Multiple Sclerosis and Related Disorders 98 (2025) 106435

i i .l Dir ~ MULTIPLE
Contents lists available at ScienceDirect JSIITELE

Multiple Sclerosis and Related Disorders

A
on

ELSEVIER journal homepage: www.elsevier.com/locate/msard
Original article ' :.)
A cross-sectional multicentre study of multishell diffusion MRI in

multiple sclerosis

Einar A. Hggestgl "% ®, Daniel A. Rinker?, Ivan Maximov ™*-°, Piotr Sowa ',

Elisabeth G. Celius ¢, Tuva R. Hope ¢, Atle Bjgrnerud &', Fuaad M. Sofia?,

Eloy Martinez de las Heras’, Elisabeth Solana’, Sara Llufriu’, Juan Francisco Corral Gamez k
Julio Alonso Farre “, Deborah Pareto “, Sara Collorone ', Elisabetta Pagani™,

Gabriel Gonzalez-Escamilla”, Sergiu Groppa ", Jaume Sastre-Garriga °, Alex Rovira ¥,

Ahmed Toosy "*?, Massimo Filippi ™%, Maria Assunta Rocca ™%, Lars T. Westlye ™",
Hanne F. Harbo “°, Mona K. Beyer ', on behalf of MAGNIMS study group’

& Department of Neurology, Oslo University Hospital, Oslo, Norway

Y Department of Psychology, University of Oslo, Oslo, Norway

¢ Institute of Clinical Medicine, University of Oslo, Oslo, Norway

4 NORMENT, Division of Mental Health and Addiction, Oslo University Hospital

¢ Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway

f Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway

8 Department of Physics, University of Oslo, Oslo, Norway

1 Unit for Computational Radiology and Artificial Intelligence, Oslo University Hospital, Oslo, Norway

! Department of Psychology, Faculty for Social Sciences, University of Oslo, Oslo, Norway

J Neuroimmunology and Multiple Sclerosis Unit and Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Institut
d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain

k Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain

! Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, London, UK

™ Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy

™ Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz, Germany

© Servei de Neurologia-Neuroinmunologia. Centre d’Esclerosis Muiltiple de Catalunya (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autonoma de Barcelona,
Barcelona, Spain

P Translational Imaging Group, Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London,
London, UK

9 Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy

' Vita-Salute San Raffaele University, Milan, Italy

® KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway

Abbreviations: ADC, apparent diffusion coefficient; BIANCA, brain intensity abnormality classification algorithm; CI, cellularity index; CIS, clinically isolated
syndrome; dMRI, diffusion MRI; EDSS, expanded disability status scale; DMTs, disease modifying treatments; DTI, diffusion tensor imaging; DWI, diffusion weighted
imaging; EPI, echo planar imaging; FA, fractional anisotropy; HC, healthy control; MAGNIMS, magnetic resonance imaging in multiple sclerosis; MD, mean diffu-
sivity; MRI, magnetic resonance imaging; MS, multiple sclerosis; NAGM, normal appearing grey matter; NAWM, normal appearing white matter; ND, neurite density;
NODDI, Neurite Orientation Dispersion and Density Imaging; pwMS, persons with multiple sclerosis; RD, radial diffusivity; rD — FA, FA for restricted diffusion
compartment; RSI, Restriction spectrum imaging; SE, spin echo; SMT, Spherical Mean Technique; SW, spatial weighting; TBSS, tract-based spatial statistics; WM,
white matter; WML, white matter lesion.

* Corresponding author.

E-mail address: einar.august@gmail.com (E.A. Hpgestgl).

