57,62,148–152 Our recommended proto-
col includes 50 to 60 directions at a moderate-to-high
b-value.153 This protocol is also compatible with tools such
as “tractogram filtering” and “microstructure-informed”
tractography,154–159 which are expected to increase
anatomical accuracy of tractography. Note a Cartesian
sampling of q-space, known as diffusion spectrum imaging
(DSI) can also be used.160,161

Guidelines for acquisition in the perspective of com-
partment modeling analysis9,162,163 are generally the same
as in humans, with one nuance: as mentioned, preclinical
scanner hardware may allow the exploration of regions of
q-t space that are not achievable on clinical systems. There-
fore, the data requirements of some biophysical models
may be better met for small animal imaging than human
imaging.

Shorter diffusion times are typically favored or
enforced when special effort is put into minimizing the TE.
These differences may pose additional challenges when
extrapolating results obtained in small animals to humans.
We, therefore, underline the importance of reporting the
diffusion time as part of the acquisition parameters, even
when the diffusion time dependency is not the focus of the
study. As mentioned earlier, diffusion metrics measured

at typically short diffusion times (10–20 ms) in preclin-
ical experiments can be different to those measured
in clinical studies with substantially longer diffusion
times (typically longer than 50 ms) because they will be
sensitive to different aspects and spatial scales of the
micro-environment.

Preclinical scanners offer a unique opportunity to
investigate diffusion time-dependence of diffusivity D(t)
or kurtosis K(t) over diffusion time ranges that are dif-
ficult to achieve on clinical systems (in particular, short
diffusion times either using OGSE or PGSE), concomi-
tantly with the exploration of high b-values.130–132,164–168

For studies spanning short to intermediate diffusion times
(up to∼40–50 ms) we recommend to keep the TE constant
across diffusion times. Indeed, except for a combined
diffusion-relaxometry model, accounting for variable
T2-weighting considerably complicates the data analysis.
We underline this constant TE recommendation as it is
commonly (and unfortunately) not the primary choice
because of SNR considerations. For longer diffusion times
(>80 ms), a STEAM sequence can be used.113,169

Beyond the brain, organs such as the liver are highly
vascularized and feature strong intra-voxel incoherent
motion (IVIM) effects. The anisotropy of the dMRI sig-
nal is, however, much smaller than in the brain, so that
directional schemes based on three mutually orthogonal
diffusion directions can characterize tissue diffusion prop-
erties well in most cases.170 Furthermore, cell sizes are
much larger than in the brain (e.g., 20–40 μm for hepato-
cytes25,171), implying that (1) the diffusion times need to be
increased relative to brain dMRI to reach long-time lim-
its; and (2) neglecting cell radius (i.e., using zero-radius
approximations172) can lead to inaccurate intra-cellular
signal representations.

3.5.1 Other practical considerations

Order randomization
For studies including the acquisition of multiple b-values,
it may be convenient to randomize the order of the acqui-
sition of the DW images, so that blocks of highly DW mea-
surements are not acquired at once. Interspacing weaker
and stronger diffusion weighting minimizes the risk of
gradients overheating and reduces the duty cycle.

Interspersed b= 0 for drift control
Interspersed b= 0 images are a very effective way of con-
trolling for temperature fluctuations, scanner stability, and
image quality throughout long acquisitions.173 A slow drift
in b= 0 amplitudes across time can be corrected by using
detrending, applied to all DW images. When diffusion data
is acquired in multiple experiments, it is also important to
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2518 JELESCU et al.

ensure that the adjustment parameters (reference power,
receiver gain, etc.) are consistent, ideally by preventing
them from being updated between scans.

Full-sphere directional coverage
It is recommended to optimize the distribution of
diffusion-encoding directions, as done for humans
dMRI. Directions should be distributed across all shells
(i.e., using electrostatic repulsion within and between
shells) and should cover the full sphere instead of the
half-sphere.140,141 This coverage is optimal unless there is a
specific need to acquire the same directions on each shell,
for directional fits of diffusivity and kurtosis for instance.
The recommended schemes cannot usually be generated
by the vendor software and should be generated sepa-
rately and imported into the system as a custom gradient
direction file (see Section 5.1 on open source resources,
and https://github.com/ecaruyer/qspace, in particular).

