ELSEVIER

Contents lists available at ScienceDirect

European Journal of Cancer

journal homepage: www.ejcancer.com

Original research

Assisted reproductive technology in young *BRCA* carriers with a pregnancy after breast cancer: An international cohort study

Isotta Martha Magaton a,b, Eva Blondeaux b, Anne-Sophie Hamy d, Sabine Linn, Rinat Bernstein-Molho b, Fedro A. Peccatori b, Alberta Ferrari b, Estela Carrasco k, Shani Paluch-Shimon b, Elisa Agostinetto b, Marta Venturelli m, Ines Maria Vaz Luis n, Kenny A. Rodriguez-Wallberg, Hee Jeong Kim b, Kimia Sorouri d,r, Tiphaine Renaud k, Halle C.F. Moore b, Wanda Cui b, Jyoti Bajpa k, Christine Rousset-Jablonski b, Laura De Marchis k, Rinat Yerushalmi a, Stephanie M. Wong b, Sileny Han b, Kelly-Anne Phillips b, Katarzyna Pogoda b, Fabio Puglisi b, Alessandra Chirco b, Francois P. Duhoux b, Icro Meattini b, Cynthia Villarreal-Garza b, Claudio Vernieri b, Marco Bruzzone b, Icro Meattini b, Hatem A. Azim Jr, Ann H. Partridge d, Matteo Lambertini b, App, b

- ^a Medical Oncology Department, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- ^b University Women`s Hospital, Inselspital, Bern, Switzerland
- ^c U.O. Epidemiologia Clinica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- ^d Department of Medical Oncology, Université Paris Cité, Institut Curie, Paris, France
- e Department of Molecular Pathology, Netherlands Cancer Institute (NKI), Amsterdam, the Netherlands and Deptment of Pathology, University Medical Center Utrecht, Utrecht. The Netherlands
- susanne Levy Gertner Oncogenetics Unit, Danek Gertner Institute of Human Genetics, Chaim Sheba Medical Centre affiliated to Tel Aviv University, Tel Hashomer, Israel
- g Gynaecology Oncology Program, European Institute of Oncology (IRCCS), Milan, Italy
- h Hereditary Breast and Ovarian Cancer (HBOC) Unit and General Surgery 3 Senology, Surgical Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy & University of Pavia, Italy
- i Hereditary Cancer Genetics Unit, Medical oncology Department, Vall dHebron University Hospital, Vall dHebron Institute of Oncology (VHIO), Barcelona, Spain
- ^j Faculty of Medicine, Hebrew University, Jerusalem, Israel
- ^k Breast Oncology Unit, Sharett Institute of Oncology, Hadassah University Hospital, Hebrew University, Jerusalem, Israel
- ¹ Academic Trials Promoting Team, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
- ^m Department of Oncology and Haematology, Azienda Ospedaliero-Universitaria di Modena, Italy
- ⁿ Cancer survivorship program Molecular Predictors and New Targets in Oncology, INSERM Unit 981, Gustave Roussy, Villejuif, France
- o Department of Oncology/Pathology, Karolinska Institute and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- P Division of Breast Surgery, Department of Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, South Korea
- ^q Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- r Department of Gynaecology Obstetrics & Gynaecology, University of Alberta, Edmonton, AB, Canada
- s Cancer Genetics Unit, Bergonie Institute, Bordeaux, France
- ^t Department of Haematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland OH, USA
- u Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- v Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- w Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
- x Department of Surgery, Leon Berard Cancer Centre; Hôpital Femme Mère Enfant; and INSERM U 1290 RESHAPE, Lyon, France
- y Division of Medical Oncology, Department of Radiological, Oncological and Pathological Sciences, "La Sapienza" University of Rome, Rome, Italy
- ² Medical Oncology Department of Hematology, Oncology and Dermatology, Umberto I University Hospital, Rome, Italy
- ^{aa} Davidoff Centre, Rabin Medical Centre, Petah Tikva, Tel-Aviv University, Tel-Aviv, Israel
- ^{ab} Stroll Cancer Prevention Centre, Jewish General Hospital, and McGill University Medical School, Montreal, Canada
- ^{ac} Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
- ad Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- ae Department of Breast Cancer and Reconstructive Surgery, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, Warsaw, Poland
- af Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy

E-mail address: matteo.lambertini@unige.it (M. Lambertini).

https://doi.org/10.1016/j.ejca.2025.115434

Received 10 March 2025; Accepted 11 April 2025

Available online 14 April 2025

^{*} Correspondence to: Department of Medical Oncology, U.O. Clinica di Oncologia Medica, University of Genova IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova 16132, Italy.

- ^{ag} SC Oncologia- ASST Papa Giovanni XXIII, Bergamo, Italy
- ah Department of Medical Oncology, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique (Pôle MIRO), UCLouvain. Brussels. Belgium
- ai Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy & Breast Unit and Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
- ^{aj} Tecnologico de Monterrey, Breast Cancer Center, Hospital Zambrano Hellion, TecSalud, Monterrey, Mexico
- ^{ak} Medical Oncology Department, Breast Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- ^{al} Oncology and Haematology-Oncology Department, University of Milan, Milan, Italy
- ^{am} Department of Obstetrics and Gynaecology, Fertility Clinic HUB Erasme (U.L.B), Brussels, Belgium
- ^{an} Research Laboratory on Human Reproduction, Université Libre de Bruxelles (U.L.B), Brussels, Belgium
- ao Cairo Cure Oncology Centre, Cairo, Egypt
- ^{ap} Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genova, Genoa, Italy

ARTICLE INFO

Keywords:

Assisted reproductive technology (ART) Breast cancer Germline BRCA1/2 pathogenic variants Oncofertility Pregnancy

ABSTRACT

Introduction: Very limited data exist on assisted reproductive technology (ART) use in BRCA1/2 carriers conceiving after breast cancer. This study aimed to investigate the safety of ART to achieve a pregnancy after breast cancer in BRCA1/2 carriers.