! The authors are members of the MAGNIMS network (Magnetic Resonance Imaging in MS; https://www.magnims.eu/), which is a group of European clinicians
and scientists with an interest in undertaking collaborative studies using MRI methods in multiple sclerosis, independent of any other organization and is run by a
steering committee whose members are: F. Barkhof, N. de Stefano, J. Sastre-Garriga (Co-Chair), O. Ciccarelli, C. Enzinger, M. Filippi, C. Gasperini, L. Kappos, J.
Palace, H. Vrenken, A. Rovira, M.A. Rocca (Co-Chair) and T. Yousry

https://doi.org/10.1016/j.msard.2025.106435

Received 18 October 2024; Received in revised form 18 March 2025; Accepted 5 April 2025

Available online 6 April 2025

2211-0348/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0001-8446-2111
https://orcid.org/0000-0001-8446-2111
mailto:einar.august@gmail.com
https://www.magnims.eu/
www.sciencedirect.com/science/journal/22110348
https://www.elsevier.com/locate/msard
https://doi.org/10.1016/j.msard.2025.106435
https://doi.org/10.1016/j.msard.2025.106435
http://crossmark.crossref.org/dialog/?doi=10.1016/j.msard.2025.106435&domain=pdf
http://creativecommons.org/licenses/by/4.0/

E.A. Hygestpl et al.

ARTICLE INFO

Keywords:

Multiple sclerosis

MRI

Diffusion weighted imaging
Multicentre

Multiple Sclerosis and Related Disorders 98 (2025) 106435

ABSTRACT

Background and objectives: White matter (WM) microstructural properties from advanced multishell diffusion MRI
(dMRI) have been linked to clinical disability in multiple sclerosis (MS). This multicentre study used multishell
dMRI to compute WM metrics and test for differences between people with MS (pwMS) and healthy controls
(HCs).

Methods: We included multishell dMRI data from 251 pwMS or clinically isolated syndrome (CIS) (mean age 40.7
years, 72.4 % women, 88.8 % relapsing remitting MS) at six MAGNIMS centres and 543 HCs. Eleven scalar metric
maps were estimated from multishell dMRI sequences, based on diffusion tensor imaging (DTI) and restriction
spectrum imaging (RSI). The maps were analysed using tract-based spatial statistics (TBSS). The diffusion output
was submitted to paired sampled t-tests to test for case-control differences and linear regression models to test for
associations with Expanded Disability Status Scale (EDSS) scores, while accounting for confounders. In a sub-
sample from Oslo, we tested for correlations between EDSS and dMRI metrics within WM lesions.

Results: Significant group differences were found in nine out of eleven dMRI metrics. Linear regression models
revealed significant correlations between EDSS and fractional anisotropy (FA) fast (p=-4.54, p = 0.01) and
apparent diffusion coefficient (ADC) fast (=10.92, p = 8.7 x 10’3).

Conclusions: Diffusion MRI based on clinically feasible multishell sequences uncovers WM group differences
between pwMS and HCs, but only a selection of the advanced multishell parameters were sensitive to disability,

and no statistically significant correlations with disability remained after Bonferroni correction.

1. Introduction

The typical white matter (WM) lesions in multiple sclerosis (MS), are
shared with many disorders and conditions and lack sensitivity and
specificity (Geraldes et al., 2018). The “clinico-radiological paradox”,
that MRI characteristics only show modest correlation with disability,
may be partly explained by occult injury or damage to normal-appearing
white or grey matter (NAWM/NAGM), which often remains undetected
(Barkhof, 2002; Lublin et al., 2022). Conventional MRI is unable to
delineate the exact neuropathological characteristics of MS lesions
(Disanto et al., 2018). Hence, there is a need to develop novel
imaging-based biomarkers to improve sensitivity and specificity with
respect to the microstructural neuropathological processes and to
improve the sensitivity to clinical symptoms and disability (Hggestgl
et al., 2019).

By assessing the magnitude and direction of water diffusion in vivo,
diffusion MRI (dMRI) allows for visualization and quantification of brain
microstructural and physiological properties (Le Bihan, 1995). Diffusion
tensor imaging (DTI) has been studied extensively in MS (Cercignani and
Gandini Wheeler-Kingshott, 2019; Filippi et al., 2001), however, the
interpretation of DTI parameters and other imaging parameters is
challenging due to crossing fibres and large voxel constraints (Rovaris
et al., 2005). In order to model and delineate the signal contributions
from intra- versus extra-cellular water compartments, advanced bio-
physical models leverage dMRI data obtained across a range of di-
rections and b-values. The b-value is a crucial factor in generating
diffusion-weighted images as it reflects the strength and timing of the
magnetic gradients applied. Higher b-values indicate stronger diffusion
effects and thus, images acquired using a combination of lower and
higher b-values may provide greater sensitivity to tissue changes.
Advanced dMRI has technical limitations and requirements, long scan
times, and the model performance in pathological tissue is unclear
(Jelescu et al., 2020).