Effective b-matrix
It is crucial to use the effective b-matrix for dMRI analy-
sis, rather than the nominal one. The effective b-matrix is
typically provided in an output file collecting all acquisi-
tion parameters. For non-vendor sequences, it may need to
be calculated directly using the sequence diagram and all
known gradients played in the sequence. Ice water174 and
other pure liquids, particularly those with low diffusivities
(see in Fieremans and Lee181) can be useful phantoms to
assess whether the correct b-matrix is used. Such phan-
toms can also be used to measure the effect of gradient
spatial nonlinearity on the effective b-matrix across the
whole imaging field, as well as to test for spurious “dif-
fusion time-dependence” from scanner drifts, etc. It is
also recommended to include the effective b-matrix when
reporting methods, to improve between-site comparisons,
and therefore, increase the value of animal study results
toward clinical translation and validation.

3.5.2 Where future work should lie

Preclinical MRI vendors are encouraged to implement
diffusion product sequences where the default settings
account for the practical considerations mentioned above.

The harmonization of DTI acquisition protocols (e.g.,
as to the choice of a maximum b= 1000 s/mm2 in
vivo) may help multisite reproducibility and compari-
son studies. Notwithstanding, encouraging the commu-
nity to acquire richer datasets by default (e.g., multi-shell
at minimum, but also multiple diffusion times and
multi-dimensional encoding) can open up many avenues
for testing new models retrospectively on public datasets,
in a variety of animal models, healthy and diseased.

The development of biophysical models of tissue
should uphold high standards in terms of accuracy and
precision of microstructural features estimated and val-
idated using complementary techniques such as light
microscopy.

Finally, the flexibility associated with preclinical MRI
scanners will hopefully foster further developments in
terms of novel diffusion encoding and acquisition tech-
niques to bring dMRI ever closer to in vivo histology.

3.6 Spatial resolution

The image spatial resolution is a critical decision in any
experimental process. Although brain dimensions vary
by orders of magnitude across species from the mouse
(0.4 mL) to human (1300 mL), the relative size of voxels to
the size of the brain are generally consistent across many
species. Put simply, spatial resolution should be as high as
permissible for the targeted SNR and scan time.

Anisotropic resolution, with thicker slices than
in-plane voxel size, is the most widespread design because
it is fast and less gradient demanding, while yielding
higher SNR than isotropic resolution. Depending on the
application, isotropic resolution may, however, be war-
ranted, for example, for tractography and for interpretation
of morphological details and anatomical boundaries.
Thick slices will introduce more partial volume effects
and can challenge the quality of image registration.

Below we provide typical volumes of brains, and com-
pute what the equivalent voxel size (i.e., the volume equiv-
alent resolution) would be given the ratio of volumes, and
a typical 2-mm isotropic human scan (Table 1). We have
chosen 2-mm isotropic as a “standard” only for compari-
son purposes, and note that larger voxel sizes (2.5-mm or
3-mm isotropic) are common in clinical dMRI, whereas
smaller voxels are also possible with novel acquisition
strategies182–185 or stronger gradients (<1-mm isotropic).
Similar figures hold for other organs used in dMRI
literature.186

4 DATA PROCESSING

We refer to preprocessing as steps that come before any
diffusion fitting (tensors, biophysical models, etc.). Prepro-
cessing includes data conversion (e.g., from DICOM for-
mat - Digital Imaging and Communications in Medicine,
to NIfTI format - Neuroimaging Informatics Technology
Initiative), noise reduction, artifact correction/mitigation,
or any step that aims at improving data quality. Process-
ing refers to diffusion data fitting and normalization to
standard space.
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JELESCU et al. 2519

T A B L E 1 Summary of brain volumes of various species, matching spatial resolutions to a typical human dMRI, and ranges of in vivo
spatial resolutions from the literature.

