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Abstract

Preclinical diffusion MRI (dMRI) has proven value in methods development and
validation, characterizing the biological basis of diffusion phenomena, and com-
parative anatomy. While dMRI enables in vivo non-invasive characterization
of tissue, ex vivo dMRI is increasingly being used to probe tissue microstruc-
ture and brain connectivity. Ex vivo dMRI has several experimental advantages
that facilitate high spatial resolution and high SNR images, cutting-edge diffu-
sion contrasts, and direct comparison with histological data as a methodological
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validation. However, there are a number of considerations that must be made
when performing ex vivo experiments. The steps from tissue preparation, image
acquisition and processing, and interpretation of results are complex, with many
decisions that not only differ dramatically from in vivo imaging of small ani-
mals, but ultimately affect what questions can be answered using the data. This
work concludes a three-part series of recommendations and considerations for
preclinical dMRI. Herein, we describe best practices for dMRI of ex vivo tissue,
with a focus on image pre-processing, data processing, and comparisons with
microscopy. In each section, we attempt to provide guidelines and recommen-
dations but also highlight areas for which no guidelines exist (and why), and
where future work should lie. We end by providing guidelines on code sharing
and data sharing and point toward open-source software and databases specific
to small animal and ex vivo imaging.

K E Y W O R D S

acquisition, best practices, diffusion MRI, diffusion tensor, ex vivo, microstructure, open
science, preclinical, processing, tractography

1 INTRODUCTION

The use of animal models and ex vivo tissue is essential to
the field of diffusion MRI. In this work, we define small
animal imaging as imaging performed on a living exper-
imental animal, whereas ex vivo we define as covering
any fresh excised tissue, perfused living tissue, or fixed
tissue. Small-animal research is highly valuable for inves-
tigating the biology, etiology, progression, and treatment
of disease; for the field of dMRI specifically, preclinical
imaging is essential for methodological development and
validation, characterizing the biological basis of diffu-
sion phenomena, and comparative anatomy. While dMRI
enables non-invasive characterization of tissue in vivo,
ex vivo acquisitions are increasingly being used to probe
tissue properties and brain connectivity. Diffusion MRI
of ex vivo tissue has several experimental advantages,
including longer scanning times and absence of motion.
Together, these make it possible to acquire data with sig-
nificantly higher SNR, higher spatial resolution, and with
sophisticated diffusion contrasts which may enable better
characterization of tissue microstructure and structural

connectivity. Another advantage afforded by ex vivo dMRI
is the ability to compare diffusion data to histological
data, bridging the gap between in vivo and histology for
methodological validation. Because of these advantages,
there have been an increasing number of dMRI studies on
ex vivo tissue samples.

However, there are a number of considerations that
must be made when performing ex vivo experiments. The
steps from tissue preparation, image acquisition and pro-
cessing, and interpretation of results are complex, with
many decisions that not only differ dramatically from in
vivo imaging of small animals, but ultimately affect what
questions can be answered using the data. This work com-
pletes a three-part series of recommendations and con-
siderations for preclinical diffusion MRI. Part 1 (30429)
focuses on small animal diffusion MRI,1 giving guidance
for in vivo acquisition protocols and data processing. Part
2 (30435) presents best practices for dMRI acquisitions in
ex vivo tissue covering hardware selection, fixation and
sample preparation, MR scanning, and tissue storage. In
this manuscript, Part 3, we discuss and give recommenda-
tions for everything that follows ex vivo acquisition: image
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SCHILLING et al. 2563

F I G U R E 1 There are many artifacts that must be corrected for in preprocessing. These are not necessarily presented in order, and
correction may not be necessary in all cases. Nevertheless, the most common order for pre-processing steps (after data important and quality
check) is: (i) thermal noise reduction (referred to as denoising), (ii) Gibbs ringing correction, (iii) susceptibility distortion + motion + eddy
current corrections (+ gradient non-linearity, if applicable), (iv) Rician bias correction and (v) signal drift correction. Figures kindly provided
by Ileana Jelescu, Kurt Schilling, or reproduced from.2,3

pre-processing, diffusion quantification and/or model fit-
ting, methodologies for comparisons with histology, and
ex vivo fiber tractography. Finally, we give perspectives on
the field, describing sharing of code and data, and goals
that we wish to achieve. In each section, we attempt to
provide recommendations and considerations, also high-
light areas for which no recommendations exist (and why),
and where future work should lie. An overarching goal
herein is to enhance the rigor and reproducibility of ex
vivo dMRI acquisitions and analyses and, thereby, advance
biomedical knowledge.

This work does not serve as a “consensus” on any spe-
cific topic, but rather as a snapshot of “best practices” or
“recommendations” from the preclinical dMRI commu-
nity as represented by the authors. We envision this work
to be useful to imaging centers using small animal scan-
ners for research, sites that may not have personnel with
expert knowledge in diffusion, pharmaceutical or indus-
try employees, or new trainees in the field of dMRI. The
resources provided herein may act as a starting point when
reading the literature and understanding the decisions and
processes for studying model systems with dMRI.

2 DATA PRE-PROCESSING

In this paper we refer to pre-processing as steps that
come before any diffusion fitting (tensors, biophysical

models, etc.). Pre-processing thus includes data conver-
sion (e.g., DICOM to NIfTI), noise reduction, artifact
correction/mitigation, or any step that aims at improving
data quality. Processing refers to diffusion data fitting and
normalization to standard space. See Figure 1 for possible
preprocessing steps.

Ex vivo diffusion MRI suffers from many of the same
artifacts that in vivo imaging of both small animals and
humans are susceptible to. These include thermal noise,
Gibbs ringing, signal drift, eddy current and susceptibility
distortions, and sample motion. Below, we detail the steps
associated with a typical pre-processing pipeline, stress-
ing in particular what may differentiate implementations
of ex vivo imaging from in vivo, and how available tools
can/should be modified accordingly.

While most pipelines are designed for, and most heav-
ily used in the brain, similar artifacts occur in all dMRI
images. Our recommendations are generically applicable
for all organs scanned ex vivo, although most details below
are specific to brain imaging.