Several multi-compartment models have been developed, particu-
larly Neurite Orientation Dispersion and Density Imaging (NODDI)
(Zhang et al., 2012), the Bayesian approach (Reisert et al., 2017) and
Spherical Mean Technique (SMT) (Lakhani et al., 2020). Restriction
spectrum imaging (RSI) is another advanced dMRI acquisition technique
that characterizes tissue microstructure at a sub-voxel level, by
leveraging multiple b-values and directions (White et al., 2013). RSI has
been studied in various domains including histology validation, tumour
delineation, Parkinson’s disease and normal aging (White et al., 2014;
Brunsing et al., 2017; Hope et al., 2019; Beck et al., 2021). It has the
advantage of relatively short scanning time (Hagler et al., 2019). RSI has
been suggested as an alternative to NODDI in investigation of persons

with MS (pwMS) (Mustafi et al., 2019). One study employed NODDI in a
small clinical sample (n = 5) (Schneider et al., 2017). Two other studies
looked at microstructural abnormalities in cortical lesions and normal
appearing grey matter (Preziosa et al., 2022), and the contribution of
focal lesions and normal-appearing (NA) tissue microstructural abnor-
malities to cognitive impairment in MS (Preziosa et al., 2023). Another
study applied myelin water and multishell diffusion imaging to quantify
the relative damage to myelin and axons among different lesion types, in
normal-appearing tissue, and across MS clinical subtypes and healthy
controls (HCs) (Rahmanzadeh et al., 2021). One study reported a cor-
relation between disability and RSI parameters among pwMS but did not
compare patients to HCs (Sowa et al., 2019). Other studies have also
investigated diffusion MRI parameters in pwMS and found clinical cor-
relations and explored disease pathology, both cross sectional and lon-
gitudinal, and also in combination with other MRI modalities (York
et al., 2022; Yoon et al., 2022; Kato et al., 2022; Schiavi et al., 2023). In
summary, there is a focus on advanced dMRI, highlighting its potential
to explore the microstructural abnormalities in pwMS.

Our main hypothesis in this study was that applying diffusion tensor
and microstructural measures on our multicentre MRI and clinical data
may offer novel insights into MS. We hypothesize that applying ComBat
harmonization to address site-specific variability in dMRI metrics, fol-
lowed by a unified post-processing pipeline, enables us to combine data
across sites and to differentiate between pwMS and HCs. Secondly, we
aimed to assess the sensitivity to disability, measured with the Expanded
Disability Status Scale (EDSS), across the dMRI metrics.

2. Materials and methods
2.1. Study design and participants

In this cross sectional retrospective multicentre study of pwMS, we
acquired MRI and clinical data from six centres of the Magnetic Reso-
nance Imaging in MS (MAGNIMS) consortium. The centres in alpha-
betical order: Hospital Clinic, IDIBAPS, Barcelona, Spain; IRCCS San
Raffaele Scientific Institute, Milan, Italy; Oslo University Hospital, Oslo,
Norway; University Medical Center of the Johannes Gutenberg Univer-
sity, Mainz, Germany; UCL Queen Square Institute of Neurology, Lon-
don, United Kingdom; Vall d’Hebron University Hospital, Barcelona.
Spain. Inclusion criteria were a confirmed MS or CIS diagnosis according
to the 2017 McDonalds criteria (Thompson et al., 2018), age between 18
and 80 years, multishell dMRI data, and clinical and demographic in-
formation. No exclusion criteria for pwMS were added in addition to the
inclusion criteria. We included 543 HCs from four sites: 505 from Oslo,
30 from Mainz, and four each from Barcelona and Milan (Fig. 1). The
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HCs had no medical issues affecting brain structure and function or any
known neurological disorder. Exclusion criteria for the HCs are listed in
the supplementary material. The HCs and the pwMS were scanned on
the same scanner at each centre using identical parameters (Richard
et al., 2018). The project was open for participation in MAGNIMS from
January 2021 until June 2022. MRI scans were acquired between
October 2014 and September 2021.