Species
Brain
volume (mL)

Matching spatial
resolution (isotropic)

Reported in
literature (in vivo)

WM/GM
volume ratio

Human 1200 2 mm 1–3 mm isotropic ∼55/45

Mouse 0.4 140 μm 100–200 μm in-plane 200–300 μm slice thickness
“Extreme” datasets: 75–125 μm isotropic

∼8/92

Rat 1.7 225 μm 100–300 μm in-plane 250–600 μm slice thickness ∼13/87

Squirrel monkey 35 600 μm 600–700 μm in-plane 1 mm slice thickness ∼37/63

Macaque 80 800 μm 500 μm–1 mm in-plane 1–2 mm slice thickness
“Extreme” datasets: 580 μm isotropic

∼47/53

Notes: A few references are provided, but are not comprehensive. Resolutions reported in literature for human,175 mouse,14,79 rat,166,176 squirrel monkey,177

macaque.15,178,179 WM/GM volume ratio are reported in Ventura-Antunes et al.180 where GM volume is a measure of total cortical volume.
Abbreviations: dMRI, diffusion MRI; GM, gray matter; WM, white matter.

4.1 Preprocessing pipeline

4.1.1 Brain

Generally, preprocessing diffusion datasets of preclini-
cal acquisitions is similar to that of the in vivo human
brain. Below we detail the steps associated with a typical
preprocessing pipeline, stressing in particular what may
differentiate in vivo small-animal from human implemen-
tations, and how available tools can/should be adapted
accordingly.

Preclinical scanner software often outputs data in their
own vendor-specific format, with recent versions offer-
ing the possibility to export the data as DICOM or NIfTI
directly. Overall, explicit conversion by the user to one
of the aforementioned formats—typically using in-house
written code—is still widespread, which entails possi-
ble incompatibilities with Brain Imaging Data Structure
(BIDS) format, data sharing and processing multicenter
data. Some solutions such as DICOMIFIER187 exist, and
the adoption of a standard tool by the community—or by
the vendors—will greatly aid data harmonization.

The definition of diffusion gradient directions may not
be consistent across vendors or across in-house written
data conversion pipelines, with some given in the “imaging
frame,” for instance, in relation to readout, phase encode,
slice direction (or second phase-encode direction) and oth-
ers in the “lab-frame” with Z being typically along the
direction of the main magnetic field. The orientation of
the images with respect to the applied diffusion direc-
tions is very important, particularly for tractography and
should be checked carefully. Tools are also available to
systematically correct any errors.188,189

Similarly to in vivo human diffusion imaging, the
recommended data preprocessing pipeline includes:
reduction of random noise (“denoising”),190 Gibbs ringing

correction,191–193 combined eddy-current, motion and
susceptibility distortion correction,194 along with gradi-
ent nonlinearity correction (if applicable), Rician bias
correction, and signal drift correction because of scanner
instabilities.173,195 Recent examples of the concatenation
of these processing steps into a pipeline is DESIGNER
and PreQual,196,197 or the preprocessing implementation
in MRTrix3.198

We briefly recapitulate a few common pitfalls and/or
quality checks, and we refer the reader to the references
cited above for comprehensive descriptions of the tech-
niques and their applicability.

The very first prerequisite for most preprocessing
steps is providing a brain mask, which is a weakness of
non-human brain preprocessing pipelines. This can be the
consequence of either algorithms using inappropriate pri-
ors for non-human brain anatomy in atlas-based brain
masking (e.g., very different shapes and/or sizes between
human and rodent) or a consequence of bias fields (inho-
mogeneous B1 receive field for surface coils and poten-
tially transmit field when using surface emitters), which
strongly affect the performance of intensity-based brain
masking. Bias field correction on a b= 0 image can be
performed with a variety of software, but should be used
for the sole purpose of brain extraction and not as input
for the remainder of the preprocessing and processing
pipeline. Dedicated tools to perform brain extraction using
registration to a matching species atlas are also available
(e.g., https://github.com/jlohmeier/atlasBREX199,200). If
an atlas database for the species and MR contrast of
interest is available, the multi-atlas label fusion segmen-
tation approach performs very well.201,202 More recently,
deep-learning-based frameworks have been developed and
validated to identify the MR image boundaries of the
brains of rodents and non-human primates.203–205 Finally,
in the early preprocessing steps the brain mask could be
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2520 JELESCU et al.

inflated to yield a generous brain inclusion, making sure
it encompasses distortions and motion that have not yet
been corrected. At the end of the pipeline, a second, more
refined brain masking may be performed.