Methods: This is an international, hospital-based, retrospective cohort study including *BRCA*1/2 carriers with a pregnancy after prior breast cancer diagnosis at \leq 40 years of age between 2000 and 2020. Outcomes were compared between young *BRCA*1/2 carriers who conceived using ART and those who conceived spontaneously. *Results:* Among 543 *BRCA*1/2 carriers with a pregnancy after breast cancer, 436 conceived spontaneously and 107 using ART. Of 107 pregnancies achieved with ART, 45 (42.1 %) were obtained using oocytes/embryo cryopreserved at diagnosis, 33 (30.8 %) after controlled ovarian stimulation for in-vitro-fertilization/intracytoplasmic sperm injection or ovulation induction for intrauterine insemination or planned intercourse after anticancer treatments, 21 (19.6 %) after oocyte donation, while for 8 (7.5 %) patients type of ART was missing. Compared to patients in the no-ART group, those in the ART group were older at the time of conception, had more frequently hormone receptor-positive breast cancer and a longer median time from cancer diagnosis to conception. At a median follow-up of 5.2 years after conception, no apparent detrimental effect of ART on disease-free survival was observed (adjusted HR=0.72, 95 % CI 0.39–1.34).

Conclusion: In young BRCA1/2 carriers with a pregnancy after breast cancer, ART use did not appear to be associated with increased risk of DFS events.

1. Introduction

Fertility preservation, especially controlled ovarian stimulation (COS) for oocyte/embryo cryopreservation prior to chemotherapy, is standard of care for young women affected by breast cancer [1–3]. Pregnancy after appropriate treatment and follow-up of breast cancer does not appear to affect prognosis [4], including in women with hormone receptor-positive disease [5] and in those harbouring germline *BRCA1/2* pathogenic or likely pathogenic variants (PVs) [6–8].

Over the past years, increasing evidence has shown the safety of assisted reproductive technology (ART) performed before or after anticancer treatments in patients with a history of breast cancer [9–13]. The results of a meta-analysis including 15 studies, of which four looked at safety of ART after anticancer treatments, were reassuring [12]. However, the evidence on the use and safety of ART in patients with breast cancer harbouring germline *BRCA1/2* PVs is very limited [11,14,15]. Addressing the safety of ART is critical for all young patients who are unable to conceive spontaneously after treatment for breast cancer and that may need to rely on ART to achieve a pregnancy [4,11,16–18].

Preclinical data suggest that the presence of *BRCA1/2* PVs may adversely affect fertility through the accumulation of deoxyribonucleic acid (DNA) damage secondary to inadequate DNA repair, resulting in cell apoptosis and accelerated ovarian aging [19–21]. Furthermore, due to the primary function of *BRCA* tumour suppressor genes, it has been hypothesized that the negative impact of gonadotoxic therapies on the ovarian reserve of *BRCA1/2* carriers could be more severe, thus resulting in an increased risk of gonadotoxicity and subsequent infertility [21,22]. However, results of clinical studies on the potential risk of reduced ovarian reserve at diagnosis or after treatment and/or ovarian response to COS in *BRCA1/2* carriers are controversial and no definitive conclusions can be currently made [23].

For these reasons, and taking into account that many concerns remain among physicians in this regard [24], it is of paramount importance to investigate if the need for ART use in *BRCA1/2* carriers may negatively impact on their cancer prognosis. In our previous work including 1252 *BRCA1/2* carriers, out of 168 women with a pregnancy after breast cancer, 22 were achieved through ART [14]. The number of included patients in the ART group was too small to allow any statistical comparison with the no-ART group. Here, we present an update of the previous study with a larger cohort of young *BRCA1/2* carriers with breast cancer. The aim of this analysis was to investigate the safety of ART use in young *BRCA1/2* carriers who had a pregnancy after breast cancer.

2. Materials and methods

This was a retrospective, international, multicentre cohort study including women diagnosed at age ≤ 40 years with invasive breast cancer between January 2000 and December 2020 carrying known germline PVs in BRCA1 and/or BRCA2 genes (ClinicalTrials.gov ID NCT03673306) [8]. For the present analysis, only patients who became pregnant after breast cancer were included. Patients who experienced a disease-free survival (DFS) event before becoming pregnant as well as those without data on method of conception (spontaneous or using ART) were excluded.

Young *BRCA1/2* carriers with a pregnancy were stratified into two groups: women who conceived using ART (ART group) and those who conceived spontaneously (no-ART group). ART treatments included COS to cryopreserve oocytes/embryos at breast cancer diagnosis (fertility preservation strategy), COS for *in-vitro* fertilization (IVF) or intracytoplasmic sperm injection (ICSI) or ovulation induction for intrauterine insemination or planned intercourse after anticancer treatments, and oocyte donation.

The analysis aimed to evaluate the safety of ART in young BRCA1/2 carriers with a pregnancy after breast cancer. The following survival endpoints were considered: DFS, breast cancer specific survival (BCSS)

and overall survival (OS). We also assessed the obstetric and fetal outcomes of the pregnancies. Survival endpoints were defined as previously reported [8].

The coordinator and sponsor of the study was the Institut Jules Bordet (Brussels, Belgium) which also acted as the central ethics committee. Where required, the study also received ethical approval from the local, regional, or national ethics committee of the participating centres.

The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement was followed to report this work [25].

2.1. Statistical analyses

Numbers and percentages were used for categorical variables, while median and interquartile range were used for continuous variables. The baseline patient and oncological characteristics between the ART and no-ART groups were compared using Fisher's exact test for categorical variables and the Wilcoxon test for continuous variables.

All survival endpoints were calculated from the time of conception. Event rates for DFS, BCSS and OS were calculated as the ratio of the total number of events to the total of the observation times. Kaplan-Meier curves were used to present results for the ART and no-ART groups. Cox proportional hazard models were applied to calculate unadjusted and adjusted hazard ratios (HRs) with 95 % confidence intervals (CIs). Adjustments in survival models were performed for risk-reducing mastectomy and risk-reducing salpingo-oophorectomy (as time-dependent covariate) and for propensity score. The propensity score was calculated using logistic regression to estimate the propensity to use ART, taking into account the variables differently distributed in the two groups (ie age and parity at diagnosis, year of diagnosis, region, specific *BRCA* gene, tumor grade and hormone receptor status).

In a secondary analysis, the ART group was divided into three groups

according to the type of ART procedure that was performed: 1) COS at diagnosis (ART at diagnosis); 2) COS or ovulation induction after anticancer treatments (ART after anticancer treatments); 3) oocyte donation. DFS, BCSS and OS events of each ART groups were separately assessed and compared with those of patients who had a spontaneous conception.

