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ABSTRACT

Background: We aim to develop and validate predictive models for acute and late skin toxicity in breast cancer
(BC) patients undergoing radiation therapy (RT). Models incorporate a genetic profile—comprising candidate
single nucleotide polymorphisms (SNPs) in non-coding RNAs and previously reported toxicity-associated var-
iants—combined with clinical variables.

Methods: The study involved 1979 BC patients monitored for two to eight years post-RT in a multi-centre study.
We assessed acute (oedema/erythema) and late (atrophy/fibrosis) toxicity using logistic regression and Cox
proportional hazards models. The cohort was divided into training and validation datasets.

Results: Six SNPs demonstrated to be predictors of acute (rs13116075, rs12565978, rs72550778 and rs7284767)
and late toxicity (rs16837908 and rs61764370) either in the training or validation cohort. However, none of
these SNPs were consistently associated with toxicity across both stages of analysis. The rs13116075,
1512565978 and rs16837908 were previously reported to be associated with RT toxicity. In the validation phase,
SNP-based models showed limited predictive ability, with AUC values of 0.49 and c-index of 0.54 for acute and
late toxicity, respectively. Models incorporating either clinical variables alone or in combination with SNPs
achieved similar AUC and c-index values of ~0.60 for acute and late toxicity, respectively. However, the com-
bined model exhibited the highest predictive accuracy for acute and late toxicity, both in the training and the
validation cohorts.

Conclusions: Our findings highlight the importance of combining clinical data with genetic markers to enhance

the accuracy of models predicting RT toxicity in BC.

1. Background

As long-term cancer survival rates rise, survivorship issues and
quality of life are becoming an increasingly important research focus in
oncology. Radiation therapy (RT) is an integral component of breast
cancer (BC) treatment, with an increasing number of BC patients
receiving potentially curative or palliative RT. RT effectively reduces the
risk of local recurrence and contributes to a decrease in overall mortality
[1]. However, breast RT can be associated with several side-effects due
to normal tissue responses to ionising radiation, which can be acute
and/or late [2]. Acute toxicities occur within 90 days of treatment, tend
to be transient and include breast erythema, oedema, and desquamation
[3]. Late toxicities may appear months or years after RT and are con-
cerning due to their persistence, potential severity and impact on quality
of life [4]. Examples of late toxicities mainly include telangiectasia, skin
induration (fibrosis), skin hyperpigmentation, arm lymphoedema, and
atrophy [5].

The therapeutic window of RT, which is the range of radiation doses
that can effectively treat a tumour while minimizing damage to sur-
rounding healthy tissues, is narrow and calculated from the average
response, although patient-to-patient variability is high [6]. Patient
stratification according to their risk of radiation toxicity would allow
clinicians to adjust the treatment for each patient.

The risk of developing RT related toxicity is driven by patient,
tumour, and treatment-related factors together with individual genetic
predisposition-derived sensitivity. In the context of breast RT, numerous
studies have explored the correlation between clinical and treatment
risk factors and the occurrence of acute and late skin toxicity [7-12].
However, only a limited number of these studies have presented a
comprehensive clinical prediction model [9]. In addition, the incorpo-
ration of genetic susceptibility markers into these predictive models has
been even rarer, with such integration having been partially explored
and modelled so far only in the case of prostate cancer [13,14].

Radiosensitivity is believed to be a complex, inherited, and polygenic
trait [15]. Previous research has provided evidence that the risk of
radiation-induced toxicity is influenced by common low-penetrance
single nucleotide polymorphisms (SNPs) [16-20]. Increasing evidence
point to the non-coding RNAs as important biological regulators of
numerous cellular processes and sequence variants in such regulatory
elements have the potential to affect phenotype through altered gene
expression [18]. To our knowledge, there is limited research regarding

the impact of non-coding RNAs, such as microRNAs (miRNAs) and
long-non-coding RNAs (IncRNAs), on the susceptibility to side effects
from RT [18,21].

This study aims to examine the association between a set of SNPs
located in non-coding RNAs in addition to gene variants previously
linked to RT toxicity, and the development of acute and late RT-induced
toxicity in 1979 BC patients followed for a minimum of two years and up
to eight years after RT. Furthermore, the study seeks to develop and
validate predictive models by integrating these SNPs and relevant clin-
ical variables.