Mean age was 40.7 years (range 19-76 years), there were 72.4 %
women, 88.8 % had relapsing-remitting MS (RRMS) and mean disease
duration was 6.4 years for pwMS. Disability status was measured with
EDSS (median 2.0, interquartile range 1.0-3.0) (Table 1).

2.2. Standard protocol approvals, registrations, and patient consents

The project was approved by the Regional Committee for Medical
and Health Research Ethics of South East Norway (REK2011-1846A and
REK2016/102). Study participants were recruited within the MAGNIMS
general framework agreement, with approvals from the regional ethical
committees at all local centres. Study participants provided signed
informed consent prior to study enrolment at the respective sites ac-
cording to the Declaration of Helsinki.

2.3. MRI acquisition, processing and data preparation

All centres performed a 3T MRI scan of the brain for all participants.
In Supplementary Table 1, details regarding the available DWI sequence
parameters are listed. MRI data from 291 pwMS were processed. A total
of 40 pwMS or CIS were removed due to MRI artifacts or missing data
(28 from IDIBAPS, eight from Oslo, two from both Mainz and London),
leaving 251 pwMS (121 from Oslo, 49 from Mainz, 38 from IDIBAPS, 16
from Milan, 15 from Barcelona and 12 from London). One HC from
Milan was removed from image processing due to MRI artifacts.

We performed quality control, mostly visual assessments, data in-
spection and detection of outliers at all stages in the data processing
pipeline. Image processing was done using an in-house pipeline in
MATLAB (Maximov et al., 2019). In brief, the pipeline includes correc-
tions for noise (Veraart et al., 2016), Gibbs ringing (Kellner et al., 2016),
susceptibility-induced and eddy current distortions and motion using
FSL function topup (topup - FsIWiki (ox.ac.uk)) and eddy (eddy - FsIWiki
(ox.ac.uk)) (Andersson and Sotiropoulos, 2016) in the case of available
opposite phase-encoding images (Jenkinson et al., 2012). Isotropic
Gaussian smoothing was carried out with the FSL function fslmaths
(Jenkinson et al., 2012) with a Gaussian kernel of 1 mm?.

A
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2.4. Imaging derived parameters from multishell diffusion

After the post-processing of the data, the pipeline included dMRI
metrics from 11 parameters from the WM. Conventional DTI parameters
acquired from b-values < 1000, included fractional anisotropy (FA),
mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD),
which were estimated using DTIFit in FSL (FDT/UserGuide - FsIWiki (ox.
ac.uk). RSI parameters (FA fast, FA slow, ADC fast, ADC slow, Cellularity
index, neurite density (ND) and rD-FA), were estimated using in-house
Matlab tools (White et al., 2014). Cellularity index is the water signal
from the spherically restricted diffusion compartment, while neurite
density reflects the relative density of neuronal processes (Hope et al.,
2019). rD-FA is FA from restricted diffusion compartment (White et al.,
2013). ADC fast is a measure of the diffusion of extracellular water,
while slow ADC is a measure of the effective diffusion coefficient of
intracellular water (Sowa et al., 2019).

The diffusion metric maps were analysed using Tract-based Spatial
Statistics (TBSS) (Smith et al., 2006). All volumes were aligned to the
FMRIS58_FA template, supplied by FSL (Smith et al., 2004), using a
non-linear transformation implemented by FNIRT (Smith et al., 2004).
Next, a mean FA image was obtained and thinned in order to create
mean FA skeleton. Afterwards, all subject’s FA values were projected
onto the mean skeleton, by filling the skeleton with FA values from the
nearest relevant tract centre. The skeleton-based analysis allows one to
minimise confounding effects due to partial voluming and any residual
misalignments originating from non-linear spatial transformations.
Additionally, the TBSS derived skeleton was used for averaging of
diffusion metrics over the skeleton. This procedure was performed for all
diffusion metrics using tbss_non_FA script from FSL (TBSS/UserGuide -
Fslwiki (ox.ac.uk)).

