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Abstract
Purpose  To describe the development of the AcroFace system, an AI-based system for early detection of acromegaly, based 
on facial photographs analysis.
Methods  Two types of features were explored: (1) the visual/texture of a set of 2D facial images, and (2) geometric informa-
tion obtained from a reconstructed 3D model from a single image. We optimized acromegaly detection by integrating SVM 
for geometric features and CNNs for visual features, each chosen for their strength in processing distinct data types effec-
tively. This combination enhances overall accuracy by leveraging SVM’s capability to manage structured, quantitative data 
and CNNs’ proficiency in interpreting complex image textures, thus providing a comprehensive analysis of both geometric 
alignment and textural anomalies. ResNet-50, VGG-16, MobileNet, Inception V3, DensNet121 and Xception models were 
trained with an expert endocrinologist-based score as a ground truth.
Results  ResNet-50 model as a feature extractor and Support Vector Regression (SVR) with a linear kernel showed the best 
performance (accuracy δ1 of 75% and δ3 of 89%), followed by the VGG-16 as a feature extractor and SVR with a linear ker-
nel. Geometric features yield less accurate results than visual ones. The validation cohort showed the following performance: 
precision 0.90, accuracy 0.93, F1-Score 0.92, sensitivity 0.93 and specificity 0.93.
Conclusion  AcroFace system shows a good performance to discriminate acromegaly and non-acromegaly facial traits that 
may serve for the detection of acromegaly at an early stage as a screening procedure at a population level.
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Introduction

Acromegaly is a rare, chronic disease characterized by 
changes in acral parts of the body, with the face being 
most affected by the disease [1]. These facial changes are 
very suggestive, and it accepted that the disease has been 
active for at least 10 years before diagnosis. This delay 
in diagnosis accounts for an important medical, psycho-
logical and social burden, impairs the quality of life of 
patients (QoL) and causes premature mortality [2–4]. 
Endocrine and metabolic illnesses [5], genetic syndromes 
[6], and neuromuscular diseases [7] are the most com-
mon diseases with facial manifestations. Early detection 
of acromegaly is crucial for prompt treatment and a better 
prognosis.

Artificial intelligence (AI)-driven facial recognition 
is advancing medical diagnostics, including acromegaly 
detection. Studies using facial photographs for early 
diagnosis show promise despite limitations [8–10]. Data-
bases covering all disease stages enabled semi-automated 
detection using AI methods like support vector machine 
(SVM), deep learning (DL), and morphable models. 
Learned-Miller et al. [8] achieved 85.7% accuracy in 
classifying acromegaly patients with a 3D morphable 
model.

Here we present AcroFace, an AI-based system using 
DL and support vector regression (SVR) -a variant of 
SVM- for early acromegaly diagnosis through facial 
image analysis across disease stages, incorporating gen-
der-specific features and last-generation AI techniques.

Materials and methods

This work explores two feature types: 2D visual texture 
and 3D geometric patterns from facial images. A regres-
sion model estimates acromegaly risk (0–10 scale), with 
0 for non-acromegaly and 10 for severe cases. The trained 
model obtains a score that classify images into four acro-
megaly levels: no disease (< 1.5), mild (1.5–5.0), mod-
erate (5.0–8.0), and severe (≥ 8.0). No prior AI-based 
framework combines regression ML with visual and geo-
metric facial features for acromegaly diagnosis.

Figure 1a outlines the proposed acromegaly diagno-
sis framework. A deep learning (DL) model detects faces 
from input images, applying normalization to reduce 
appearance variance [11]. The normalization method 
involves aligning facial landmarks such as the eyes and 
mouth to standard positions, adjusting for variations in 
image scale, rotation, and lighting conditions, which are 
essential for consistent facial feature extraction. To cap-
ture global facial properties, a 3D face reconstruction 

was performed via volumetric convolutional neural net-
work (CNN) regression [12] (Fig. 1b). Deep CNNs then 
extracted acromegaly-specific visual features and geo-
metric biomarkers for classification.

Dataset description

Facial images from 118 Caucasian acromegaly patients 
(66% women, mean age 42.8) were collected from Hos-
pital Germans Trias, Hôpital Bicêtre, and the Spanish 
Acromegaly Association. Ethics approval (PI19-247) 
and written consent were obtained. The dataset includes 
507 images from 118 patients, 86 healthy individuals 
(publicly sourced), and 56 with normal IGF1 levels for 
diversity.