Denoising aims at reducing random noise (i.e., ran-
dom fluctuations or Nyquist-Johnson noise [and its digital
counterpart]), in contrast to physiological noise or any
other structured unwanted signal contribution (e.g., car-
diac or respiratory fluctuations). A principal component
analysis can be used to denoise a 4D stack of DW images.206

The differentiation between signal- and noise-carrying
principal components has recently been automated by
adopting principles from random matrix theory.190 This
technique requires that (1) the noise level is constant and
uncorrelated across all DW images and (2) that the num-
ber of DW images is large—the suggested use is 30 images
or more. If such requirements are not met, then alter-
native denoising strategies are presented.207,208 Various
supervised, unsupervised, and self-supervised machine
learning-based techniques have recently been developed
and evaluated for the denoising of such data.209 Inspect-
ing the residuals between the raw and denoised data for
absence of structural content is a good quality check.

The implementation of Gibbs ringing correction191,192

has a large positive impact on microstructure model esti-
mates, where the “corruption” of voxels by neighboring
CSF can change the apparent microstructure composition
dramatically, but has very little impact on the estima-
tion of the fiber orientation distribution for tractography
purposes.191,210,211 One common limitation is the use of
partial Fourier for the acquisition, which makes the cor-
rection as implemented by Kellner et al.191 less effective.
A new approach for this correction in partial-Fourier data
has been recently developed192; both these methods are
suitable for 2D multislice acquisitions.

The “topup” and “eddy” tools in FMRIB’s Software
Library (FSL),212 which can correct for susceptibility dis-
tortion, eddy current, or motion-related jitter require two
specifics of data acquisition that are often not the default
on preclinical scanners. For susceptibility-distortion cor-
rection, a few b= 0 images with reversed phase-encode
direction should be acquired to enable the calculation
of the distortion field. If these images are not available,
alternative distortion correction methods might include
nonlinear registration to undistorted anatomical images
or correction using a fieldmap (B0 map). Furthermore, for
eddy current correction, “eddy” requires diffusion direc-
tions that are distributed over the entire sphere, and not
the half-sphere. If this sampling is not available in the
product sequence, a custom diffusion direction file should
be provided for the acquisition. Finally, it is important to
note that default FSL parameters are suitable for human
dMRI and need to be tuned to the sample of interest in

preclinical imaging (e.g., the resolution or knot-spacing of
warp fields for topup, or any parameters that are depen-
dent on spatial scale).

Rician bias correction consists of correcting the dif-
fusion signal decay by subtracting the non-zero Rician
floor. For software and methods, see Ades-Aron et al.,196

Koay and Basser,213 and Section 5.1.1. One substan-
tial advantage of preclinical MRI data is that coils are
often single-channel or quadrature recombined, and the
complex-valued data is more easily retrievable from the
scanner. Complex-valued data from a single-channel
coil is by design characterized by Gaussian noise.
Rician bias can be, therefore, minimized by denois-
ing in complex space and possibly also circumvented
entirely by working with real-valued data after phase
unwrapping.214

Finally, temporal instability on the scanner because
of magnet drift or gradient heating can be measured and
corrected by collecting multiple b= 0 images throughout
the scan (see Section 3.5). Although this is not commonly
done in the literature, we advocate for instability correc-
tion (methodology and code are described in Vos et al.173

and in Section 5.1.1.)