To account for site effects across the multi-site MRI dataset, we
applied the ComBat harmonization technique (Orlhac et al., 2022).
ComBat is a well-established method designed to remove batch effects in
high-dimensional data, such as neuroimaging, while preserving bio-
logical variability. The adjustment was performed using the ComBat
function from the sva package in R, with parametric empirical Bayes to
stabilize the estimates across sites.

2.5. Statistical analyses

For analyses and illustrations we used R (version 4.4.0) (Team,
2013), mainly adhering to common standard approaches. Diffusion MRI
metrics averaged across the WM skeleton were used in paired sample

t-tests to test for group differences among the pwMS compared with HCs.
Pearson’s correlation coefficients were estimated where appropriate. We
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Fig. 1. Age distribution of the people with MS in A) and healthy controls in B) across all the participating sites.
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Table 1

Overview of the demographic and clinical features of the complete cohort.
Centre Barcelona IDIBAPS London Mainz Milan Oslo All
N-MS 15 38 12 49 16 121 251
N - HC 4 0 0 30 4 505 543
Mean age (SD) at MRI - MS 47.5 (£6.8) 50.3 (+£10.8) 35.7 (+£8.0) 36.7 (£11.7) 41.6 (£6.2) 39.8 (+8.8) 40.7 (£10.5)
Mean age (SD) at MRI - HC 32.9 (£6.3) - - 31.3 (+£10.1) 36.5 (+4.0) 44.2 (£10.9) 43.3 (£11.3)
Female - MS 60 % 68.4 % 50 % 63.7 % 56.3 % 60.5 % 72.4 %
Female - HC 50 % - - 50 % 75 % 50.2 % 55.7 %
Median EDSS (IQR) 2.0 (1.0-2.5) 3.0 (2.0-4.0) 1.5 (0.5-2.0) 1.0 (1.0-2.5) 4.0 (2.0-6.5) 2.0 (1.5-2.5) 2.0 (1.0-3.0)
Disease duration, mean years (SD) 10.7 (£5.2) - 1.1 (£0.1) 4.9 (£5.7) 8.8 (+9.2) 6.1 (+4.6) 6.4 (+5.6)
Disease course
CIS, n ( %) - - 2(16.7) - - - 2(0.8)
RRMS, n ( %) 12 (80.0) 28 (73.7) 10 (83.3) 49 (100) 8(50.0) 116 (95.9) 223 (88.8)
SPMS, n ( %) 3(20.0) 10 (26.3) - - 8(50.0) 5(4.1) 26 (10.4)
Disease modifying treatment
No treatment, n ( %) 3(20.0) 12 (31.6) 6 (50.0) 1(2.0) 5(31.2) 41 (33.9) 68 (27.1)
Low-efficacy treatment, n ( %) 5(33.3) 11 (28.9) 6 (50.0) 32 (65.3) 4 (25.0) 41 (33.9) 99 (39.4)
Interferon, n ( %) - 2(5.3) 3(25.0) 7 (14.6) - 328 15 (6.0)
Glatiramer acetate, n ( %) 1(6.7) 2(5.3) 1(8.3) 5(10.2) - 16 (13.2) 25 (10.0)
Dimethyl fumarate, n ( %) 2(133) 1.6) 2(17.0 17 (34.8) 3(18.8) 2(1.7) 27 (10.8)
Teriflunomide, n ( %) 2(13.3) 6 (15.7) - 102.0) 1(6.3) 20 (16.5) 25 (10.0)
Daclizumab, n ( %) - - - 2 (4.0) - - 2 (0.8
High-efficacy treatment, n ( %) 7 (46.7) 15 (39.5) 0 (0.0) 16 (32.7) 7 (43.8) 39 (32.2) 84 (33.5)
Fingolimod, n ( %) 2(13.3) 50132) - 5(10.2) 3(18.8) 25 (20.7) 40 (15.9)
cladribine (Cladribine), n ( %) - - - 1020 - - 104
Alemtuzumab, n ( %) 1(6.7) 2(5.3) - 2 (4.0) 1(6.3) 10 (4.0) 16 (6.4)
Natalizumab, n ( %) 1(6.7) 2(5.3) - 5(10.2) 2 (12.6) 4 (3.3 14 (5.6)
Ocrelizumab, n ( %) 2(13.3) 2(53) - 2(4.0) 1(6.3) - 7(2.8)
Rituximab, n ( %) 1(6.7) 3(7.9 - 102.0) - - 52.0
Ofatumumab, n( %) - 10049 - - - - 1(0.4)