The dataset included: (1) a training set with 84 sub-
jects with acromegaly scores (0–10) assigned by 9 endo-
crinologists, plus 86 healthy individuals; (2) a validation 
set with 14 subjects for model fine-tuning and (3) a test-
ing set with 76 subjects (56 with IGF1 measurements and 
20 acromegaly patients) for performance evaluation.

Most images were captured with a mobile phone cam-
era from printed photographs and obtained from ~ 10 
years before diagnosis and yearly within 9 years pre-
diagnosis; post-treatment pictures were obtained when 
patients were hormonally controlled or cured. The data-
set includes color, digital, and scanned images, with pre-
processing ensuring quality for neural network training. 
Images varied in angles, lighting, and background, affect-
ing face detection. Facial scores, assigned by nine endo-
crinologists, showed an intraclass correlation of ~ 88% 
across the timeframe of pictures acquisition. Scores 
obtained at three different time points (10 years before 
diagnosis, diagnosis year and after disease stabilization 
or cure) were 4.3 ± 1.5, 5.8 ± 1.7, and 6.4 ± 1.5, increas-
ing by ~ 2 points from pre-diagnosis to post-diagnosis 
(p = 0.04), with greater changes in men (6.9 ± 1.4) than 
women (5.3 ± 1.4), reaching significance at post-diagno-
sis (p = 0.034). Average and median scores were used for 
model training.

Results

Face detection

The face detection method FaceNet achieved an accuracy 
of 94%. Besides, images of low quality were excluded, 
resulting in a final subset of facial valid photos for sub-
sequent analyses. In this valid facial set, the faces were 
clear enough to perform normalization and allowing 
FaceNet to achieve accuracy of 100%.
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Acromegaly grading prediction

Regression control charts face challenges with variable 
count, linearity, and fitting techniques, which traditional 
methods struggle to resolve. To improve accuracy, SVR 
was used with different kernels: (a) Linear, (b) Polynomial 
(P2–P4), (c) Gaussian RBF, and (d) Sigmoid. For visual 
feature extraction, deep learning models—MobileNet, 
InceptionV3, Xception, DenseNet121, VGG16, and 
ResNet50—analyzed facial textures and patterns through 
convolutional, pooling, and fully connected layers. Geo-
metric features were extracted using Drira et al. model 
[13], detecting key landmarks (jaw, nose, eyes). CNNs 
then computed Euclidean distances between landmarks 
to create a geometric profile. These extracted features 
were processed by SVR with various kernels to estimate 
acromegaly scores (Fig. 1a).

Evaluation metrics

To evaluate the acromegaly detection regression model, the 
Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE) and R-squared (R2) evaluation metrics were used. 
The optimal value of RMSE and MAE is 0, while the opti-
mal value of R2 is 1.

RMSE =
√

1
n

∑ n

j=1
(yj − ŷj)2

,

MAE = 1
n

∑ n

j=1
|yj − ŷj | ,

R2 =
∑

j(yj − ŷj)2

∑
j

(
yj − y

_

)2

Fig. 1  a: The proposed system for early detection of acromegaly. Face 
Detection and Normalization for loaded images. Stage1: face detection 
to detect faces in an input photography; stage2: face normalization to 
correct a rotated face to be orthogonal on the camera space; stage3: 3D 
face reconstruction to reconstruct a 3D face from a single image of a 
patient; stage 4: features extraction based on geometric from 3D faces 
and visual features from RGB facial images using deep learning clas-

sifier; stage5: integration of features for predicting acromegaly using 
a ANFIS model to provide the final score of facial images testing. b: 
Face detection and 3D reconstruction from a patient with acromegaly. 
c: Windows 10 application offering an easy-to-use interface. Users can 
select input options, such as “Load Image,” to upload.jpg,.jpeg, or.png 
files, and obtain the acromegaly score results from the analyzed face 
in few seconds
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models (ResNet-50, VGG-16, MobileNet, Inception V3, 
DenseNet121, Xception), testing on 10 healthy cases and 
10 patients. An improvement of 25% in RMSE, MAE, 
and R² was found compared to models trained on aver-
age/median scores from 9 endocrinologists. ResNet-50 
with SVR (linear kernel) performed best, followed by 
VGG-16. Geometric features underperformed, with SVR 
(RBF kernel) yielding the best results for them.