Any pipeline, regardless of sample, begins with data
importation and reconstruction. While preclinical vendor
software may output data in vendor-specific formats, com-
mon diffusion preprocessing software is most easily com-
patible with NIfTI or DICOM data, which stores not only
the image matrix but also header information that includes
information such as spatial resolution, sample orienta-
tion, and often acquisition parameters. With diffusion
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2564 SCHILLING et al.

data, the diffusion weighting and diffusion directions are
often stored as accompanying b-value and b-vector text
files. The orientation of the images with respect to the
applied diffusion directions is important, particularly for
tractography, and should be quality checked carefully.4,5

This is particularly important ex vivo where samples may
be oriented differently to the living model. Consequently,
header information which describes the orientation
of the images (i.e., the Left–Right, Inferior–Superior,
Anterior–Posterior labels) may need correcting and it is
often commonplace to put some identifiable object (such
as a fluid-filled capsule) or even a small physical cut in
one hemisphere to ensure the hemispheres are correctly
labeled. Tools for importation, reconstruction, conversion,
and b-table quality control are given in Section 5.1.1.

A prerequisite for many preprocessing steps is gen-
erating a brain mask. The mask is often used to save
computation time or optimize areas on the image to focus
corrections on. In general, brain mask generation can be
challenging for small animal models because most dig-
ital “brain extraction” tools are optimized for and vali-
dated on the human brain. This can be more straightfor-
ward for ex vivo images, particularly if the sample was
skull-extracted and immersed in perfluorocarbon fluids
(e.g., fomblin) for imaging. One species agnostic approach
for digitally extracting the brain from the image back-
ground that performs well on ex vivo images is to thresh-
old the non-diffusion weighted image based on signal
intensity, perform iterative dilation/erosion, and remove
non-connected components.6 When tissue is scanned
within the skull, alternatively, species-specific strategies
may be adopted.7,8 One approach is to register all brains to
a common space (template or atlas) where a brain mask
is available or can be derived. The brain mask can then
be registered back to native space, and optionally further
adapted at the subject level.8

Next, denoising aims to reduce thermal noise in
diffusion-weighted images. Most denoising approaches
and associated requirements are un-changed for ex vivo
diffusion MRI. For example, a common approach based
on principal component analysis (PCA)9 and automated
identification of signal and noise-carrying components
(MP-PCA,10 NORDIC11) has proven useful in dMRI and is
therefore recommended. The requirements here are that
the noise level is constant across all diffusion images and
that the number of diffusion images is large, where we sug-
gest the use of >30 images. Other methods, for example
total variation minimization12 or non-local means denois-
ing12,13 are also applicable to ex vivo images. Several algo-
rithms and packages are also provided in Section 5.1.1.
It is worth noting that most denoising methods assume
Gaussian noise, whereas MR signal in magnitude images

follows a Rician or non-chi-squared distribution. Conse-
quently, denoising should be ideally performed using com-
plex or real-valued images to avoid enhancement of the
rectified noise floor that may affect downstream modeling
(see14 for further discussion). We note that the MP-PCA
algorithm can output a map of the noise level (σ) at each
voxel, which can be used to calculate SNR maps for each
diffusion-weighted image (by dividing the signal S by σ). A
rule of thumb is that the SNR should be at least 2–5 for the
highest b-value (note that it is also direction-dependent).

The next suggested step is Gibbs ringing correction,
which is an artifact that appears as signal oscillations next
to high contrast tissue interfaces and can interfere with
model fitting for voxels near tissue edges, for example, in
the corpus callosum15 or cortex, which are close to CSF.
Gibbs ringing correction, while not dramatically affect-
ing tractography, is important for microstructure model-
ing. Correction techniques include the methods described
in16 when a full Fourier acquisition is acquired and that
of17 when partial-Fourier acquisition is used (both for 2D
multi-slice imaging). These methods have recently been
extended to 3D,18 which is appropriate for the 3D acquisi-
tions common in ex vivo imaging.

Next, susceptibility distortions, eddy currents, and
sample motion need to be corrected. While susceptibil-
ity distortion in ex vivo scans can be mitigated through
a multi-shot (segmented) acquisition, and motion should
be minimal (with proper sample preparation), we still rec-
ommend correction for these potential artifacts. Pipelines
and algorithms, such as those implemented within FSL
(using the topup and eddy tools) or within TORTOISE
(using the DR BUDDI tool) utilize a reverse phase encode
scan to estimate the distortion field and may use this field
while correcting all three artifacts simultaneously. Regard-
less of software, care should be taken when using these
pipelines with default parameters or configurations. For
example, the knot-spacing or warp-field resolution for dis-
tortion/warping fields are typically set for human data
acquired at ∼2–2.5 mm isotropic resolution and should
be scaled to match the possibly higher resolution ex vivo
data under investigation. Additionally, practical compro-
mises may need to be made (for example when choosing
the number of iterations to run, or downsampling fac-
tors within the pipeline) for time considerations, particu-
larly for ultra-high resolution datasets acquired with many
diffusion-weightings.

Rician bias correction corrects the diffusion signal
decay by subtracting the non-zero Rician floor that is
present in magnitude data. Typical methods will assume
the Gaussian noise standard deviation to be known, for
example, as previously estimated using MP-PCA on low
b-value data. For software and methods, see19,20 and
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SCHILLING et al. 2565

Section 5.1.1. Alternatively, Rician noise models can be
directly incorporated into the fitting procedure.

Finally, temporal instability on the scanner can cause
signal drift, especially for diffusion sequences where
strong gradients are employed for extended periods of
time, even more so on preclinical scanners and especially
for multi-day ex vivo experiments. This decrease in sig-
nal intensity over time can cause mis-estimates of derived
parameters and also affect tractography.3 Strategies to
alleviate this effect include randomizing diffusion gradi-
ent directions and b-values, or better, explicitly designing
direction sets to avoid consecutive directions with partic-
ularly heavy load on any one gradient axis. The presence
of signal drift can be examined and corrected by collecting
multiple b= 0 images throughout the scan to determine
correction factors (typically linear or quadratic) to mini-
mize this effect. Although this is not commonly done in the
literature, we advocate for its use, and methodology and
code to do so is described in3 and in Section 5.1.1.

3 DATA PROCESSING

Data processing includes fitting, normalization to a stan-
dard space, and tractography analysis. Diffusion analysis
differences between in vivo and ex vivo are along the same
lines as differences outlined for setting up the acquisition
protocol (see Part 2), that is, all changes are a direct result
of potential differences/alterations in compartment sizes,
diffusivities and relaxivities that are affected by chemical
fixation and temperature.