MS = multiple sclerosis, HC = healthy control, MRI = magnetic resonance imaging, EDSS = Expanded disability status scale, IQR = inter quartile range,
CIS = clinically isolated syndrome, RRMS = relapsing remitting multiple sclerosis, SPMS = secondary progressive multiple sclerosis.
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compared the demographic and clinical features between the sites with
either ANOVA for continuous variables or Chi-Square Test for categor-
ical variables. To assess clinical correlations we ran linear regression
models with only fixed effects, including relevant confounding factors,
such as age and sex (Bates et al., 2014). Cohen’s d was computed when
appropriate to evaluate effect size. In the linear models, we also stan-
dardized the EDSS, the dMRI metrics and age by using the built in scale
function in R using the formula: x-scaled = (x — x-mean) / x-SD, to
convert each value into a z-score. Linear model setup:

Response variable (EDSS) ~ dMRI metric + age + sex

To account for multiple comparisons, we used a Bonferroni correc-
tion, which divides the significance threshold (usually 0.05) by the
number of tests performed, thereby reducing the risk of false positives
among all significant tests. To investigate the potential interaction be-
tween age and each predictor variable, we included an interaction term
between age and the predictor variable of interest in our linear regres-
sion model.

3. Results
3.1. Case-control differences

We found significant differences between pwMS and HC for most
metrics for all sites, except for Cellularity and ADC fast. Fig. 2 and
Table 2 summarize the case-control differences in all AMRI metrics. The
general diffusion parameters of FA (Cohen’s d = 1.16) and RD (Cohen’s
d=-1.03) exhibited the highest effect sizes in dMRI metrics between
pwMS and HC. The age trajectories for all the diffusion parameters are
shown in Fig. 2 and Supplementary Figure 1, showing some outliers and
for some diffusion parameters (FA fast and ADC fast) large scanner and

Multiple Sclerosis and Related Disorders 98 (2025) 106435

site dependent differences also seen in Supplementary Table 2.

When the analyses were repeated within the Oslo cohort (Supple-
mentary Table 3), the effect sizes were generally larger, especially for FA
(Cohen’s d = 2.03) and RD (Cohen’s d=—1.91). The Oslo cohort had
more robust and pronounced differences, particularly in FA and RD.
Despite this, the overall patterns of diffusion abnormalities in pwMS
relative to HCs remain consistent across both the entire cohort and the
Oslo subgroup (Supplementary Figure 2).

3.2. Clinical correlations with the dMRI features

Linear regression models revealed significant associations between
EDSS and FA fast (B=—4.54, p = 0.01) and ADC fast (p=10.92,p = 8.7 x
1073). Lower FA fast and increased ADC fast levels were associated with
higher disability. None of the dMRI features remained significant after
adjustment for multiple comparisons. Table 3 summarizes the results
from linear regression models testing for associations between EDSS and
the dMRI metrics, accounting for age, sex. We also explored the clinical
correlations with disease course added as a fixed effect in Supplemen-
tary Table 4.