4.1.2 Spinal cord and other organs

Spinal cord dMRI focuses on white matter, which is located
at the periphery (whereas the gray matter is inside). Typi-
cal preprocessing steps for spinal cord include:

(1) Segmenting the outer contour of the spinal cord
and the gray matter (which also results in white matter
mask). This can be achieved using active contour,215 prop-
agation of a 3D mesh,216 or deep learning.217 The two
latter methods are available in the Spinal Cord Toolbox.218

For more details on spinal cord segmentation, please see
DeLeener et al.219

(2) Straightening the spinal cord to have it aligned
along the superior–inferior axis. The benefit of this step
is to facilitate the registration to a spinal cord template
and atlas, and/or for group analysis. Straightening the
spinal cord can be done with Spinal Cord Toolbox using
an algorithm that preserves the topology of the internal
structure of the spinal cord.220

(3) Registering the spinal cord to an anatomical tem-
plate. This step is useful for extracting diffusion metrics
within specific white matter tracts of the spinal cord (e.g.,
cortico-spinal, rubrospinal, and dorsal columns). There
exist spinal cord templates and atlases (e.g., a rat spinal
cord template).221

An end-to-end analysis pipeline, with documentation,
example data, and procedure for manual correction is
available at http://spine-generic.readthedocs.io/.222 This
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project is for in vivo human spinal cord, but could be
adapted for ex vivo and non-human species.

dMRI provides key information on microstructural
properties also in other organs such as liver,186 kid-
neys,223,224 muscle,225 or heart.226 Imaging each of these
anatomical districts in vivo comes with its own challenges,
mainly related to complex motion patterns because of
proximity to the lungs, inhomogeneous magnetic fields
close to air cavities (e.g., stomach, lungs, and rectum), pul-
sation effects, intrinsic low SNR because of short T2 (e.g.,
liver iron). Typical preprocessing steps used for brain MRI
can also be useful in these anatomical areas (e.g., denois-
ing, motion and distortion correction), although at present
there is still a lack of processing packages tailored for these
applications.

4.1.3 Where future work should lie

Brain extraction is an important preprocessing step that,
if inaccurate, can largely affect the performance of down-
stream steps. Preprocessing tools, at each step of the
pipeline, should account for geometric and anatomical
differences between species, and studies should be per-
formed to optimize and standardize these tools depending
on species. Finally, setting up a publicly available pipeline
that integrates these preprocessing steps seamlessly, with
optimized parameters for each species would be highly
beneficial.

4.2 Processing pipelines

After preprocessing, it is typical to perform voxelwise
analysis of the DW measures to output parametric maps
of a variety of derived metrics. These parametric maps
can undergo subsequent analysis at the region of interest
(ROI), individual, or group levels.

DTI, DKI, or biophysical models suited for the tissue
of interest (white matter, gray matter, muscle, vari-
ous tumor types, etc.) can be applied to small-animal
data.8,9,162,227–228 For DTI, many software tools are
available—see Section 5.1. Substantially fewer software
packages offer diffusion kurtosis estimation198 and most
software does not check for b-value suitability before
DTI or DKI estimation. For biophysical model estima-
tion, dedicated code is usually provided by the model
developers.

Once parametric maps of various diffusion metrics are
available in native space, it is common to use registra-
tion either to import atlas-based segmentation of brain
regions for ROI analysis or to bring individual maps
into a common space for voxel-based comparisons. For

this registration/normalization step, typical tools used in
human data also work well for animal data, with some
customization. For nonlinear registration, for instance,
default physical dimensions of warp and smoothing ker-
nels should be scaled to those of small-animal brains.

4.2.1 Where future work should lie

Similar to preprocessing, free online sharing of pro-
cessing tools can accelerate the harmonization process,
with several efforts going in this direction (see also
Section 5.1.1). Moreover, prospective harmonization stud-
ies229 are required to understand and account for inter-site
variability.

4.3 Tractography

The application and use of dMRI-based fiber tractography
to study fiber pathways and wiring diagrams of the brain
remain largely the same for small animals as for the in vivo
human.230 The fundamentals of tractography (determinis-
tic and/or probabilistic algorithms) also remain the same.
In our experience, the only required change is the brain
masking approach (see Section 4.1.1).