3.1 DTI/DKI

To ensure that the assumptions underpinning DTI and dif-
fusion kurtosis imaging (DKI) are valid, the b-values need
to be set such that b×D∼ 1 (DTI limit), and b×D∼ 2–3
(DKI limit)21 (where D is the diffusivity). This means that
the maximum recommended b-values depend on the dif-
fusivity and thus on the temperature at which the data
were acquired. As described in Part 1,1 these guidelines
result in a commonly used b≃ 1000 s/mm2 for DTI and
highest b-value of b≃ 2000–2500 s/mm2 for DKI in vivo. As
described in Part 2, ex vivo b-values should be increased by
a factor of 2–5× depending on the drop in diffusivity. This
means ex vivo DTI estimation can/should be performed
based on b-values of b≃ 2000–5000 s/mm2, and the kur-
tosis tensor estimated from at least two shells with the
highest b-value of b≃ 4000–10 000 s/mm2.

There is clearly a wide range of possibly “optimal”
b-values (we note that the lower end of these ranges
are more typical in the literature). However, ex vivo

also comes with the advantage that cursory scans should
be used to investigate signal attenuation at different
b-values for a given fixation and sample preparation pro-
cedure. The suitable b-value range for DTI and DKI
analysis of a given ex vivo sample should be confirmed
by examining the signal decay as a function of b-value
to confirm the range of linear behavior (DTI regime:
ln(S)∼−bD) and measurable curvature for kurtosis quan-
tification (ln(S)∼−bD+ 1/6× (bD)2K). It should be noted
that DKI estimation is affected by the choice of b-values
and post-processing (fitting procedures).

3.2 Biophysical modeling

For biophysical models, recommended b-values for opti-
mal accuracy and precision of parameter estimation
should also be adjusted ex vivo. Again, b-values should
often be 2–5× the in vivo counterparts to account for the
equivalent drop in water diffusivity. Similarly, diffusion
times may need to be adjusted to account for this slower
water diffusion ex vivo. See Part 2 for further discussion of
ex vivo acquisitions.

At the parameter estimation level, priors on diffusiv-
ities should be adapted to match ex vivo values, as well
as potential admitted bounds on parameter values and
algorithm initialization values. A typical example of this
is an ‘ex vivo flag’ in the original implementation and
source code of the NODDI model22 which changed the
assumed fixed diffusivity from 1.7E-6 to 0.6E-6 mm2/s.
This assumes the ex vivo diffusivity to be ∼1/3 of its in
vivo value. However, as noted elsewhere, ex vivo diffusiv-
ities are highly sample (fixation) and temperature depen-
dent, making “universal” assumptions about ex vivo diffu-
sivities often unreliable. Importantly, biophysical models
may need to be adapted dramatically by the exclusion of
compartments related to CSF, and inclusion of additional
compartments, such as the “dot” compartment (trapped
water with extremely low diffusion coefficient, see previ-
ous Section 2.2 “Ex vivo: Translation and validation con-
siderations”),23 for which in vivo evidence is limited to
the cerebellum24,25 and ex vivo more widespread to the
cerebrum,26,27 spinal cord,28 and optic nerve.29 As it can
be difficult to know a priori whether an additional dot
compartment is justified ex vivo, and because it can be
challenging to disentangle it from the Rician noise floor,
best practice can include fitting multiple models (with
and without the dot) and determining model selection
via, for example, estimate plausibility (parameters within
biological ranges), precision, and the corrected Akaike or
Bayesian information criterion. Example DTI, DKI, and
biophysical model parameters maps for ex vivo mouse
brains are shown in Figure 2.
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2566 SCHILLING et al.

F I G U R E 2 Ex vivo maps from
DTI, DKI, and a biophysical model
(white matter tract imaging; WMTI).30

Parameter maps show radial diffusivity
(DTI), radial kurtosis (DKI), and radial
extra-axonal diffusivity (WMTI) for
control mice and two hypomyelinated
mouse models (Rictor and TSC). Ex
vivo imaging was performed on a 15.2T
Bruker Biospec scanner at 150 μm
isotropic resolution using a 3D
diffusion-weighted fast spin-echo and
b-values of 3000 and 6000 s/mm2.
Figure reproduced from Ref. 31.

F I G U R E 3 Ex vivo tractography on mouse (left),32 macaque (middle), and human brains (right). In the mouse, high resolution
tractography was used to identify region-to-region differences in connectivity in models of Huntington’s disease; here, tractography is able to
delineate Striatal connectivity. In the Macaque brain, standardized protocols were developed to enable robust and automated segmentation of
42 white matter pathways.33 In the human brain, diffusion data at high spatial resolution showed feasibility of reconstructing brainstem
nuclei and white matter of the brainstem.34

3.3 Tractography

The application and use of fiber tractography as a tool
to study the fiber pathways and wiring diagram of the
brain remain largely the same for ex vivo (Figure 3) as for
in vivo small animal and human dMRI, as fixation pre-
serves the structure of axon bundles. In general, a measure
of fiber orientation is estimated for each voxel, which is
used to create continuous space curves (i.e., streamlines)
which are thought of as representations of groups of axons
traveling throughout the tissue. For these reasons, the fun-
damentals of tractography (deterministic and probabilistic
algorithms) also remain the same, and guidelines follow
that of human data.

For acquisition, we recommend acquiring data with
isotropic resolution, as anisotropic voxel size can introduce

bias in estimates of fractional anisotropy and hinder the
ability of algorithms to deal with branching/bending path-
ways.35 Higher angular resolution and strong diffusion
weightings are likely to benefit tractography, particularly
for small pathways, pathways near ventricles or gray mat-
ter boundaries, or pathways with high curvature. For
most reconstruction techniques, we recommend acquir-
ing greater than 30 diffusion-weighted directions (and
commonly 60–100+, especially with little-to-no scan time
limits). Example acquisitions with subsequent valida-
tion that have demonstrated reliable tractography results
include the ex vivo mouse (0.1-mm resolution, 60 direc-
tions, b= 500036), ex vivo ferret (0.24-mm resolution, 200
directions, b= 400037), ex vivo squirrel monkey (0.3-mm
resolution, 30–100 directions, b= 1000–12′00037–39),
ex vivo macaque (0.25-mm resolution, b= 4900, 114
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SCHILLING et al. 2567

directions40; 0.5-mm resolution, b= 1477–8040, 180 direc-
tions41,42), and ex vivo pig (0.5-mm resolution, b= 4000,
61 directions43) — all b-values given in units of s/mm2.