4. Discussion

In this cross-sectional study of pwMS collected at six MAGNIMS
centres, we have analysed 11 dMRI parameters from multishell diffusion
of the brain compared to HCs. Our main findings are significant differ-
ences in the WM between pwMS and HC for most dMRI metrics, except
for cellularity and fast ADC. Our case-control findings indicate that
while multi-site data offers broader generalizability, site-related varia-
tions can moderate the magnitude of observed effects. Repeating the
analysis within the Oslo cohort showed that the observed trends are not

Table 2
ComBat adjusted dMRI metrics across multiple sclerosis subjects and healthy controls.
Multiple sclerosis Healthy controls t P Cohen’s d

FA, mean (SD) 0.47 (40.04) 0.51 (£0.02) 13.0 1.6 x 10731 1.16
MD, mean 10~ >mm?/s (SD) 0.77 (+0.06) 0.73 (+0.03) -9.3 2.7 x 10718 -0.92
AD, mean 10~>mm?/s (SD) 1.21 (£0.03) 1.21 (+£0.03) -21 0.03 -0.17
RD, mean 10~ >mm?/s (SD) 0.57 (40.07) 0.51 (+0.03) -10.5 6.0 x 10722 -1.03
Cellularity, mean (SD) 0.27 (40.08) 0.28 (+0.03) 1.1 0.28 0.11
ND, mean (SD) 6.16 (+2.17) 5.64 (+0.55) -3.8 2.2 x 107 —0.40
D - FA, mean (SD) 0.15 (40.01) 0.16 (+0.01) 4.1 5.2 x 107° 0.32
FA fast, mean (SD) 0.41 (40.05) 0.40 (+0.02) -22 0.03 -0.21
FA slow, mean (SD) 0.14 (0 + 0.01) 0.14 (0 £ 0.01) 2.1 0.04 0.16
ADC fast, mean (SD) 0.13 (+£0.02) 0.13 (+0.01) 1.3 0.2 0.12
ADC slow, mean (SD) 0.05 (+0.0) 0.05 (0.0) 7.5 42 x 10718 —0.65

FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, ND = neurite density, ADC = apparent diffusion coefficient rD - FA=

FA for restricted diffusion compartment. Significant differences in bold.

Table 3

Linear regression models showing correlation between EDSS and the ComBat-adjusted dMRI metrics in people with MS.

Linear regression model: EDSS with DWI feature, age and sex

Estimates CI t P p adjusted
FA -2.17 —6.92 - 2.58 —-0.90 0.37 1.0
MD -1.07 —4.04 -1.89 -0.71 0.48 1.0
AD 1.27 —4.39 - 6.92 0.44 0.66 1.0
RD -0.73 —3.21-1.74 —0.58 0.56 1.0
Cellularity 1.39 —0.97 - 3.74 1.16 0.25 1.0
ND 0.06 —-0.03-0.14 1.29 0.20 1.0
D - FA 1.07 —14.65-16.79 0.13 0.89 1.0
FA fast —4.54 —8.01 - —1.07 —2.58 0.01 0.11
FA slow -8.73 —21.4 0- 3.94 -1.36 0.18 1.0
ADC fast 10.92 2.78 - 19.06 2.64 8.7 x 1073 0.10
ADC slow 40.98 —25.71 - 107.68 1.21 0.23 1.0

FA = fractional anisotropy, MD = mean diffusivity, AD = axial diffusivity, RD = radial diffusivity, ND = neurite density, ADC = apparent diffusion coefficient, rD - FA=

FA for restricted diffusion compartment. Significant associations in bold.
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driven by site-specific confounds, but the effect sizes are amplified when
analyzed in a more homogeneous setting. This suggests that scanner and
site variability, present in the cohort, may attenuate some of the
observed group differences when multiple centers are combined.

Analyses revealed significant associations between EDSS and FA fast
and ADC fast in the whole sample, where lower FA fast and increased
ADC fast were associated with higher disability. The largest effect sizes
for parameters showing significant differences between HC and pwMS
were observed in the main diffusion metrics. However, it is important to
note that only the advanced multishell diffusion parameters demon-
strated significant clinical correlations with EDSS, both in the full cohort
and in the Oslo cohort.