2. Methods
2.1. Patients

Germline blood DNA samples, collected before RT, along with clin-
ical data recorded before and after RT, were obtained from two distinct
cohorts of BC patients. The first cohort consisted of 115 BC patients
treated at Vall d’Hebron University Hospital and prospectively recruited
between 2009 and 2014 (Vall d’Hebron prospective cohort). The second
cohort comprised 2057 BC patients treated at various European and USA
hospitals recruited consecutively as part of the REQUITE European
project between 2014 and 2016 (REQUITE cohort) [22].

For the two cohorts (Vall d’Hebron and REQUITE), the inclusion
criteria encompassed patients suitable for postoperative RT for BC after
breast-conserving surgery, including both invasive and in situ cases, as
well as patients receiving primary systemic therapy. Male patients as
well as patients who underwent concomitant chemo-radiation, mastec-
tomy, partial breast irradiation, or had bilateral BC were excluded. All
patients in both cohorts gave written informed consent and their
respective protocols were approved by Vall d’Hebron and local ethics
committees in REQUITE participating countries. REQUITE was regis-
tered at www.controlled-trials.com (ISRCTN98496463).

Patients recruited through Vall d’Hebron prospective cohort were
followed for up to eight years. Patients from the REQUITE cohort were
initially followed for a minimum of two years after RT. Their follow-up
continued for up to eight years through the REQUITEplus and RAD-
precise projects.

Genotyping was successful for 2125 patients. For this study, only
patients of European descent were included in the analysis, resulting in
the exclusion of 123 patients with diverse ethnicities. Patients that only
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had baseline data and no follow-up were also excluded from the analysis
(n = 23). Finally, a total of 1979 BC patients were included in the study
(Fig. 1).

2.2. Data collection and toxicity endpoints definition

In both cohorts, the occurrence of acute and late effects of RT were
monitored using Common Terminology Criteria for Adverse Events
(CTCAE)v4.0 system. Toxicity data, as well as clinical data, were
documented before RT (baseline), at the end of RT and at each annual
follow-up after RT.

We defined as cases patients with acute RT-induced toxicity who had
oedema or erythema grade >2 at the end of RT, provided that their
baseline toxicity was O or 1. Patients with baseline grade >2 at baseline
in oedema or erythema toxicity were excluded (n = 10). Patients
without acute toxicity (controls) were those with oedema or erythema
grade 0 or 1 both at baseline and at the end of RT. Seven patients did not
have the toxicity recorded in the post-RT visit and thus were excluded
from the acute toxicity study. In total there were 1962 patients for the
acute toxicity study (Fig. 1).

For late toxicity, patients who had atrophy or fibrosis grade >2 at
two years until maximum follow-up after RT and baseline toxicity
grades O or 1 were defined as cases. Patients with baseline grade >2 in
atrophy, nipple retraction, telangiectasia, oedema, fibrosis or arm lym-
phedema toxicity were excluded (n = 126). Controls were those with
grade 0 or 1 at baseline and at two years until maximum follow-up after
RT in atrophy, nipple retraction, telangiectasia, fibrosis or arm lym-
phedema. Patients who experienced a downgrade from grade 2 or 3 to
grade O at consecutive years of the follow-up were excluded, as these
were considered as unclear toxicities (n = 54). Two hundred thirty-nine
patients did not have follow-up information after 12 months and were
therefore excluded from the study. In total there were 1560 patients for
the late toxicity study (Fig. 1).

2.3. Polymorphism selection and genotyping

Two sets of SNPs were examined in this study (Supp. Fig. 1). The first
set comprised 53 SNPs located in miRNAs, the gene 3’ untranslated re-
gions (3'UTRs), and IncRNAs which we consider novel candidates as
they had not been previously evaluated. To improve model perfor-
mance, the second set included 16 SNPs that had been associated with
normal tissue reactions to RT in previously published GWAS or inde-
pendent candidate gene studies. Blood DNA was genotyped using Mas-
sArray Agena Bioscience or Illumina Oncoarray. In total, 44 SNPs were
successfully genotyped and included in the study: 31 non-coding RNA
SNPs and 13 SNPs previously reported in the literature (Supp. Fig. 1 and
Supp. Tables 1-4). See Supplementary Material for more details on the
SNPs’ selection criteria and genotyping techniques.

2.4. Statistical analysis

Clinical and treatment variables with more than 20 % missing values
were excluded from further analysis. To address potential bias from
analysing only complete cases, we utilized multivariate imputation via
chained equations (MICE) to replace randomly missing values [23].
Differences between the imputed and non-imputed datasets were
assessed using standardized mean differences (SMDs). As shown in
Supplementary Table 5, all SMDs were below 0.2. According to Cohen’s
guidelines, an SMD below 0.2 indicates a small effect size, suggesting
minimal bias introduced by the imputation process [24].