The next step in the tractography process is estimat-
ing a fiber orientation for every voxel in the image. For
ex vivo imaging, very little changes occur for this step, as
most reconstruction techniques, including DTI,44 spher-
ical deconvolution,45 ball & sticks models,46 and q-ball
imaging,47 will result in a field of orientation estimates that
can be used for tractography. As above, some fiber recon-
struction methods may be adapted for ex vivo data through
the inclusion of a dot-compartment to avoid estimation
of spurious fiber orientations due to overfitting.48 One
important point to emphasize ex vivo is that several decon-
volution methods may estimate a response kernel (the
diffusion signal that results from a single fiber population)
including an isotropic free water or CSF component,49 or
may estimate a kernel for each tissue type: white matter,
gray matter, CSF.50,51 Because ex vivo tissue may not have
CSF, or any free water if immersed in fomblin, care should
be taken when using these algorithms to ensure they do
not bias the true tissue components.

The tractography process itself is also largely
unchanged ex vivo. As described in Part 1,1 it is still impor-
tant to consider, and adapt, parameters that can be tuned.
For example, the step-size (the size of steps when prop-
agating streamlines), curvature threshold (which stops
streamlines if curvature is too high), or length thresholds
(only allowing streamlines that are between a minimum
and maximum total length). Adaptations should be con-
sidered based on acquired resolution, expected curvature
of pathways under investigation, and length/size of the
brain. For these reasons, most software packages for trac-
tography (MRTrix3, DSI Studio, DIPY, FSL, ExploreDTI)
are able to easily be used for ex vivo dMRI with few
modifications.

Applications of tractography include bundle segmen-
tation, the process of virtually selecting and dissecting
pathways to study, and connectome analysis, assessing
streamlines throughout the full brain to determine net-
work properties, for example, using graph-theoretic mea-
sures. Recommendations for these are identical to that for
in vivo imaging (see Part 11), where the primary challenges
associated with small animals are the lack of automated
bundle dissection tools in different species, and a lack of
(or challenges in identifying) cortical parcellation schemes
to use for connectome analysis.

Additional tractography applications involve the abil-
ity to study species beyond those conventionally used as
scientific models. A few select examples include multiple
primate brains for comparative anatomy and insight into

brain evolution,52 studying auditory pathways in studies
of dolphin brains,53 toxic exposure effects on connectiv-
ity (and parallels to temporal lobe epilepsy) in sea lions,54

or studying the extinct Tasmanian tiger brain55 (pre-
served in formalin since 1905!) which have been extinct
since 1936.

Finally, ex vivo imaging enables tractography in struc-
tures that may be challenging in vivo due to small
size or motion. Examples include gray matter and intri-
cate brainstem pathways in the human brain,56–60 or
detailed mapping of the ascending/descending white mat-
ter, intra-cortical connections, and collateral fibers of the
ex vivo spinal cord.61–63 Outside the central nervous sys-
tem, tractography has proven useful for characterizing
normal and abnormal myofiber architecture and depicting
sub-divisions of the ex vivo heart,64–66 or visualizing the
course and structural abnormalities of ex vivo peripheral
nerves,67–71 or tracing renal structures at high resolution
in the ex vivo kidney.72 While we do attempt to provide
specific guidelines for these structures, we recommend
strongly considering the goal of the tractography process
in these locations (determining trajectory or orientation of
tissue? Clustering structures? Measuring spatial extent of
structures?) and how choices in the tractography process,
including start/stop criteria, length and curvature thresh-
olds, and streamline propagation methods may influence
the ability to perform the desired tractography process.

3.4 Normalization/registration

It is common to use registration either to import
atlas-based segmentation of brain regions (for region of
interest [ROI] analysis or to use as tractography masks)
or to bring individual maps into a common space for
voxel-based comparisons. For this registration/normaliza-
tion step, typical tools used in human data also work
well for animal data, both in vivo and ex vivo, but
often require some customization. For non-linear regis-
tration for instance, default physical dimensions of warp
and smoothing kernels should be scaled to those of
small-animal brains. Due to relaxation time and resolution
differences in vivo versus postmortem, contrast between
tissues may vary, and it can be challenging to non-linearly
register ex vivo images to existing in vivo atlases (especially
if the default cost-function is sum-squared-differences). In
this case, it may be necessary to change the cost func-
tion (to mutual information, for example) or register to
an explicit ex vivo atlas. Common MRI atlases, including
brain segmentation, for a variety of species are provided in
Section 5.1.2.
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2568 SCHILLING et al.

F I G U R E 4 Examples of co-localized MRI and histological data. Top: Fixed multiple sclerosis human spinal cord; bottom: Fixed mouse
liver. From left to right: B= 0 image; whole-sample histological section taken within the tissue corresponding to the MRI slice (proteolipid
protein [PLP] immunostain for the spinal cord; hematoxylin and eosin [HE] staining for the mouse liver); dMRI parametric map (fractional
anisotropy [FA] for the spinal cord; ADC for the mouse liver); histological parametric maps co-registered to dMRI space (myelin staining
fraction for the spinal cord, and volume-weighted cell size statistics for the mouse liver, evaluated within histological image patches matching
the in-plane MRI resolution). The data reproduced in this figure with kind permission from C.A.M. Gandini Wheeler-Kingshott, G.C.
DeLuca and R. Perez-Lopez refer to previous dMRI studies.28,77

4 COMPARISONS WITH
MICROSCOPY

4.1 Ex vivo MRI-microscopy
comparisons

One of the main advantages of the ideal experimental con-
ditions in ex vivo MRI (e.g., lack of motion and limited
image distortions; high spatial resolution) is the possibil-
ity of deriving detailed microscopy information at accurate
radiographic position.28,73–76 This can then be used to val-
idate MRI maps against microscopy indices quantifying
similar biological features, or, more generally, to assess
the correlation between MRI markers and a variety of
microscopy-derived markers. An example of this is given

in Figure 4, illustrating co-localized MRI and histological
information from two published studies, i.e. (i) in multi-
ple sclerosis human spinal cord tissue28 (top), and (ii) in a
mouse liver.77 The figure shows how 2D microscopy from
sections cut along a direction that is consistent with the
MRI slice direction can be directly compared to MRI mark-
ers acquired in the same sample with good MRI-histology
alignment,78 especially if 3D-printed molds customized to
the specimen’s anatomy are used to guide histological sec-
tioning.79 3D microscopy is also possible,74,80 although it
is usually limited to much smaller fields-of-view as com-
pared to sample-wide 2D images, or requires very special-
ized protocols such as CLARITY.81

Irrespective of the chosen method, microscopy images
are typically acquired at a resolution that is hundreds or
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SCHILLING et al. 2569

thousands of times higher than the MRI voxel size. For
example, typical resolutions on 2D slide scanner micro-
scopes used for histology are of the order of 0.25–1.0 μm,
while typical ex vivo dMRI resolutions are of the order
of 100–500 μm. A common strategy to tackle the resolu-
tion mismatch is to combine the microscopy pixels that
coincide with a given MR voxel into a “superpixel” or
patch that matches the in-plane MRI resolution and derive
per-patch descriptors of microstructural properties (e.g.,
per-patch staining fractions, fiber orientation descriptors,
or cell size distribution statistics27,28,77,82). This provides
microscopy-derived parametric maps at a spatial scale that
is comparable to that of diffusion MR images, to enable
voxel-by-voxel MRI-microscopy comparisons83.