Subtle damage outside of visible lesions, in the NAWM, is also
prevalent in pwMS (Cercignani and Gandini Wheeler-Kingshott, 2019).
Our main finding of significant differences in the WM between pwMS
and HGCs is therefore not surprising. These findings also agree with
previous ex-vivo spinal-cord MS studies (Grussu et al., 2015) and pre-
vious studies of brain DTI in MS (Mustafi et al., 2019; Kolasa et al.,
2019). Our analysis revealed group differences in metrics assumed to be
sensitive to damage to both myelin (e.g. FA, MD, RD, AD) and axons (e.g.
rD-FA, ADC), but no difference between cellularity and ADC fast
parameters.

Studies have investigated the relation between disability and DTI/
dMRI metrics for over two decades (Filippi et al., 2001; Liu et al., 2012;
Bergsland et al., 2015; Rimkus Cde et al., 2013; Bezukladova et al.,
2020; Tovar-Moll et al., 2009). One study showed association between
baseline mean diffusivity values and EDSS at follow-up 4 years later.
Brain FA in WM tracts explained 18 % of the variance in future EDSS
values (Lopez-Soley et al., 2023). Another study found associations be-
tween DTI indices in the corpus callosum and EDSS progression (Kolasa
et al., 2019). We also found associations between disability and FA fast
and ADC fast. These associations may be used for follow-up and pre-
diction of disease progression in the future, however different method-
ology e.g. measuring changes in all WM versus specific areas of the WM
and using different diffusion techniques is challenging. Future studies
should use both longitudinal as well as cross sectional design and
include both regional and global dMRI metrics both in GM and WM
structures.

The main limitation of this study is the collection of patient samples
using non-identical MRI protocols. However, multicentre studies are
useful to increase statistical power, although they often increase het-
erogeneity. Multicentre studies require statistically complex analyses
due to site-specific effects and methodological differences (Zhou et al.,
2018). These factors can be even more challenging in advanced dMRI
research, since added layers of complexity are introduced by differences
in the implementation of MRI sequences, diffusion gradient configura-
tions and processing pipelines. We applied harmonized analytical
pipelines, both in the imaging analyses and the statistical methods, and
we could not identify differences in acquisition parameters that could
explain the difference in the resulting data (Maximov et al., 2019).
However, an unexpected finding like the lack of difference in cellularity
between pwMS and HC, may be related to methodologic factors related
to the use of standard dMRI sequences instead of the RSI acquisitions
(Pinto et al., 2020). Common statistical and post-processing pipelines
are needed to be able to adapt to many different diffusion acquisitions
and reduce variability by the abovementioned acquisition variability.

A limitation of this study is the lack of differentiation between the
NAWM and WML, since the study’s original design did not include
FLAIR sequence or lesion masks, and it was not feasible to expand this
analysis at a later stage for the whole sample. Future studies of advanced
diffusion in NAGM could help elucidate progression of the disease in
different forms (i.e. relapsing versus progressive and smouldering MS)
(Eshaghi et al., 2018). Furthermore, relying solely on EDSS to measure
disability does not capture the full spectrum of MS-related disability.
Future studies should also aim to include assessments of cognition, fa-
tigue, and patient-reported outcomes to provide a more comprehensive

Multiple Sclerosis and Related Disorders 98 (2025) 106435

evaluation (Giovannoni et al., 2016). A precise characterization of le-
sions, including lesion types and locations, could yield more findings in
future studies. Lastly, the variable number of subjects and controls
included at each site may also be a limitation of this study.

5. Conclusions

This study provides insight into microstructural changes both in WM
in the brain of pwMS. This adds important information to the growing
body of literature of the utility of advanced dMRI in pwMS. Our findings
suggest that a majority of multishell diffusion parameters in the WM of
the brain significantly differ between pwMS and HCs. Correlations be-
tween disability and the imaging parameters were found, but after
correcting for multiple testing with Bonferroni correction no significant
correlations with disability remained. Restricting the analyses to one
clinical cohort, increased the correlations for some diffusion parameters.
More studies using similar or improved pipelines for acquisition, post-
processing and extraction of dMRI metrics are needed.
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