4.3.1 Fiber orientation estimation

Minimal changes are needed in voxelwise reconstruction
steps: standard approaches that estimate fiber orientation
distributions will work adequately in animal model sys-
tems (including diffusion tensor imaging, spherical decon-
volution, ball and sticks, and more advanced methods),
resulting in a field of orientation estimates that can be used
for tractography.

4.3.2 Tractography

Several changes are needed in the tractography process
itself. For example, with smaller brains and smaller voxel
sizes, it is common that the “step size” in tractography
algorithms must be reduced, although this will usually
be performed by default in many software packages (e.g.,
MRtrix3, DSI Studio, DIPY, FSL, and ExploreDTI). Often,
false positive streamlines are removed through filtering or
clustering operations. If thresholding by streamline length
(i.e., setting a minimum or maximum length to eliminate
spurious or implausibly long streamlines), these thresh-
olds must be adapted to an appropriate measure for each
specimen and the pathway or system under investigation.

 15222594, 2025, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.30429 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2522 JELESCU et al.

The process of filtering by microstructural measures or
the diffusion signal (using algorithms such as LIFE,159

SIFT,157,158 or COMMIT156), as well as adding anatomical
constraints, is also relevant in animal models.

One tractography application is bundle segmentation.
Individual fiber pathways, or fascicles, of the brain are
virtually dissected to be studied across cohorts or time.
This is usually done by using ROIs through which bundles
must or must not pass to isolate a desired pathway. The
most obvious change for animal models is to consider the
species-specific brain anatomy, and ROIs must be modified
in accordance with prior knowledge of the bundle.231–233

For this reason, many automated or manual protocols
for bundle dissection are not readily adaptable for small
animals. Although some works have described and cre-
ated tools for dissection in some species (e.g., macaque,234

squirrel monkey,235 and mouse236), common tools and pro-
tocols for bundle segmentation in humans237,238 have not
yet been adapted. Regarding the analysis of bundles, quan-
tifying microstructure along or within the bundle of inter-
est,239,240 connectivity and shape of the bundles241 can be
done using the same analysis as for human data.

The next common application of tractography is con-
nectome analysis—an analysis of the set of streamlines
throughout the entire brain to determine network prop-
erties, often using graph-theoretic measures. Potential dif-
ferences in connectome analysis include different edges/n-
odes used to derive the matrix, which will typically be
derived from existing templates and atlases.235,242–245

4.3.3 Where future work should lie

Although the process of tractography in small animals
strongly parallels that of human, there are still areas for
which no guidelines can be provided. For example, it is
unknown what spatial resolution is necessary or optimal
in various animal brains.

For the tractography process, it is unclear if specific
modifications to the generation of streamlines are needed.
For example, it may be necessary to adapt starting/stop-
ping criteria, curvature thresholds, or anisotropy criteria
for animals with different gray matter/white matter vol-
umes, different (both more or less complex) geometries,
and different expected curvatures or pathways. Addition-
ally, with the benefits of strong fields and high gradients on
preclinical magnets comes the ability to image and possi-
bly probe connections within cortical or deep gray matter
areas, an area that is relatively unexplored in the human
brain, and for which there are little-to-no guidelines.

Additionally, few guidelines are provided on optimal
regions and region placement for bundle segmentation.
Many human analyses rely on regions located in a standard

space (typically MNI 152), that have been modified and tai-
lored over the years to continually improve the resulting
tractography dissections. Few studies exist that describe
appropriate region placement in animal models because of
a sparsity of resources dedicated to tractography in the ani-
mal models. Future work should lie in creating resources
that allow whole brain tractography (possibly informed
by anatomical constraints) in various models, followed
by atlas-based labeling (to create nodes/edges for connec-
tome generation), and bundle dissection for pathways of
interest.