A 2-sided p value < 0.05 was defined as statistically significant. Analyses were performed using Stata, software version 16.1 (StataCorp LLC, College Station, TX, USA).

3. Results

Of the 4732 young *BRCA1/2* carriers included from 78 centres worldwide, 659 women had a pregnancy after breast cancer (Figure 1). Among them, 543 were eligible for this specific analysis of whom 107 underwent ART treatments to achieve a pregnancy (ART group) and 436 became pregnant spontaneously (no-ART group). The most commonly used ART technique to achieve a pregnancy was COS for oocyte/embryo cryopreservation at diagnosis (45, 45.5 %), followed by COS or ovulation induction after anticancer treatments (33, 33.3 %), and oocyte donation (21, 21.2 %). For eight pregnancies, the type of ART was missing.

As reported in Table 1, compared to BRCA1/2 carriers in the no-ART group, those in the ART group were older (median age: 32 vs. 30 years, p < 0.001) and more likely to be childless (71.8 % vs. 51.5 %, p < 0.001) at cancer diagnosis. The majority of patients in both groups had node negative disease (61.6 % and 66.3 %). Patients in the ART group were more likely to have hormone receptor-positive (43.4 % vs. 30.8 %, p = 0.016) or HER2-positive (9.5 % vs. 4.1 %, respectively, p = 0.044) disease than those in the no-ART group. Most of the patients in both ART and no-ART groups received chemotherapy (93.5 % and 92.9 %, respectively, p = 1.0). During follow-up and after pregnancy,

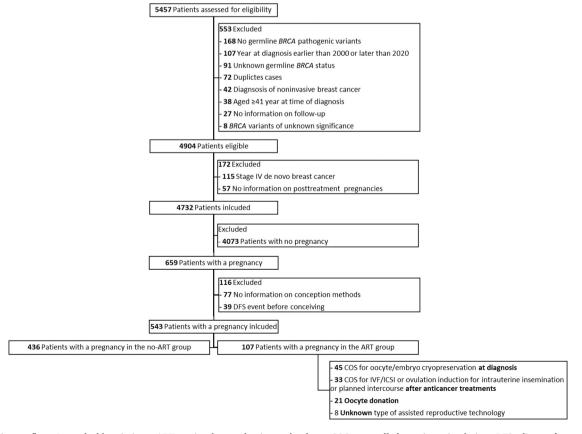


Fig. 1. Participants flow. Legend abbreviations: ART, assisted reproductive technology; COS, controlled ovarian stimulation; DFS, disease-free survival; ICSI, intracytoplasmic sperm injection; IVF, in-vitro-fertilization.

 Table 1

 Baseline patient, tumor and treatment characteristics.

	$\begin{array}{l} \text{ART group} \\ \text{n} = 107 \end{array}$	No-ART group n = 436	P- value
Median age at diagnosis, y (IQR)	32 (29–35)	30 (28–33)	< 0.001
Parity at diagnosis, n (%)	n=103	n = 408	< 0.001
-0	74 (71.8)	210 (51.5)	
-≥1	29 (28.2)	198 (48.5)	
-Missing, n	4	28	
Region of diagnosis, n (%)	n = 107	n = 436	0.494
-North America	11 (10.3)	34 (7.8)	
-South-Central America -Asia	2 (1.9) 24 (22.4)	7 (1.6) 71 (16.3)	
-Oceania	2 (1.9)	18 (4.1)	
-Northern Europe	20 (18.7)	73 (16.7)	
-Southern Europe	44 (41.1)	216 (49.5)	
-Eastern Europe	4 (3.7)	17 (3.9)	
Year at diagnosis, n (%)	n = 107	n = 436	0.006
-2000–2005	10 (9.3)	83 (19.0)	
-2006–2010	24 (22.4)	135 (31.0)	
-2011–2015	47 (43.9)	136 (31.2)	
-2016–2020	26 (24.3)	82 (18.8)	
Type of BRCA gene, n (%)	n = 107	n = 434	0.413
-BRCA1	76 (71.0)	325 (74.9)	
-BRCA2	30 (28.0)	107 (24.6)	
-BRCA1/2	1 (0.9)	2 (0.5)	
-Unknown if BRCA1 or BRCA2, n	0	2	
Tumor histology, n (%)	n = 106	n = 419	0.429
-Ductal carcinoma	94 (88.7)	375 (89.5)	
-Lobular carcinoma	3 (2.8)	3 (0.7)	
-Mixed ductal/lobular	1 (0.9)	4 (0.9)	
-Invasive, not specified	3 (2.8)	17 (4.1)	
-Other	5 (4.7)	20 (4.8)	
-Missing, n	1	17	0.212
Tumor grade (G), ^a n (%) -G1	n = 99	n = 402	0.213
-G2	1 (1.0) 26 (26.3)	7 (1.7) 75 (18.7)	
-G3	72 (72.7)	320 (79.6)	
-Missing, n	8	34	
Tumor size (T), ^b n (%)	n = 104	n = 419	0.104
-T1 (≤2 cm)	55 (52.9)	177 (42.2)	
-T2 (>2 to ≤5 cm)	36 (34.6)	191 (45.6)	
-T3 (>5 cm) to T4	13 (12.5)	51 (12.2)	
-Missing, n	3	17	
Tumor nodal status (N), n (%)	n = 104	n = 424	0.635
-N0	69 (66.3)	261 (61.6)	
-N1	26 (25.0)	126 (29.7)	
-N2 to N3	9 (8.6)	37 (8.7)	
-Missing, n	3	12	
Hormone receptor status, n (%)	n = 106	n = 428	0.016
-ER and PR negative	60 (56.6)	296 (69.2)	
-ER and/or PR positive	46 (43.4)	132 (30.8)	
-Missing, n	1	8	
Tumor HER2 status, n (%)	n = 105	n = 416	0.044
-HER2 negative	95 (90.5)	399 (95.9)	
-HER2 positive	10 (9.5)	17 (4.1)	
-Missing, n	n = 104	20 n = 430	0.250
Therapy, surgery, n (%) -BCS	n = 104 50 (48.1)	11 = 430 206 (47.9)	0.259
-Mastectomy	50 (48.1)	224 (52.1)	
-None	1 (1.0)	0 (0.0)	
-Missing, n	3	6	
Therapy, chemotherapy, n (%)	n = 107	n = 436	1.000
-Yes	100 (93.5)	405 (92.9)	1.000
-No	7 (6.5)	31 (7.1)	
Chemotherapy, type, n (%)	n = 99	n = 395	0.118
-Anthracycline- + taxane-based	79 (79.8)	271 (68.6)	
-Anthracycline-based	14 (14.1)	98 (24.8)	
-Taxane-based	3 (3.0)	11 (2.8)	
-Other	3 (3.0)	15 (3.8)	
-Missing, n	1	10	
		n = 132	0.755
Therapy, endocrine therapy, n	n = 45		0., 00
<u>.</u>	n = 45	1102	01, 00
Therapy, endocrine therapy, n	n = 45 41 (91.1)	122 (92.4)	0.700
Therapy, endocrine therapy, n (%)			01700