We analysed the association of SNPs, clinical data, and their com-
bination with acute and late toxicity separately. For each toxicity
analysis, the dataset was split into training (acute toxicity: n = 920 [47
%]; late toxicity: n = 739 [47 %]) and validation sets (acute toxicity: n =
1042 [53 %]; late toxicity: n = 821 [53 %]) (Fig. 1). Patients were
divided by hospital or treatment centre to ensure that the training and
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validation datasets included patients from distinct, non-overlapping
locations. This approach maintained independence between centres;
however, no adjustments were made based on the analysed endpoints
(Fig. 1 and Supp. Table 6).

In the training set and for acute toxicity, a logistic model was
employed to estimate odds ratio (OR). In contrast, for late toxicity, a Cox
proportional hazards model was selected to obtain hazard ratios (HR).
Additionally, the Kaplan-Meier method was employed to calculate the
cumulative incidence of late toxicity. The least absolute shrinkage and
selection operator (Lasso) regression was used to select factors for the
multivariable regression analysis [25]. Lasso with the minimum lambda
was applied to clinical variables, while for SNPs, lambda was adjusted to
maximize the area under the curve (AUC) or c-index while utilizing the
minimum number of variables. Additionally, relevant clinical predictors
identified through multivariate analyses previously reported in the
literature, were retained in the analysis regardless of the Lasso selection
output [9,26].

A risk prediction score was estimated using coefficients derived from
the logistic regression and Cox proportional hazards multivariate
models. The Youden index was used to determine an optimal cut-off of
the scores obtained from the different toxicity prediction models (acute
and late), which allowed us to categorize patients into high and low risk
toxicity strata [27]. This cut-off obtained from the multivariate analysis
with the training data was then applied to make predictions on both the
training and validation sets.

We implemented bootstrapping as an internal validation technique
to address over-fitting and correct for over-optimism [28]. Specifically,
we iterated the model development process using 1000 bootstrap sam-
ples for internal validation.

For evaluating performance, AUC-ROC was used for acute toxicity
and c-index [29], for late toxicity. To assess whether the differences
between AUC-ROC and c-index values were statistically significant, we
applied the DelLong test [30] for acute toxicity, and the one-shot
nonparametric approach described by Kang et al. (2015) for late
toxicity, which is specifically designed for comparing two correlated
c-indices in the presence of right-censored survival data [31]. Addi-
tionally, we computed various performance metrics, including accuracy,
sensitivity and specificity [32], based on the predictions made by the
model using the determined cut-off. Calibration plots for acute toxicity
were evaluated through grouped real proportions versus mean predicted
probability, while for late toxicity calibration the plots were estimated
through the Cox-Snell residuals [33] on the cumulative probability
scale. Overall accuracy for acute toxicity was evaluated using the Brier
score.

All analyses were conducted using the R statistical software version
4.2.2.

3. Results
3.1. Toxicity distribution among training and validation cohorts

Fig. 2 presents the distribution of acute and late toxicities in the
training and validation cohorts. In the training cohort, 29 % of patients
experienced grade >2 acute toxicities, compared to 18 % in the vali-
dation cohort. For late toxicities, 20 % of patients in the training cohort
exhibited grade >2, whereas the validation cohort showed a higher
prevalence at 25 %.

3.2. Acute toxicity study

3.2.1. Patient characteristics

A total of 1962 BC patients were included in the acute toxicity study,
with available SNP, clinical, treatment, and toxicity data after RT.
Table 1 provides an overview of the patients’ clinical and treatment
characteristics.
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3.2.2. C(linical variables analysis

In the training cohort, comprising 920 patients, the Lasso method
was performed in a total of 45 clinical variables to select those with the
highest impact on acute toxicity for inclusion in the multivariate anal-
ysis. The following 13 variables were identified by Lasso and included in
the multivariate analysis: whole breast RT dose, breast volume in the
planning computed tomography (CT), pathologic UICC stage, bra cup
size, diabetes, RT toxicity family history, RT hypofractionation, tumour
histological grade, analgesics, rheumatoid arthritis, 3D RT, intensity-
modulated RT (IMRT), and surgery type. Seven clinically significant
variables, previously known for their predictive value in toxicity, were
also included in the analysis: body mass index (BMI), tamoxifen use,
smoking status, axillary surgery type, chemotherapy, age at RT start,
and RT boost [9,26].