Tractography is often validated in animal models,
but we should strive to understand and quantify dif-
ferences between tractography-based measures of tis-
sue orientation, and experimental tract-tracing methods
that visualize specific neural connections. For example,
knowledge of complications because of crossing fibers,246

because of spatial resolution,247,248 bottle-neck regions
of tractography,57,249,250 superficial U-fibers,251 effects
of experimental parameters,252 and false-positives and
false-negatives64 have been elucidated through the use of
animal models—and we should continually understand
the parallels to the human brain to reliably interpret mea-
sures derived from tractography. We also urge investigators
to fully document the tractography parameters in their
publications for rigor and reproducibility.

4.4 Group-level analysis

A variety of group-level analyses are available for pre-
clinical dMRI. The choice between them will be guided
by the statistical power (number of animals available vs.
expected effect size) and by the study design, whether it is
hypothesis-driven or exploratory.

ROI analyses consist in computing the mean (or
median) of a given dMRI metric in an anatomical ROI and
testing statistical differences of the ROI-level values in the
variable of interest (groups, timepoints, conditions, etc.).
Ideally, to limit bias, the ROI segmentation is performed
using registration to an atlas where the structure of inter-
est is segmented (and the segmentation is then propagated
back to individual space using the inverse transforms). A
good alternative is to register all datasets to a study-specific
template. The ROI can be manually drawn on the template
and then also propagated back to individual space. For
highly deformable or heterogeneous structures (e.g., vis-
cera or tumors) manual ROI segmentation on each dataset
may be unavoidable. Operator bias should be carefully mit-
igated in such cases. ROI segmentations should always
be visually inspected for accuracy and consistency. Cor-
rections for multiple comparisons should be applied if
multiple ROIs are considered. ROI-based group analyses
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are suitable for low-powered studies (few animals, weak
effect) or hypothesis-driven studies (the ROI where the
effect is expected is known a priori). However, if the effect
is very localized, large anatomical ROIs may reduce the
power by averaging across voxels where no effect is to be
expected.

Voxel-based analyses consist in registering all quan-
titative dMRI maps to a common template and identify-
ing clusters of voxels that display a significant difference
in the variable of interest. For brain studies, a common
tool for this effect is FSL’s tract-based spatial statistics.240

Voxel-based analyses are suitable for exploratory studies
and for highly powered studies (large cohorts or large
effect) because of the strict statistical threshold when cor-
recting for many comparisons (large number of voxels),
typically using permutations tests.

The documentation of anatomical location is impor-
tant for data interpretation, re-use and comparison across
studies, and can be communicated using spatial coordi-
nates or anatomical terms.253,254 Several open access 3D
reference brain atlases are available for different species
(see Section 5.1.2).

5 PERSPECTIVES

5.1 Open science

5.1.1 Code/software

Challenges with preprocessing and processing pipelines
highlighted above can be overcome through code sharing
and harmonization of implementations.

To allow for a more dynamic and self-updating
resource center, and facilitate code sharing, we have
compiled a (non-comprehensive) list of available soft-
ware dedicated to the acquisition and processing of
preclinical dMRI data, meant to be updated regularly,
on a public repository: https://github.com/Diffusion-MRI
/awesome-preclinical-diffusion-mri.

Updates on available software and tools can be shared
between developers and users.

5.1.2 Data sharing and databases

A critical aspect of data sharing is that data should be
findable, accessible, interoperable, and reusable, in 2016
formulated as the FAIR principles.255 These principles are
now widely adopted by researchers, universities, funding
agencies, and journals.

Standards for naming and organizing folders and files
are of key importance for the reusability of shared imaging
data. The neuroimaging community, therefore, proposed
BIDS,256 recently endorsed as a standard by the Interna-
tional Neuroinformatics Coordinating Facility (INCF).257

In brief, using BIDS, data are organized according to
contrasts (anat, dwi). File names include relevant suf-
fixes that help researchers and software to identify ori-
gin and intention of the files (e.g., “_dwi” is intended
for DW analysis). Sidecar JSON files include additional
metadata that are relevant for the analysis. Figure 5 illus-
trates a dataset structured according to BIDS. Although
the BIDS standard has originally been motivated by the
brain functional MRI community, this standard is being
actively expanded to accommodate more MR techniques