Table 1 (continued)

	$\begin{array}{l} ART \ group \\ n = 107 \end{array}$	No-ART group n = 436	P- value
Type of endocrine therapy, d n	n = 40	n = 122	0.713
(%)			
-Tamoxifen + GnRHa	16 (40.0)	53 (43.4)	
-Tamoxifen	11 (27.5)	38 (31.1)	
-Tamoxifen and AI \pm GnRHa	6 (15.0)	9 (7.4)	
-AI \pm GnRHa	5 (12.5)	16 (13.1)	
-GnRHa	2 (5.0)	4 (3.3)	
-Other	0 (0.0)	2 (1.6)	
-Missing, n	1	0	
Median duration of endocrine	48 (24-60)	49 (24-60)	0.434
therapy, months (IQR)			
-Missing	5	29	

Abbreviation: AI, aromatase inhibitor; ART, assisted reproductive technology; BCS, breast conserving surgery; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; IQR, interquartile range; GnRHa, gonadotropin-releasing hormone agonist; PR, progesteron receptor; y, years.

- ^a Histologic grade was based on the degree of tumor histologic differentiation.
- ^b Tumor size and nodal status were assessed clinically for patients who received neoadjuvant systemic therapy and pathologically for those who received breast surgery as first treatment.
- $^{\rm c}\,$ Percentages were calculated including only patients with hormone receptor-positive breast cancer.
- ^d Percentages were calculated including only patients with hormone receptorpositive breast cancer who received adjuvant endocrine therapy.

226 (41.6 %) patients underwent risk-reducing salpingo-oophorectomy, 56 (52.3 %) in the ART group and 170 (39.1 %) in the no-ART group. Risk reducing mastectomy was performed in 78 (72.9 %) and 268 (61.5 %) patients in the ART and no-ART groups, respectively.

3.1. Reproductive outcomes

Reproductive outcomes in the ART group and no-ART groups are reported in Table 2. As compared to patients in the no-ART group, those in the ART group were older at the time of conception (median age: 37.1 vs. 34.3 years, p<0.001) and had a longer median time between cancer diagnosis and conception (4.2 vs. 3.3 years, p=0.004). No statistically significant differences in pregnancy complications were observed between the ART and no-ART groups (p = 0.220). Overall, 81.6 % of patients in the ART group and 87.0 % of those in the no-ART group did not report complications. Patients in the ART group had numerically more miscarriages (11.3 % vs. 8.8 %) and fewer induced abortions (0.9 % vs. 8.3 %) than those in the no-ART group.

3.2. Oncological outcomes

As the type of ART was unknown for 8 pregnancies, they were excluded from survival analyses, leaving 99 evaluable patients in the ART group. At a median follow-up from conception of 5.2 years (IQR 2.2–9.2 years), 13 (3.45 per 100 person-years) and 118 (5.35 per 100 person-years) DFS events were observed in the ART and no-ART groups, respectively. The type of DFS, BCSS and OS events per 100 person-years in both groups are listed in Supplementary Table S1.

Compared to *BRCA1/2* carriers in the no-ART group, no apparent detrimental effect on DFS was observed in patients in the ART group (unadjusted HR=0.71, 95 % CI 0.41–1.21, p=0.206; adjusted HR=0.72, 95 % CI 0.39–1.34, p=0.305) (Figure 2).

In the secondary analysis according to type of ART procedure used to achieve a pregnancy (Supplementary Table S2), patients who conceived using oocyte donation were the oldest at diagnosis (median age 34 years) and at conception (median age 39.5 years) compared with those who conceived with oocyte/embryo cryopreserved at diagnosis (32 and 35.9 years, respectively) and those who underwent COS or ovulation induction after anticancer treatments (31 and 36.2 years, respectively). There were no differences among the three ART groups regarding

Table 2Reproductive outcomes following breast cancer treatments.

	ART group n = 107	No-ART group n = 436	P- value
Median age at conception, y (IQR)	37.1 (34.1–39.5)	34.3 (31.4–36.5)	< 0.001
Median time from breast cancer	4.2 (2.9-6.1)	3.3 (2.0–4.9)	0.004
diagnosis to conception, y (IQR)			
Pregnancy outcome, n (%)	n = 106	n = 431	0.015
-Live births	88 (83.0)	344 (79.8)	
-Ongoing pregnancies	5 (4.7)	13 (3.0)	
-Miscarriages	12 (11.3)	38 (8.8)	
-Induced abortions	1 (0.9)	36 (8.3)	
-Missing, n	1	5	
Timing of delivery, e n (%)	n = 76	n = 305	0.130
-At term (≥37 weeks)	65 (85.5)	279 (91.5)	
-Preterm (<37 weeks)	11 (14.5)	26 (8.5)	
-Missing, n	12	39	
Complications, ^e n (%)	n = 76	n = 292	0.220
-None	62 (81.6)	254 (87.0)	
-Pregnancy complications	9 (11.8)	16 (5.5)	
-Delivery complications	3 (4.0)	16 (5.5)	
-Fetal complications	1 (1.3)	2 (0.7)	
-Congenital abnormalities	0 (0.0)	3 (1.0)	
-Other complications	1(1.3)	1 (0.3)	
-Missing, n	12	52	
Breast feeding,e n (%)	n = 75	n = 278	0.165
-No	56 (74.7)	182 (65.5)	
-Yes	19 (25.3)	96 (34.5)	
-Missing, n	13	66	
-Median duration, months (IQR)	5 (1-9)	4 (2-6)	
Type of ART, n (%)	n = 99	N/A	N/A
-COS for oocyte/embryo	45 (45.5)		
cryopreservation at diagnosis			
-COS for IVF/ICSI or ovulation	33 (33.3)		
induction for intrauterine			
insemination or planned intercourse			
after anticancer treatmentsf			
-Oocyte donation	21 (21.2)		
-Unknown type of ART	8		