Visual features outperformed geometric features in 
accuracy: sigmoid SVR with geometric features achieved 
δ1, δ2, δ3 accuracies of 64%, 74%, and 78% respec-
tively, thus achieving a 6% improvement, while linear 
SVR with visual features achieved δ1: 75% and δ3: 89%, 
thus implying a 5% improvement. When validation with 
a second cohort was performed (32 patients, 44 controls), 
the system achieved precision: 0.90, accuracy: 0.93, 
F1-Score: 0.92, sensitivity: 0.93, and specificity: 0.93.

Performance with a control set

To assess AcroFace’s ability to identify non-acromegaly 
cases, we tested it on a control dataset of 56 facial images 
from healthy individuals with normal IGF1 levels. The 
dataset included diverse ages, genders and facial features to 
ensure robust specificity evaluation. The test was conducted 
blindly, with consistent preprocessing (e.g., facial align-
ment, normalization) and no manual intervention. With a 
threshold of 1.5, AcroFace achieved 92.8% specificity and 
a 7.14% false positive rate (FPR) as the percentage of con-
trols misclassified as acromegaly positive. Increasing the 
threshold to 2.0 improved specificity to 100%.

Graphical user interface

A Windows 10 application was developed to integrate all 
system components, offering an easy-to-use interface. Users 
can select input options, such as “Load Image,” to upload.
jpg,.jpeg, or.png files. The system automatically detects 
and normalizes the face, displaying it with landmarks on 
the right side (Fig. 1c). After loading and detecting the face, 
users can start the analysis, choosing between SVR kernels 
or using the default, most accurate model. The application 
provides two classification options: a 4-category of acro-
megaly risk classification (No-acromegaly, mild, high, very 
high facial phenotype risk score) or a binary classification 
(acromegaly risk or not).

where n = number of samples, y_j = Ground Truth score of 
sample j,

y ̂_j = Predicted score for sample j, and _y = Average of 
Ground Truth scores.

We also calculated the classification rate of the proposed 
system. The classification accuracy is computed based on 
an error threshold, so if the difference between the ground 
truth and the predicted score is less than or equals to a spe-
cific threshold, we considered it as a success; otherwise, it 
is a failure.

System Accuracy = 1
n

∑ n

j=1
(|yj − ŷj | < δ )

where the value of |y j-y ̂_j| <δ equals 1 when the condi-
tion is met and 0 when it is false. The thresholds used 
for this test are (a) Threshold 1 (δ1): (1.25)1 = 1.25, (b) 
Threshold 2 (δ2): (1.25)2 = 1.5625 and (c) Threshold 3 
(δ3): (1.25)3 = 1.9531. The threshold values are progres-
sively increasing powers of 1.25, representing increasing 
levels of tolerance in our accuracy assessment. This step-
wise increase allows us to demonstrate the robustness of 
our algorithm under varying strictness levels of match 
criteria between predicted and actual values.

Performance comparison of the visual and 
geometric features to the average and median of 9 
endocrinologists

The detection of acromegaly using visual and geometric 
features was compared. The system’s predicted scores 
were evaluated using RMSE, MAE, and R², with the 
average and median scores from the 9 endocrinologists 
as the ground truth. Geometric features resulted in higher 
RMSE and MAE errors compared to visual features, 
achieving lower errors of 1.6915 for RMSE and 1.2642 
for MAE. The R² metric was also poor for geometric fea-
tures, indicating its inadequacy for detecting acromegaly 
risk. In contrast, visual features showed an R² close to 
1, suggesting they are effective for detecting acromeg-
aly. ResNet-50 outperformed other backbone networks. 
Visual features yielded low accuracy (best: 58% with sig-
moid kernel), while SVR with a linear kernel achieved 
the highest accuracy (δ1: 70%, δ3: 84%). Increasing the 
threshold between actual and predicted scores could fur-
ther improve accuracy.

Performance comparison of visual and geometric 
features to an expert endocrinologist

We compared our model to the expert endocrinologists 
scores, using them as ground truth for training deep 
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