F I G U R E 5 Illustration of a Brain Imaging Data Structure (BIDS) structured dataset (right) starting from vendor-specific convention of
data organization (left). From Gorgolewski et al.256

 15222594, 2025, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.30429 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/Diffusion-MRI/awesome-preclinical-diffusion-mri
https://github.com/Diffusion-MRI/awesome-preclinical-diffusion-mri
https://github.com/Diffusion-MRI/awesome-preclinical-diffusion-mri


2524 JELESCU et al.

and modalities, the latest of which also include advanced
DW imaging.258 Likewise relevant are recent initiatives
for incorporating animal data into the BIDS standard
(https://bids.neuroimaging.io/bep032). In the perspective
of increasing data sharing opportunities, as well as gen-
erating traceable and comparable datasets, we strongly
encourage organizing raw preclinical data using the BIDS
format. In addition to facilitating data sharing, data orga-
nization standards like BIDS help designing applications
that know where to look for input data. This ultimately
helps automating analysis tasks and creating pipelines. A
list of BIDS-compatible apps is available at https://bids
-apps.neuroimaging.io/apps/.

Platforms that could serve as a repository for preclin-
ical datasets include OSF (https://osf.io/), OpenNeuro
(https://openneuro.org/), Zenodo (https://zenodo.org/),
NITRC (https://www.nitrc.org/) and others (https://odc
-tbi.org/). The EBRAINS research infrastructure for
brain-related research (http://ebrains.eu/) offers solutions
for sharing curated data sets with standardized metadata,
and links to brain atlases, analytic tools, and solutions for
computational modeling and simulation.

To exemplify sharing and reuse of useful imag-
ing data, we compiled a (non-comprehensive) list of
links to selected publicly available small-animal or
ex vivo DW datasets: https://github.com/Diffusion-MRI
/awesome-preclinical-diffusion-mri.git.

5.1.3 Where future work should lie

Code can be hosted on platforms such as GitHub, Git-
Lab, Zenodo, NITRC etc. Hosting code via these tools
is not only beneficial for the community, but also
for the code developers themselves (and their respec-
tive research groups). This ensures code safekeeping,
retrieving, and versioning. Nevertheless, code sharing
and submission to hosting platforms comes with the
responsibilities of documenting, cleaning, packaging,
testing, and versioning the code. These duties come
at a (high) cost of requiring an in situ software engi-
neer. Initiatives aimed at allocating special resources for
software maintenance via funding bodies are urgently
needed.

For licensing open source code, most permissive
licenses include MIT and BSD licenses. It means that
the code can be reused by any entity (person or com-
pany), and importantly to note, is that the modified
code can be distributed as closed source. If you wish to
enforce the disclosure of your open source code, there
are so-called “copyleft” licenses, such as the GNU GPLv3
and the Mozilla Public License 2.0. For more details, see
https://choosealicense.com/licenses/.

Certainly one of the highest aims is to propose a suc-
cessful, transparent, and comprehensive analysis frame-
work that promotes reproducibility.

The amount of open-source code and data is over-
whelming. Sharing code and data is a double-edged sword.
Indeed, public sharing of scientific objects that do not
meet certain standards or requirements can do more harm
than good. It is crucial to keep code on a dedicated plat-
form (e.g., GitHub) and point to a specific tag or commit
hashtag directly in the associated paper and OSF data
repository. In parallel, it is important to version-track
the dataset itself and mention specific versions where
appropriate. Several software solutions exist to link data
objects and code and track provenance, for example
Datalad (https://www.datalad.org/) and the YODA frame-
work (https://handbook.datalad.org/en/latest/basics/101
-127-yoda.html).

5.2 The future: What should we strive
to achieve?

As a field, we should continually strive to achieve reduced
barriers to entry for new imaging centers, new scientists,
and new industries who aim to use dMRI in a preclinical
setting. Toward this end, as a community, we should pro-
mote dissemination of knowledge, code, and datasets to
achieve high standards of data quality and analysis, repro-
ducibility, and transparency. We should foster academic
and industrial collaborations with MR vendors, as well as
reduce globally the time and cost of research in this field.
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