Abbreviations: ART, assisted reproductive technology; COS; controlled ovarian stimulation; IQR, interquartile range; IVF, *In-vitro-fertilisation*; ICSI, intracytoplasmic sperm injection; y, years.

pregnancy outcomes, timing of delivery and pregnancy complications (Supplementary Table S3). The type of DFS event according to the type of procedure used to achieve pregnancy, as well as BCSS and OS per 100 person-years, are listed in Supplementary Table S4. Compared to BRCA1/2 carriers in the no-ART group, no apparent detrimental effect was observed on DFS according to the type of ART procedure (Supplementary Figure S1; Supplementary Table S5).

4. Discussion

This international hospital-based study investigated the safety of ART to achieve a pregnancy after breast cancer in young BRCA1/2 carriers. Overall, compared with patients who conceived spontaneously, those in the ART group were older, more likely to be childless at breast cancer diagnosis and to have hormone receptor-positive tumours. They also had a longer median time between breast cancer diagnosis and conception than patients in the no-ART group. ART to achieve a pregnancy after breast cancer did not appear to be associated with worse DFS in young BRCA1/2 carriers.

To date, the clinical evidence on the oncological safety of ART in patients with breast cancer harbouring germline BRCA1/2 PVs is very limited. In the study by Derks-Smeets and colleagues, six young BRCA1/2 carriers with breast cancer who underwent ART were included (three had their oocytes cryopreserved at diagnosis while three underwent COS

after anticancer treatments) [15]. One case of cancer recurrence 2 months after COS performed following completion of anticancer treatments was described [15]. The study by Condorelli and colleagues, included 168 young *BRCA1/2* carriers with breast cancer with a pregnancy, 22 of which were achieved through ART. The small number of patients in the ART group did not allow for statistical comparisons [14].

Consistent with previous studies [11], baseline patient characteristics showed that women in the ART group were significantly older at the time of conception and had a longer time frame from diagnosis to conception as compared to those in the no-ART group. In the ART group, more patients had hormone-positive breast cancer; this result may be due to the indication to further delay conception during the 5–10 years of recommended adjuvant endocrine therapy [26,27]. For selected patients with hormone receptor-positive early breast cancer, the recent results of the POSITIVE trial have shown that a temporary interruption of endocrine therapy to attempt pregnancy can be considered safe after a median follow-up of 41 months [28]. A total of 38 *BRCA1/2* carriers were included in the study. Notably, with the limited 2-year window of treatment interruption allowed in the trial, 74 % achieved at least one pregnancy; among them, 43 % performed ART [29].

An advanced maternal age (usually defined as \geq 35 years) is in itself a risk factor for infertility, and decreased of natural fertility with ageing is associated with an increased risk of miscarriages [30]. In our study, a slightly higher incidence of miscarriages among patients in the ART group was observed compared to the no-ART group (11.3 % vs. 8.8 %, respectively). These results may reflect the older median age at the time of pregnancy in the ART group. The opposite was observed for induced abortions (0.9 % vs. 8.3 %, respectively). Knowing the suboptimal use of contraception in young women with breast cancer [31,32], some patients who conceived spontaneously might have experienced an unintended pregnancy and then opted for an induced abortion.

In the ART group, most pregnancies were achieved with oocyte/embryo cryopreserved at diagnosis (45.5 %). According to a recent meta-analysis, COS for fertility preservation at diagnosis is safe in patients with breast cancer including those with hormone receptor-positive disease [12]. Similar reassuring results were observed in the two small studies that included *BRCA1/2* carriers [33,34].

Notably, in patients who completed anticancer therapies and did not undergo fertility preservation strategies at diagnosis, limited data are available on the oncological safety of ART [12,29], particularly in BRCA1/2 carriers [14]. Our results did not show any signal for a detrimental effect on the oncological outcomes of using ART in patients who conceived after completion of anticancer therapy. However, these results must be interpreted with caution considering the very small number of included patients.

The major limitation of our study is the retrospective nature and the relatively small number of patients included in the ART group. As data were collected from oncological medical records or interviews with patients, there might be some imprecisions, missing data/misclassification and we cannot exclude unmeasured confounders. No information on use of preimplantation genetic testing for monogenic diseases (PGT-M) was collected. In addition, our results cannot be extrapolated to patients who used ART at diagnosis but did not conceive following treatment completion as data on ART use was only collected for patients who had a pregnancy after breast cancer. However, it should be highlighted that this is the largest study including young *BRCA1/2* carriers with breast cancer and it has a global representation.

Overall, our results add novel and specific information for the oncofertility counselling of young BRCA1/2 carriers with a pregnancy after breast cancer. Most women achieved spontaneous pregnancies. Those who underwent ART to achieve a pregnancy had favourable oncological characteristics (52.9 % had tumour size \leq 2 cm, 66.3 % node-negative disease, and 43.4 % hormone-positive malignancies). Hence, a multidisciplinary approach remains prerequisite to counsel young patients with breast cancer harbouring germline BRCA1/2 PVs who are interested in ART. Oncofertility counselling should be routinely

^e Calculated among the patients with completed pregnancy.

^f The number of patients who underwent ovulation induction for intrauterine insemination or planned intercourse after anticancer treatment was 2 out of 33.