After performing multivariate logistic regression analysing the effect
on acute toxicity of the 20 variables listed above, breast volume in the
planning CT and whole breast RT dose were consistently found to be
significantly associated with acute toxicity in both in the training and
validation cohorts [p-value (p) < 0.05] (Supp. Fig. 2).

We estimated a risk score for each patient of the training set using the
coefficients derived from the previous logistic regression model
involving the 20 clinical variables (Supp. Table 7). This score was then
dichotomized into two levels (high risk and low risk) using the Youden
index. This variable was found to exhibit a significant association with
the occurrence of acute toxicity in the training cohort [OR, 5.84; 95 %
confidence interval (CI), 4.19-8.24; p < 0.001] as well as in the vali-
dation cohort (OR, 1.42; CI, 1.03-1.94; p = 0.030) (Fig. 3A).

3.2.3. SNPs analysis

After Lasso selection, 18 out of the 44 studied SNPs were selected to
be included in the multivariate analysis. Twelve of them were in non-
coding RNAs. Multivariate analysis of acute toxicity in the training

2 Vall
°€%° d’Hebron

115
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cohort identified three SNPs with significant associations: rs13116075
(OR, 1.45; CI, 1.09-1.93; p = 0.01), rs72550778 (OR, 1.73; CI,
1.06-2.81; p = 0.03), and rs7284767 (OR, 1.29; CI, 1.03-1.61; p = 0.03)
(Supp. Fig. 3 and Supp. Table 8). These three SNPs were in non-coding
RNAs, including rs13116075, which was previously shown to be asso-
ciated with overall late toxicity in an independent dataset [16]. How-
ever, when testing the model in the validation cohort one different SNP,
the rs12565978 (located near PLXNA2), previously reported to be linked
to late toxicity in Barnett GC et al. Radiotherapy and Oncology (2014)
[16], was significantly associated with acute toxicity (OR, 1.52; CI,
1.10-2.07; p = 0.009) (Supp. Fig. 3).

The risk score obtained from the logistic regression model using the
18 SNPs (Supp. Table 8), was found to be significantly associated with
acute toxicity (OR, 2.31; CI, 1.73-3.10; p < 0.001) in the training
cohort. However, when tested in the validation cohort, this association
was not significant (OR, 0.98; CI, 0.71-1.34; p = 0.877) (Fig. 3A).

3.2.4. Integration of clinical variables and SNPs

Multivariate analysis involving clinical and SNP variables identified
the same significant variables as those observed in separate models
(Suppl. Fig. 4). The dichotomized risk score derived from the logistic
regression model analysing the impact of the combination of the 20
clinical variables with the 18 SNPs (Supp. Table 9), was found to be
significantly associated with the acute toxicity (OR, 7.24; CI,
5.25-10.07; p < 0.001) in the training cohort and in the validation
cohort (OR, 1.66; CI, 1.21-2.29; p = 0.0017) (Fig. 3A).

3.2.5. Model performance

Fig. 4A, a ROC curve in the training cohort, demonstrated that the
model utilizing clinical variables with an AUC of 0.747 (AUC after
bootstrap optimism corrected (AUCom) = 0.708) outperformed the
model using SNPs (AUC = 0.633, AUC,, = 0.589), while combining

T Breast cancer patients suitable for
ol ¢
REQUQTE adjuvant RT including those receiving

neo-adjuvant chemotherapy
2057

(Excluding those with mastectomies
and/or bilateral cancers)

2172
|
Genotyping failed —> 47
|
Non-European descent — 123
Only baseline visit —> 23
1 9'79
Baseline toxicity 10 126 Baseline toxicity
No post-RT visit 7 54 Unclear toxicities
239  No post-12m after RT visit
Acute Toxicity Late Toxicity
Study Study
1962 1560
Training Validation Training Validation
Leicester 308 Montpellier 368 Barcelona 248 Montpellier 275
Barcelona 291  Gent 287 Leicester 214  Leuven 221
Milan 97 Leuven 244 Milan 90  Gent 214
Santiago 97  Karlsruhe 62 Santiago 74 Karlsruhe 51
Mannheim 38  Freiburg 35 New York 34 Freiburg 25
New York 37 Speyer 24 Mannheim 33 Speyer 18
Nimes 32 Baden-Baden 11 Nimes 29  Baden-Baden 9
Ludwigshafen20 ~ Darmstadt 11 Ludwigshafen 17 ~ Darmstadt 8
920 1042 739 821