For microscopy methods where the brain tissue is
first sectioned into thin tissue samples, the resolution
mismatch can not only relate to the in-plane resolution,
but also to the slice direction: microtome cut thicknesses
are of the order of 5–20 μm, while slice thickness in ex
vivo dMRI is of the order of 200–1000 μm. This implies
that a single microscopy slice only provides a partial
picture of the microscopic characteristics underlying an
MRI scan, since there are considerable portions of tis-
sue that contribute to the MRI signals but that are not
sampled. Better coverage can be achieved by imaging
consecutive thin tissue slices that are then co-registered
to create a 3D voxel volume,84 or by using 3D imaging
methods such as 3D electron microscopy (EM) meth-
ods,85 confocal Imaging, 3D optical coherence tomogra-
phy, or x-ray synchrotron-based phase-contrast tomog-
raphy imaging,8886,87 and small-angle X-ray scattering
(SAXS) tensor tomography89. However, some methods are
only suitable for imaging smaller tissue samples, preclud-
ing whole-brain imaging of larger (e.g., primate) brains.
Notably, very high-resolution imaging methods such as
electron microscopy are often acquired in 3D from tissue
blocks that are smaller than the dMRI voxel resolution,
resulting in similar issues.

A further consideration is that microstructure is inher-
ently 3D, consisting of volumetric objects (e.g., cell spheres
and fiber cylinders with 3D orientations). However, micro-
scopic 3D images present only a 2D-like projection of the
3D microstructure through the slice thickness. The dif-
ference in how a 3D object is represented in different
modalities must be carefully accounted for when used for
comparison, such as in validation. One approach can be to
take the diffusion metric (e.g., a 3D fiber orientation distri-
bution) and similarly project it onto the 2D imaging plane
(to create a 2D fiber orientation distribution), facilitating
fair MRI-microscopy comparison.90–93

In MRI-microscopy comparisons, sensitivity can be
demonstrated using natural microstructural variation in
healthy tissue, variation between pathological and control

tissue, or via animal models in which specific tissue
features can be purposefully manipulated (e.g., myelin
manipulated through genetic modifications in shiverer
mice or through environmental modifications in the
cuprizone mouse model). In these cases, the correlation
between ex vivo MRI and microscopy need not specifically
match MRI voxels to microscopy data and a 1:1 correspon-
dence between these contrasts may not be necessary.

4.2 Ex vivo MRI and microscopy
alignment

There are several ways to align MRI and microscopy
for quantitative comparison and validation. An excellent
review of challenges and methodologies in registration of
MRI to histology is provided in Ref. 94. While not specific
to ex vivo diffusion MRI, their recommendations and sug-
gested protocols form the backbone of our review here,
given in order of increasing technical difficulty.

First, the most simple, and arguably most common,
approach is to manually select corresponding regions of
interest in MRI and histology for quantitative analysis95–97

especially suited for the small field-of-view of electron
microscopy and similar techniques that are necessary for
axon diameter and volume fraction quantification.23,31

While no registration is required, it might be time con-
suming to manually select and delineate regions of interest
in both microscopy and MRI, and a perfect correspon-
dence is not guaranteed. For this reason, larger anatomical
regions are typically selected from MRI (i.e., genu/body/s-
plenium of corpus callosum, or large hand-drawn region
of the cortex).

A second option is to aim to section the tissue spec-
imen in planes parallel to the MR imaging planes. This
will facilitate registration of 2D histology to the 2D MRI
imaging plane using commonly employed registration
packages, enabling a voxel-wise comparison of MRI and
histology. A 3D printed mold may be created to facili-
tate registration. Here, an in vivo or ex vivo structural
scan is quickly performed to create a 3D segmentation
of the object (i.e., brain, prostate, spinal cord). Then, a
mold is designed which not only holds the sample, but
also has cutting guides, or slots, for cutting. Some guides
may be nicely made to fit within specialized sample hold-
ers as well. Further scans can be performed ex vivo,
where the FOV may be aligned with the cutting guide,
so that there is a direct correspondence between the sub-
sequent 2D histology and a slice (or slices) of the MRI
image. This technique has been used for MRI imaging
and histology alignment of multiple species and various
organs,79,98–100 but, as of yet, not for diffusion validation
directly.

 15222594, 2025, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.30424 by Spanish C

ochrane N
ational Provision (M

inisterio de Sanidad), W
iley O

nline L
ibrary on [16/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2570 SCHILLING et al.

F I G U R E 5 Histology to diffusion
MRI alignment example using the
intermediate modality, block-face
images. The 2D histology (A1) can be
mapped to specific 2D block-face
images (A2), which can be stacked into
a 3D volume and mapped directly to 3D
diffusion MRI data/derived data (A3).
In this example, fiber orientation
distribution from histology is aligned
with similar measures estimated from
diffusion MRI for validation
purposes.75,80 Insets (A4–A5) zoom in to
show alignment across modalities, with
final panels showing histology-derived
(left) and MRI derived (right) fiber
orientation distributions.

A third option is to utilize an intermediate modality,
usually referred to as block-face images, that are digital
photographs of the tissue block as it is being sectioned.
These block-face images can be registered individually or
first stacked into a 3D volume and registered to the 3D
MRI. Because each 2D digital photograph can be mapped
directly to a specific 2D histological slice, 2D registration
can be performed to align histology to block-face (account-
ing for non-linear deformations arising from tissue pro-
cessing), and subsequent 3D registration can be performed
to align blockface to MRI (Figure 5). This technique has
been performed in humans, mice, and monkeys, with ded-
icated pipelines and software,101–104 and has been shown
to provide accurate alignment,105 and used to validate
tractography, fiber orientation, and tissue microstructure
measures. Registering 2D microscopy directly to 3D MRI
is also possible in cases where block-face images were
not acquired,106 though the optimization may be less well
constrained.