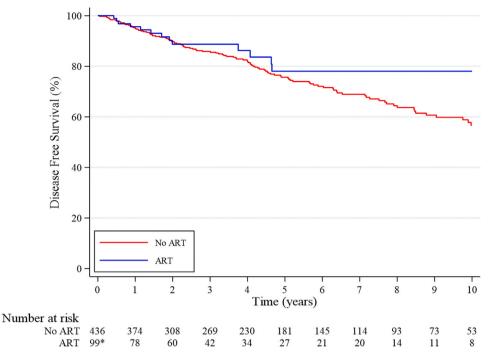


Fig. 2. Disease-free survival (DFS) in the ART group and no-ART group. Legend: 99 *: from the ART group of 107 women, 8 were excluded from the analysis because the type of ART was unknown. Legend abbreviations: ART, assisted reproductive technology; DFS, disease-free survival.

offered as soon as possible before starting treatment to young patients with breast cancer [1]. This is especially crucial for *BRCA1/2* carriers in view of the potentially increased risk of chemotherapy-induced premature ovarian insufficiency, their possible interest in PGT-M [35], and the indication to risk reducing bilateral salpingo-oophorectomy at a young age [1,36].

5. Conclusion

Our study showed that the use of ART to achieve a pregnancy after breast cancer in young *BRCA1/2* carriers did not appear to be associated with increased risk of DFS events or worse pregnancy outcomes. Given the interest of many women in avoiding the transmission of the germline *BRCA1/2* PV by PGT-M [37], our results may help to improve the oncofertility counselling of these patients. Future prospective studies are needed to confirm our results.

Funding Statement

This research was partly supported by the Italian Association for Cancer ("Associazione Italiana per la Ricerca sul Cancro", AIRC: MFAG 2020 ID 24698) and the 2022 Gilead Research Scholars Program in Solid Tumors.

CRediT authorship contribution statement

Isotta Martha Magaton: Data curation, Formal analysis, Methodology, Validation, Writing – original draft, Writing – review & editing. Eva Blondeaux: Data curation, Formal analysis, Methodology, Project administration, Supervision, Writing – review & editing. Anne-Sophie Hamy: Validation, Writing – review & editing. Sabine Linn: Validation, Writing – review & editing. Rinat Bernstein-Molho: Writing – review & editing. Fedro A. Peccatori: Writing – review & editing. Alberta Ferrari: Writing – review & editing. Estela Carrasco: Writing – review & editing. Shani Paluch-Shimon: Writing – review & editing. Elisa Agostinetto: Writing – review & editing. Marta Venturelli: Writing – review & editing. Ines Maria Vaz Luis: Writing – review & editing.

Kenny A. Rodriguez-Wallberg: Writing – review & editing. Hee Jeong Kim: Writing – review & editing. Kimia Sorouri: Writing – review & editing. Tiphaine Renaud: Writing - review & editing. Halle C.F. Moore: Writing - review & editing. Wanda Cui: Writing - review & editing. Jyoti Bajpa: Writing - review & editing. Christine Rousset-Jablonski: Writing - review & editing. Laura De Marchis: Writing review & editing. Rinat Yerushalmi: Writing - review & editing. Stephanie M. Wong: Writing - review & editing. Sileny Han: Writing review & editing. Kelly-Anne Phillips: Writing - review & editing. Katarzyna Pogoda: Writing – review & editing. Fabio Puglisi: Writing - review & editing. Alessandra Chirco: Writing - review & editing. Francois P. Duhoux: Writing - review & editing. Icro Meattini: Writing - review & editing. Cynthia Villarreal-Garza: Writing - review & editing. Claudio Vernieri: Writing - review & editing. Marco Bruzzone: Data curation, Formal analysis, Writing - review & editing. Isabelle Demeestere: Writing - review & editing. Hatem A. Azim: Writing - review & editing. Ann H. Partridge: Writing - review & editing. Matteo Lambertini: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Writing - original draft, Writing - review & editing.

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

E. Blondeaux reports speaking honoraria from Eli Lilly and research grant to the institution from Gilead, all outside the submitted work.

S. Linn reports research grant from Immunomedics (now Gilead) to the institution; research grant from AstraZeneca, Genentech, Roche, Novartis, Tesaro (now GSK) and Agendia to the institution and study drug supply free of charge; Consultancy services for AstraZeneca and Agendia (paid to the institution); Travel and hotel expenses covered as Faculty member for independent educational program from Daiichi Sankyo; She is named inventor on a patent WO2023/031121 (Methods for assessing homologous recombination deficiency in ovarian cancer cells, filed 09.03.2023). This patent is owned by the Netherlands Cancer Institute, Amsterdam, Netherlands, and by Cologne University, Cologne,

Germany. It was developed with the use of public funding. She is a Member Health Council of the Netherlands – Independent scientific advisory body for government and parliament, Paid. Since 2022. All outside the submitted work.