Fig. 1. Study flow diagram depicting numbers of analysed patients included in training and validation cohorts. RT: radiation therapy. 12m: 12 months.
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both had the highest AUC of 0.776 (AUC,y, = 0.721). In Fig. 4B, we
observed that all models performed worse in the validation cohort (SNPs
model AUC = 0.487, the clinical model AUC = 0.599, and combined
model AUC = 0.597). Supplementary Table 10 shows the statistical
differences between the AUCs. In the training cohort, the SNPs model
achieved 61 % accuracy, the clinical model achieved 66 %, and the
combined model performed the best with 72 %. However, these values
dropped to 55 % for the clinical and the genetic model, and to 62 % for
the combined model in the validation cohort (Fig. 4C). Sensitivity and
specificity values also decreased in the validation cohort (Fig. 4D and E).
In the validation cohort, calibration slopes of —0.142, 0.286, and 0.250,
along with Brier scores of 0.178, 0.173, and 0.170, were observed for the
SNPs, clinical, and combined models, respectively (Suppl. Fig. 5).

3.3. Late toxicity study

3.3.1. Patient characteristics

In the late toxicity study 1560 BC patients were included, all of
whom had complete SNP, clinical, treatment, and toxicity data available
for analysis ranging from two to eight years after RT treatment. Table 2
provides an overview of the patients’ clinical and treatment
characteristics.

3.3.2. Clinical variables analysis

In the training cohort (739 patients), a total of 46 clinical variables
were analysed using the Lasso method to select relevant variables for
multivariate analysis. The following 16 variables were identified by
Lasso and included in the multivariate analysis: whole breast RT dose,
breast volume in planning CT scan, smoking status, alcohol intake, age
at RT start, pathologic UICC stage, depression, hypertension, breast
cancer phenotype (as defined in Table 2), tumour histological grade,
tumour quadrant, RT hypofractionation, rheumatoid arthritis, IMRT,
chemotherapy and BMI. Additionally, three variables were retained in
the multivariate analysis based on previously data reporting their pre-
dictive value: tamoxifen use, axillary surgery type, RT boost [9,34].

In the multivariate Cox proportional hazards model, only BMI was
consistently found to be significantly associated with late toxicity in
both training and validation cohorts (p < 0.05) (Supp. Fig. 6).

The categorised risk score derived from the Cox proportional hazards
model for the 19 clinical variables was significantly associated with late
toxicity [Hazard Ratio (HR), 4.12; CI, 2.93-5.79; p < 0.001] (Supp.
Table 11) (Fig. 3B). The significance of this association remained robust
after testing the model in the validation cohort consisting of 821 patients
(HR, 1.83; CI, 1.37-2.44; p < 0.001) (Fig. 3B).

3.3.3. SNPs analysis

Following Lasso selection, 18 out of the 44 studied SNPs were
selected to be included in the multivariate analysis. Thirteen of them
were in non-coding RNAs. After multivariate analysis, rs61764370,
which is in the 3'UTR of KRAS, was significantly associated with late
toxicity in the training cohort (HR, 0.58; CI, 0.38-0.90; p = 0.01) (Supp.
Fig. 7). However, when testing the model in the validation cohort one
different SNP, rs16837908, was significantly associated with late
toxicity (HR, 0.37; CI, 0.14-0.97; p = 0.04) (Supp. Fig. 7). This SNP was
previously reported in Barnett GC et al. Radiotherapy and Oncology
(2014) [16] to be associated with late RT toxicity, and it is located near
INOSOD.

The risk score obtained using the 18 SNPs (Supp. Table 12) was
significantly associated with late toxicity, (HR, 3.26; CI, 1.99-5.34; p <
0.001), but not in the validation cohort (HR, 1.18; CI, 0.87-1.62; p =
0.2849) (Fig. 3B).

3.3.4. Integration of clinical variables and SNPs

Multivariate analysis involving clinical and SNP variables identified
BMI and smoking as significant variables in both training and validation
cohorts (Suppl. Fig. 8). The risk prediction score obtained using the
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combination of the 19 clinical variables and 18 SNPs (Supp. Table 13),
was found to be significantly associated with late toxicity (HR, 3.26; CI,
1.99-5.34; p < 0.001) in the training cohort as well as in the validation
cohort (HR, 1.63; CI, 1.24-2.14; p < 0.001) (Fig. 3B).