Despite these options, there are still several chal-
lenges associated with MRI and histology alignment. In
addition to shrinkage during fixation, tissue distortions

including more shrinkage, as well as tearing/folding occur
due to sectioning, staining, and mounting procedures (Fox
et al. 1985)154 (or physical distortions during biopsy). This
causes both global distortions (global shrinkage), discon-
tinuous distortions (separated tissue segments or parts of
the brain, i.e., hemispheres), and also highly localized
distortions (tearing, folding, and differential distortions
between tissue types). While approaches to overcome this
may include interactive or manual delineation of tears
(Breen et al. 2005),103,155 piecewise or hemi-rigid transfor-
mations (Pitiot et al. 2006; Dauguet et al. 2007),156,157 and
block-face images above, this is still an open challenge in
the field where we envision open-sourced configurable,
yet automated, registration for robust and reproducible
MRI-histology registration (Huszar et al. 2023).158

We also note that, in some special cases, especially
with small samples imaged using planar surface coils,
the entire RF coil, holder, and sample can be removed
for optical microscopy, providing a direct comparison as
demonstrated on onion plant cells112 and in mammalian
brain slices (including human97), and muscle fibers.113–117

Examples of this approach on a myelin-stained human
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F I G U R E 6 Examples of direct
imaging of histological slices. (Left) A
Black-Gold II stained histology
(myelin-stain) was directly imaged in a
microsurface coil with in-plane
resolution of 15.6um. Tractography and
red-green-blue orientation maps are
shown overlaid on myelin stain. (Top
right) a 25 μm-thick Nissl-stained rat
spinal cord tissue was imaged using a
microsurface coil at 7.8 μm in-plane
resolution with corresponding diffusion
weighted image showing excellent
correspondence. (Bottom right) A
300 μm-thick rat hippocampal slice is
imaged under a light-microscope and
imaged using a slide-mounted
microsurface coil at 12.5 μm in-plane
resolution to study the microstructural
effects of diffusion times and b-values.
Images reproduced from97 (left),115 (top
right),117 (bottom right).

spinal cord, Nissl-stained rat spinal cord, and rat hip-
pocampal slice (with light microscopy) are shown in
Figure 6.

4.3 Optical imaging for validation

4.3.1 Histology

Histological staining is commonly used to visualize spe-
cific tissue features at μm-resolution. Ex vivo tissue is first
sectioned into thin slices (typically ∼5–10 μm), mounted
onto glass slides and chemically stained. Many stains
exist that target and visualize different tissue features.
For example, there are common stains for myelin (e.g.,
PLP, Luxol fast blue or Gallyas/Bodian silver stains),
Nissl or cell bodies (Cresyl violet, Golgi), neurofila-
ments (SMI-312), astrocytes (glial fibrillary acidic protein
[GFAP]), microglia (Iba1), and many others. Some stains
are chemical while others use antibodies to target specific
proteins, known as immunohistochemistry. Stained slides
are then imaged using optical microscopy with μm or
sub-μm resolution where slide scanners are typically used
for high-throughput 2D imaging. Digitized histology can
be analyzed to extract microstructural metrics related to,
for example, cell density, size, or the degree of axon myeli-
nation (via stain segmentation118) or fiber orientations
(via structure tensor analysis93,119). The image processing

involved needs to account for considerations that make
stain (optical) density semi-quantitative: the stain density
may not scale linearly with the antibody density and slides
can suffer from artifactual staining variations both within
and between slides. After processing, summary measures
such as the cell count, the distribution of cell size, the
number of stained pixels (stained area fraction) or the
fiber orientation distribution can then be calculated over
a local neighborhood and compared to dMRI-equivalents
across regions of interest or on a voxel-wise basis. To sep-
arate sensitivity (showing a MR parameter correlates with
some histology metric) from specificity (showing a MR
parameter is selectively related to a single change in the tis-
sue), multiple stains may be acquired and simultaneously
analyzed to account for microstructural covariance across
voxels/regions.118

Histology (or immunohistochemistry) can also be com-
bined with chemical tracers to enable precision map-
ping of axon trajectories from cortical regions of inter-
est.120 This form of neuroanatomical tract tracing provides
“gold standard” estimates of brain connectivity that can
be used to validate dMRI-based tractography (Figure 7).
Tracer molecules are first surgically injected into a cor-
tical region of interest where the tracer is taken up by
neurons and actively transported along the axon, from
the cell body to the axon terminals (anterograde trac-
ers) or from the axon terminals to the cell body (retro-
grade tracers). Several weeks post-surgery, the animal is
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2572 SCHILLING et al.

F I G U R E 7 Left: Tractography validation via anatomical tracers (top,122) and microdissection (bottom,123). Right: Recent advances in
high throughput 3D imaging of anatomical tracers facilitates the tracking of single neurons, here projecting from the medial dorsal nucleus
of the thalamus.124

then sacrificed and the tissue sectioned and stained to
visualize tracer deposition (i.e., stained cell bodies and
axon trajectories) in the tissue. Sections sampled across
the brain can then be digitized and combined, to map
cortical–cortical or cortical–subcortical connectivity (i.e.,
injection/termination points), or create a 3D mask of axon
projections across the brain. Tracers have been used exten-
sively in animal models such as non-human primates
and mice. However, tracers are typically limited to only
one or two injection sites per animal, often requiring
information to be combined across multiple animals, and
tracers cannot be used in humans. Though it is possi-
ble to implant similar dyes in postmortem human sam-
ples,121 it can take a prohibitively long time for the dye
to travel without active transport, meaning this method
is only rarely used. Alternative tract-validation methods
include gross white matter dissection, where fixed ex vivo
tissue is first frozen and thawed (Kingler’s technique)
before being surgically dissected to reveal white matter
fiber bundles,120 or comparisons of fiber orientations and
downstream tractography from structure tensor outputs,
or orientation-sensitive microscopy such as polarized light
imaging (PLI), PS-OCT, SLI, or SAXS, as described below
and illustrated in Figure 8.