- A. Ferrari reports speaking fee/honoraria from AstraZeneca and MSD. All outside the submitted work.
- E. Agostinetto reports speaking fee/honoraria from Eli Lilly, Sandoz, AstraZeneca; consultancy role for AstraZeneca; research grant to my Institution from Gilead; meeting/travel grants from Novartis, Roche, Eli Lilly, Genetic, Istituto Gentili, Daiichi Sankyo, AstraZeneca (all outside the submitted work).
- **I. M. Vaz Luis** reports honoraria from Astrazeneca, Amgen, Novartis, Pfizer and Sandoz to the institution; research funding resilience care to the institution and travel grant from Novartis. All outside the submitted work
- K. A. Rodriguez-Wallberg is supported by grants from the Swedish Oncology Society and the Research Funds of Radiumhemmet. Outside the submitted work she reports grants from The Swedish Childhood Cancer Fund, Stockholm county council, Karolinska Institutet, Novo-Nordisk, Merck, Ferring and Gedeon Richter (to the institution); advisory role for Ferring, Merck, IBSA; speaker honoraria from Roche, Pfizer, Organon, Merck. All outside the submitted work.
- **C. Rousset-Jablonski** reports consulting fees from Bayer, Gedeon Richter and Astellas (to the institution), speaker honoraria from Organon and Theramex (to the institution) and travel grant from Gedeon Richter. All outside the submitted work.
- **K. Pogoda** reports honoraria for consultations/lectures/training/clinical trials and payment of conferences fees from AstraZeneca, Gilead, Roche, Novartis, Eli Lilly, Pfizer, MSD, Egis, and Vipharm, all outside the submitted work.
- **A.** Chirco report speaking honoraria from Novartis, AstraZeneca; travel Grants from Genetic, Lilly, Eisai, Pfizer; advisory role from Gilead. All outside the submitted work.
- **F. P. Duhoux** reports a postdoctoral research grant from Fondation Belge contre le Cancer; consulting fee from Amgen, AstraZeneca, Daiichi Sankyo, Eli Lilly, Gilead Sciences, Merck Sharp & Dohme, Novartis, Pfizer, Pierre Fabre, Roche and Seagen (paid to his institution); and travel support from Amgen, AstraZeneca, Daiichi Sankyo, Gilead Sciences, Pfizer, Roche and Teva.
- F. Puglisi reports research grant from Astrazeneca, EISAI, Roche; Consulting fees from Astrazeneca, Daiichi Sankyo, MSD, Novartis, Roche; Speaking honoraria from Astrazeneca, Daiichi Sankyo, Eli Lilly, Exact Sciences, Gilead, Italfarmaco, Menarini, MSD, Novartis, Pfizer, Roche; Travel support from Astrazeneca, Daiichi Sankyo, Eli Lilly, Novartis, Pfizer and Roche and advisory board from Astrazeneca, Daiichi Sankyo, Eli Lilly, Exact Sciences, Gilead, Italfarmaco, Menarini, MSD, Novartis, Pfizer and Roche. All outside the submitted work.
- I. Meattini reports speaker and advisory board honoraria from Pfizer, Eli Lilly, Novartis, SeaGen, Gilead, Astra Zeneca, Daiichi Sankyo and Menarini StemLine. All outside the submitted work.
- **C. Vernieri** reports advisory role for Novartis, Eli Lilly, Menarini, Pfizer, Daiichi Sankyo; speaker honoraria from Eli Lilly, Novartis, Istituto Gentili, Accademia Nazionale di Medicina; research grants from Roche (to the Institution). All outside the submitted work.
- **I. Demeestere** reports research grants from Roche, speaker honoraria from Ferring, Novartis and travel grant from Theramex, Ferring, Gedeon Richter. All outside the submitted work.
- $\mathbf{H}.$ \mathbf{Azim} reports honoraria from AstraZeneca and Roche. All outside the submitted work.
- M. Lambertini reports advisory role for Roche, Lilly, Novartis, Astrazeneca, Pfizer, Seagen, Gilead, MSD, Exact Sciences, Pierre Fabre, Menarini; speaker honoraria from Roche, Lilly, Novartis, Pfizer, Sandoz, Libbs, Daiichi Sankyo, Takeda, Gilead, Menarini; travel Grants from Gilead, Daiichi Sankyo, Roche; all outside the submitted work. M. Lambertii also received research funding (to the Institution) from Gilead.

The remaining authors declare no competing interests.

Acknowledgements

Dr Lambertini received support from the European Society for Medical Oncology (ESMO) for a translational research fellowship at the Institut Jules Bordet in Brussels, Belgium, at the time this study was initiated.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.ejca.2025.115434.

References

- Lambertini M, Peccatori FA, Demeestere I, Amant F, Wyns C, Stukenborg JB, et al. Fertility preservation and post-treatment pregnancies in post-pubertal cancer patients: FSMO Clinical Practice Guidelinest. Ann Oncol 2020;31(12):1664-78.
- [2] Anderson RA, Amant F, Braat D, D'Angelo A, De Sousa Lopes SMC, Demeestere I, et al. ESHRE guideline: Female fertility preservation. Hum Reprod Open 2020;2021 (4):hoaa052.
- [3] Oktay K, Harvey BE, Partridge AH, Quinn GP, Reinecke J, Taylor HS, et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol 2018;36(19):1994–2001.
- [4] Lambertini M, Blondeaux E, Bruzzone M, Perachino M, Anderson RA, de Azambuja E, et al. Pregnancy After Breast Cancer: A Systematic Review and Meta-Analysis. J Clin Oncol 2021;39(29):3293–305.
- [5] Arecco L, Blondeaux E, Bruzzone M, Latocca MM, Mariamidze E, Begijanashvili S, et al. Safety of pregnancy after breast cancer in young women with hormone receptor-positive disease: a systematic review and meta-analysis. ESMO Open 2023;8(6):102031.
- [6] Valentini A, Lubinski J, Byrski T, Ghadirian P, Moller P, Lynch HT, et al. The impact of pregnancy on breast cancer survival in women who carry a BRCA1 or BRCA2 mutation. Breast Cancer Res Treat 2013;142(1):177–85.
- [7] Lambertini M, Ameye L, Hamy AS, Zingarello A, Poorvu PD, Carrasco E, et al. Pregnancy after breast cancer in patients with germline BRCA mutations. J Clin Oncol 2020;38(26):3012–23.
- [8] Lambertini M, Blondeaux E, Agostinetto E, Hamy AS, Kim HJ, Di Meglio A, et al. BRCA BCY Collaboration. Pregnancy After Breast Cancer in Young BRCA Carriers: An International Hospital-Based Cohort Study. JAMA 2024;331(1):49–59.
- [9] Goldrat O, Kroman N, Peccatori FA, Cordoba O, Pistilli B, Lidegaard O, et al. Pregnancy following breast cancer using assisted reproduction and its effect on long-term outcome. Eur J Cancer 2015;51(12):1490-6.
- [10] Rosenberg E, Fredriksson A, Einbeigi Z, Bergh C, Strandell A. No increased risk of relapse of breast cancer for women who give birth after assisted conception. Hum Reprod Open 2019;2019(4):hoz039.
- [11] Condorelli M, De Vos M, Lie Fong S, Autin C, Delvigne A, Vanden Meerschaut F, et al. Impact of ARTs on oncological outcomes in young breast cancer survivors. Hum Reprod 2021;36(2):381–9.
- [12] Arecco L, Blondeaux E, Bruzzone M, Ceppi M, Latocca MM, Marrocco C, et al. Safety of fertility preservation techniques before and after anticancer treatments in young women with breast cancer: A systematic review and meta-analysis. Hum Reprod 2022;37(5):954–68.
- [13] Marklund A, Lekberg T, Hedayati E, Liljegren A, Bergh J, Lundberg FE, et al. Relapse Rates and Disease-Specific Mortality Following Procedures for Fertility Preservation at Time of Breast Cancer Diagnosis. JAMA Oncol 2022;8(10): 1438-46.
- [14] Condorelli M, Bruzzone M, Ceppi M, Ferrari A, Grinshpun A, Hamy AS, et al. Safety of assisted reproductive techniques in young women harboring germline pathogenic variants in BRCA1/2 with a pregnancy after prior history of breast cancer. ESMO Open 2021;6(6):100300.
- [15] Derks-Smeets IAP, De Die-Smulders CEM, Mackens S, Van Golde R, Paulussen AD, Dreesen J, et al. Hereditary breast and ovarian cancer and reproduction: An observational study on the suitability of preimplantation genetic diagnosis for both asymptomatic carriers and breast cancer survivors. Breast Cancer Res Treat 2014; 145(3):673–81.
- [16] Mangiardi-Veltin M, Sebbag C, Rousset-Jablonski C, Ray-Coquard I, Berkach C, Laot L, et al. Pregnancy, fertility concerns and fertility preservation procedures in a national study of French breast cancer survivors. Reprod Biomed Online 2022;44 (6):1031–44.
- [17] Mancini J, Rey D, Préau M, Malavolti L, Moatti JP. Infertility induced by cancer treatment: inappropriate or no information provided to majority of French survivors of cancer. Fertil Steril 2008;90(5):1616–25.
- [18] Melin J, Madanat-Harjuoja L, Hirvonen E, Seppä K, Malila N, Pitkäniemi J, et al. Use of fertility drugs in early-onset female cancer survivors—A Finnish register-based study on 8,929 survivors. Int J Cancer 2020;146(3):829–38.
- [19] Daum H, Peretz T, Laufer N. BRCA mutations and reproduction. Fertil Steril 2018; 109(1):33–8.