4.3.2 Fluorescence microscopy and tissue
clearing

Fluorescence microscopy can similarly be used to iden-
tify specific tissue features with high resolution for
single-cell-resolution imaging and analysis. Here, tissue is
stained using fluorescent dyes, or animals (e.g., mice) can
be genetically engineered to express fluorescent proteins
(e.g., using the Brainbow technique (Livet et al. 2007)),159

eliminating the need for staining. Samples are then imaged
often via more advanced optical methods such as con-
focal microscopy, light-sheet microscopy, two-photon or
super-resolution imaging. Multiple fluorophores can be
labeled within the same tissue sample for co-localization of
multiple tissue features, with the benefit that fluorescence
can be directly related to fluorophore concentration given
certain conditions, making the method often more quanti-
tative than histological staining. Combining fluorescence
with z-stack imaging, cellular morphologies and fiber ori-
entations can be visualized in 3D for comparisons with
dMRI.74,75,80

Larger tissue sections (∼mm3) can be imaged in 3D at
depth by first optically clearing the tissue, for example, via
CLARITY.128 In tissue clearing, lipids are removed from
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F I G U R E 8 Fiber orientations
extracted from various microscopy
modalities can be used to validate
biophysical models or fiber
reconstruction methods in diffusion
MRI. These modalities include
structure tensor analysis of histological
sections (myelin ST106) and polarized
light imaging (PLI106), small angle x-ray
scattering (SAXS125) and scattered light
imaging (SLI125), micro-CT (u-CT87),
and EM.126

the tissue such that the sample becomes optically trans-
parent, facilitating 3D tissue imaging without sectioning.
Penetration issues mean it can be challenging to both clear
and label larger samples, though advancements in sam-
ple processing are ongoing.129 Nonetheless, fiber orienta-
tions from cleared tissue have been successfully compared
to diffusion MRI in both human and primate blocks of
10× 10× 0.5 mm3,130 and the contributions to DTI of dif-
ferent cell types, myelin and fiber coherence disentangled
in whole-brain mouse data.131,132

4.3.3 Label-free imaging techniques

Label-free imaging methods utilize the intrinsic optical
properties of tissue to generate contrast, without addi-
tional (exogenous) stains or dyes. Several techniques such
as optical coherence tomography (OCT) and scattered light
imaging (SLI) use the reflectance or scattering of light from
tissue structures to drive contrast in the image. Analo-
gous to ultrasound, OCT133 uses an optical interferometer
to obtain 3D depth-resolved images of reflected light at
μm-resolution<∼100 μm deep (depending on the sample).

The top face of the sample is first imaged and then removed
in situ (e.g., using a vibratome), and the process is repeated.
This results in well-aligned images without the need for
complex post-hoc registration. In comparison, scattered
light does not image at depth but illuminates the sample
from different angles (typically from below, with light then
transmitted through the sample) to estimate fiber orien-
tations with an in-plane resolution of >6.5 μm.125,134 The
primary benefit of SLI over other methods lies in its abil-
ity to estimate multiple orientations per pixel in crossing
fiber regions. Polarization sensitive methods such as PLI or
polarization-sensitive OCT (PS-OCT) use the birefringent
properties of the tissue to estimate orientational informa-
tion (the optic axis) with micron-scale resolution.40 As
tissue birefringence in white matter is primarily related
to myelin, fiber orientations can be inferred. The main
difference between PLI and PS-OCT lies in the order in
which the tissue is sectioned and imaged. In PLI,135 polar-
ized light is transmitted through unstained tissue slices
∼50–100 μm thick, whereas PS-OCT136 uses reflected light
and sections after imaging, as described in OCT above. As
with SLI, setups often only provide reliable orientational
information within the 2D imaging plane (the “in-plane
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2574 SCHILLING et al.

angle”), though 3D PLI can be achieved, for example,
through the use of a tilting sample stage.135 SLI, PLI, and
PS-OCT have all been used to validate orientational infor-
mation from diffusion MRI58,92,106,125,137–139 (Figure 8).

4.3.4 Non-optical techniques

Non-optical techniques can provide benefits such as supe-
rior penetration or resolution to the optical methods
above. 3D High-resolution X-ray imaging technologies
such as X-ray nanoholotomography (XNH), hierarchical
phase-contrast tomography (HiP-CT), and small angle
X-ray scattering (SAXS)141,140 can be used to image intact
tissue samples at meso-scale resolution without section-
ing, allowing 3D descriptions of cellular morphology
and organization over considerable fields of view. The
tomographic 3D imaging method is analogous to clin-
ical CT, where the 3D volume is constructed from 2D
back-projections acquired as the tissue sample is rotated
in the x-ray beam.87 Compared with clinical CT, syn-
chrotron x-ray sources provide more intense and highly
collimated and coherent x-rays facilitating sub μm-scale
resolution ("μ-CT") specifically essential for phase-contrast
imaging. To improve contrast, the tissue block is typi-
cally first stained with heavy metals such as osmium,
though unstained phase-contrast methods available at syn-
chrotron facilities are also possible86,142- allowing large
samples, such as whole organs, to be scanned as unem-
bedded, hydrated samples, even when unstained, using
phase-contrast methods like HiP-CT.141 In small angle
X-ray scattering (SAXS) tensor tomography (TT-SAXS)143,
3D fiber orientations can be estimated from diffraction
(Bragg) peaks in the X-ray scattering pattern due to the
systematically organized myelin layers. 3D SAXS provides
a quantitative, myelin-specific signal with 3D fiber ori-
entations and multiple, crossing fiber populations per
pixel, though at more meso-scale resolutions of ∼100 μm
in-plane.125,144 As x-ray imaging is non-destructive, μ-CT
and SAXS can be combined with other contrasts such as
electron microscopy or classical histology for multi-modal
tissue investigations.87

Electron microscopy can provide nano-scale visual-
izations of heavy metal (typically osmium) stained tissue
to describe detailed cellular structures including cellular
membranes, individual synapses, myelin lamella or fea-
tures of the cytoskeleton. Tissue can either be imaged
using back-scattered EM and then sectioned, preserv-
ing 3D localization of tissue structures, or first sectioned
and then imaged and co-registered together (transmis-
sion EM), where the latter typically provides superior
in-plane resolution.145 EM samples are typically lim-
ited to small tissue blocks (∼50× 50× 50 μm), though

methods for high throughput, large FOV imaging are being
developed.146

As contrast in both μ-CT and EM is not cell-type spe-
cific, data analysis requires the post-hoc segmentation
and identification of different cells or tissue (Figure 8).
This can be challenging, though automated segmentation
methods will continue to benefit from recent advances in
machine/deep learning. EM-dMRI and μ-CT-dMRI com-
parisons include validating variation in axon diameter
across the brain,28,135-137 the degree of myelination for
g-ratio mapping,138-140 or quantifying intracellular frac-
tions.95 Further, 3D meshes from EM and μ-CT can be
used as inputs for more microstructurally realistic simula-
tions of water diffusion through tissue to investigate how
deviations from highly simplistic tissue models favored in
diffusion MRI (e.g., complex axon morphologies versus
stick-like axons) impact the diffusion signal.153–155 156Due
to limited resolution and lack of contrast from relatively
unmyelinated, low-diameter axons, μ-CT and EM can be
biased toward large diameter axons, which may confound
dMRI comparisons157.