- [20] Turan V, Lambertini M, Lee DY, Wang E, Clatot F, Karlan BY, et al. Association of Germline BRCA Pathogenic Variants With Diminished Ovarian Reserve: A Meta-Analysis of Individual Patient-Level Data. J Clin Oncol 2021;39(18):2016–24.
- [21] Oktay KH, Bedoschi G, Goldfarb SB, Taylan E, Titus S, Palomaki GE, et al. Increased chemotherapy-induced ovarian reserve loss in women with germline BRCA mutations due to oocyte deoxyribonucleic acid double strand break repair deficiency. Fertil Steril 2020;113(6):1251–60. e1.
- [22] Oktay KH, Turan V, Bedoschi G, Abdo N, Bang H, Goldfarb S. A prospective longitudinal analysis of the predictors of amenorrhea after breast cancer chemotherapy: Impact of BRCA pathogenic variants. Cancer Med 2023;12(18): 19225–33.
- [23] Lambertini M, Goldrat O, Toss A, Azim HA, Peccatori FA, Ignatiadis M, et al. Fertility and pregnancy issues in BRCA-mutated breast cancer patients. Cancer Treat Rev 2017;59:61–70.
- [24] Lambertini M, Di Maio M, Poggio F, Pagani O, Curigliano G, Mastro LDel, et al. Knowledge, attitudes and practice of physicians towards fertility and pregnancyrelated issues in youngBRCA-mutated breast cancer patients. Reprod Biomed Online 2019:38(5):835–44.
- [25] von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 2007;370(9596): 1453–7.
- [26] Buonomo B, Brunello A, Noli S, Miglietta L, Del Mastro L, Lambertini M, et al. Tamoxifen Exposure during Pregnancy: A Systematic Review and Three More Cases. Breast Care 2020;15(2):148–56.
- [27] Shandley LM, Spencer JB, Fothergill A, Mertens AC, Manatunga A, Paplomata E, et al. Impact of tamoxifen therapy on fertility in breast cancer survivors. Fertil Steril 2017;107(1):243–252.e5.
- [28] Partridge AH, Niman SM, Ruggeri M, Peccatori FA, Azim HA, Colleoni M, et al. Interrupting Endocrine Therapy to Attempt Pregnancy after Breast Cancer. N Engl J Med 2023;388(18):1645–56.

- [29] Azim HA, Niman SM, Partridge AH, Demeestere I, Ruggeri M, Colleoni M, et al. Fertility Preservation and Assisted Reproduction in Patients with Breast Cancer Interrupting Adjuvant Endocrine Therapy to Attempt Pregnancy. J Clin Oncol 2024;42(23):2822–32.
- [30] Gruhn JR, Zielinska AP, Shukla V, Blanshard R, Capalbo A, Cimadomo D, et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science 2019;365(6460):1466–9.
- [31] Lambertini M, Massarotti C, Havas J, Pistilli B, Martin AL, Jacquet A, et al. Contraceptive Use in Premenopausal Women with Early Breast Cancer. JAMA Netw Open 2022;5(9):E2233137.
- [32] Poorvu PD, Gelber SI, Zheng Y, Ruddy KJ, Tamimi RM, Peppercorn J, et al. Pregnancy after breast cancer: Results from a prospective cohort of young women with breast cancer. Cancer 2021;127(7):1021–8.
- [33] Kim J, Turan V, Oktay K. Long-term safety of letrozole and gonadotropin stimulation for fertility preservation in women with breast cancer. J Clin Endocrinol Metab 2016;101(4):1364–71.
- [34] Greer AC, Lanes A, Poorvu PD, Kennedy P, Thomas AM, Partridge AH, et al. The impact of fertility preservation on the timing of breast cancer treatment, recurrence, and survival. Cancer 2021;127(20):3872–80.
- [35] Buonomo B, Massarotti C, Dellino M, Anserini P, Ferrari A, Campanella M, et al. Reproductive issues in carriers of germline pathogenic variants in the BRCA1/2 genes: an expert meeting. BMC Med 2021;19(1):205.
- [36] Sessa C, Balmaña J, Bober SL, Cardoso MJ, Colombo N, Curigliano G, et al. Risk reduction and screening of cancer in hereditary breast-ovarian cancer syndromes: ESMO Clinical Practice Guideline ☆. Ann Oncol 2023;34(1):33–47.
- [37] Vuković P, Peccatori FA, Massarotti C, Miralles MS, Beketić-Orešković L, Lambertini M. Preimplantation genetic testing for carriers of BRCA1/2 pathogenic variants. Crit Rev Oncol Hematol 2021;157:103201.