5 PERSPECTIVES

5.1 Open science

5.1.1 Code/software

Challenges with pre-processing and processing pipelines
highlighted in the previous sections could start to be
overcome through code sharing and harmonization of
implementations. Sharing combined knowledge and expe-
rience of many groups is valuable as it generates a
lower barrier to entry and an excellent opportunity
to evaluate robustness and reproducibility. We provide
a (non-comprehensive) list of available software dedi-
cated for acquisition and processing ex vivo diffusion
MRI data at (https://github.com/Diffusion-MRI/awesome
-preclinical-diffusion-mri) where updates on available
software and tools can be shared by developers and where
users can ask questions/advice for implementation, etc.

5.1.2 Data sharing & databases

Platforms that could serve as a repository for ex vivo
dMRI datasets include OSF, OpenNeuro, Zenodo, NITRC,
or other center resources (e.g., US National High Mag-
netic Field Laboratory). To promote data sharing and
reuse, we compiled a (non-comprehensive) list of existing
freely shared small-animal or ex vivo diffusion-weighted
datasets, available on a public repository: https://github
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.com/Diffusion-MRI/awesome-preclinical-diffusion-mri

.git. As for code sharing, the repository will enable a
regular update of this database by the community.

5.2 The future: What should we strive
to achieve?

As a field, we should continually strive to achieve reduced
barriers to entry for new imaging centers, new scientists,
and new industries who aim to use dMRI in a preclini-
cal setting. Toward this end, as a community, we should
promote dissemination of knowledge, code, and datasets
to achieve high standards of data quality and analysis,
reproducibility, transparency, and foster collaborations, as
well as reduce globally the time requirements and cost of
research in this field. For easier and more direct translata-
bility, direct access to and control over diffusion sequence
timings on clinical systems would be a major benefit. A
system for more organized sharing of custom sequences
for preclinical systems would also lower the barrier for
implementation of advanced techniques.

By design, ex vivo dMRI enables a more direct com-
parison/validation with invasive or destructive techniques
such as histological stainings, chemical tracers, or electron
microscopy. This potential can be exploited to its fullest to
characterize and understand the biology behind a variety
of diseases and injuries, thus contributing immensely to
the translational value of dMRI.

Notwithstanding, for the translational circle to be com-
plete, more research is needed to bridge ex vivo with in
vivo measurements. So far, the extrapolation of ex vivo
measurements to their in vivo counterpart has been ham-
pered by open questions regarding the changes that the
tissue undergoes during fixation and how those affect
NMR-based measurements. Examples include the impact
of partial volume effects between tissue types in high
spatial resolution (ex vivo) imaging vs. moderate resolu-
tion (in vivo) imaging, changes in compartment relaxation
times and diffusivities, in membrane permeability, in rel-
ative compartment sizes, etc. Tissue fixation techniques
such as cryofixation enable electron microscopy imaging
of biological tissues where the in vivo structure was pre-
served to a greater extent that with regular chemical fixa-
tion158 — which would provide a more realistic “ground
truth” or comparative method for dMRI-derived in vivo
microstructure, and for relative compartment sizes in par-
ticular. New preparation techniques have also recently
enabled joint imaging using light microscopy (immunoflu-
orescence) and electron microscopy on cryofixed tissue,
with full hydration for light microscopy imaging159; the
exploration of MR imaging of cryofixed rehydrated sam-
ples would certainly be worthwhile. Finally, with the

advent of 3D large field of view microscopy with potential
tissue clearing methods, it may be advantageous to per-
form direct 3D to 3D registration from histology to MRI
for voxel-wise comparison and validation. However, due
to large differences in resolution, contrasts, and geomet-
ric tissue distortions, substantial work is needed to make
these comparisons feasible.

Future work related to preclinical imaging (and not
specific to ex vivo) include:

Pre-processing steps are far from being optimized and
integrated into a seamless pipeline for dMRI, so an initia-
tive in this direction, ideally for each species, would highly
benefit the community. We note this is not unique to ex
vivo dMRI, nor preclinical dMRI, as there is no consen-
sus or full understanding of the effects of different steps in
preprocessing human in vivo data.

Transparent processing pipelines should also become
the norm in the near future, though given the diversity
and complexity of possible dMRI analyses, harmonization
may be out of reach or even unjustified. We encourage new
community members to search for existing tools in our
GitHub database and expand/build on that.

New biophysical models of tissue are typically initially
tested in a preclinical imaging setting. We underline that
the development of new models should uphold high stan-
dards in terms of accuracy and precision of microstructural
features estimated and be validated using complementary
techniques such as light or electron microscopy.

Rather than debate or controversy, most of the lack of
tractography guidelines comes from a sparsity of resources
dedicated to this application in the animal models. Future
work could thus lie in creating resources that allow
whole brain tractography in various species, followed by
atlas-based labeling and bundle dissection for pathways of
interest. As for biophysical models of microstructure, trac-
tography is often validated in a preclinical setting. Thus,
another path for future efforts is to understand and quan-
tify differences between tractography and tracer, and to
relate these to situations (i.e. tissue complexities such as
crossing fibers) that may occur in the human brain.

To remain consistent with b-value units of s/mm2

typically set at the scanner console and with “common
language”, we have reported b-values in s/mm2 and dif-
fusivities in mm2/s throughout this work. However, we
would like to encourage the community to gradually adopt
units that are more suitable for dMRI of biological tis-
sue, where diffusion lengths are on the order of a few
microns and diffusion times on the order of a few mil-
liseconds. Hence, diffusivities expressed in μm2/ms and
b-values expressed in ms/μm2 are much more “natu-
ral” and enable to juggle numbers close to unity versus
thousands (e.g., b= 1 ms/μm2 vs. b= 1000 s/mm2) or dec-
imals (e.g., D= 1 μm2/ms vs. D= 10−3 mm2/s). Some of
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the recent literature on dMRI microstructure models have
adopted this new convention, and we hope it will prevail
in the near future.
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