3.3.5. Cumulative incidence analysis

The Kaplan-Meier cumulative incidence plots (Fig. 5) display the
predicted probabilities of developing toxicity for both high-risk and low-
risk groups. In the training cohort, we observed that all model pre-
dictions were able to significantly discriminate between the two groups
(Fig. 5A, B, C, respectively, at the top). However, in the validation
cohort, while the clinical and combined models remained significant,
the SNP model did not.

3.3.6. Model performance

In the training cohort, the SNP model performed worse than the
clinical model (c-index: 0.62 vs. 0.75). The combined model incorpo-
rating clinical and SNP variables achieved the highest c-index of 0.77
(Fig. 6A). However, after internal validation with bootstrapping, all
models showed decreased performance, further dropping in the vali-
dation cohort, with clinical and combined models at 0.59 and the SNP
model at 0.54. The statistical differences between the c-index values are
shown in Supplementary Table 10. Accuracy values, illustrated in
Fig. 6B, showed that in the training cohort, the SNP model achieved 44
% accuracy, the clinical model 71 %, and the combined model per-
formed the best with 74 %. However, in the validation cohort, these
values dropped to 40 % for the SNPs, 54 % for the clinical, and 57 % for
the combined model (Fig. 6B). In Fig. 6C and D, the sensitivity and
specificity values are presented, showing consistent patterns of
decreasing performance in the validation cohort compared to the
training cohort. However, it is noteworthy that the sensitivity of the
clinical model exhibited an improvement from 62 % in the training
cohort to 65 % in the validation cohort. Calibration plots in Suppl. Fig. 9
represent the agreement between observed and predicted proportions.

4. Discussion

This study aimed to develop predictive models for acute and late skin
toxicity following RT in BC patients by incorporating SNPs and relevant
clinical factors. The models were developed through training and vali-
dation stages and included previously unexplored SNPs in non-coding
genes, alongside variants previously associated with RT-induced
toxicity in BC patients. The findings offer insights into potential pre-
dictors of RT side effects.

In the multivariate analysis, four SNPs were identified as indepen-
dent predictors of acute toxicity, either in the training or validation
cohort. However, none of these SNPs were consistently associated with
toxicity across both stages of analysis (Supp. Table 8 and Suppl. Fig. 3).
Of note, rs13116075 (an intronic variant of the LOC105377448
IncRNA) and rs12565978 (an intergenic variant near PLXNA2) had
been previously reported to be associated with late toxicity in Barnett
GC et al. Radiotherapy and Oncology (2014) [16] (Supp. Table 4).
Among these, rs13116075 showed one of the strongest multivariable
associations with overall late RT toxicity in BC patients [16]. The
remaining two SNPs were in non-coding genes: rs72550778 within
miR-34b (Supp. Table 2) and rs7284767 within the TUG1 IncRNA
(Supp. Table 3). Interestingly, Kishan et al. (2022) identified another
SNP (rs4938723) in the promoter region of miR-34b that was associated
with long-term genitourinary toxicity following RT in prostate cancer
patients [35]. For late toxicity, two SNPs exhibited significant associa-
tions in the multivariate analysis within either the training or validation
cohort (Supp. Table 12 and Suppl. Fig. 7). These included rs16837908,
an intergenic variant near INO8OD (Supp. Table 4) previously linked to
late RT toxicity in BC patients [16], and rs61764370, located in the
3'UTR of KRAS (Supp. Table 1).

Both sets of 18 SNPs selected by Lasso for acute and late toxicity did
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Fig. 2. Sankey diagram illustrating the distribution of acute and late toxicity among the training and validation cohorts. Patients without acute toxicity are depicted
in blue, while those experiencing acute toxicity are represented in red. Patients without late toxicity are shown in green, and those with late toxicity are displayed in

violet. Excluded patients are represented in grey.

not exhibit a significant association in the validation cohort, with AUC
= 0.487 and accuracy = 55 % for acute toxicity and c-index = 0.54 and
accuracy = 40 % for late toxicity. This suggests that the profile con-
taining the 31 non-coding related candidate SNPs, and the 13 SNPs
previously reported in the literature (Supp. Tables 1-4) confer a very
low risk or no risk to develop acute or late toxicity after RT in BC pa-
tients. In a recently published radiogenomic analysis on the same
REQUITE cohort as in our study, the association between toxicity
following RT and 10 out of the 13 SNPs previously documented in the
literature was also not confirmed [17]. Overall, these findings indicate
that the existing literature on this topic may be influenced by
false-positive associations, which can be attributed to factors such as
small sample sizes and multiple testing. This highlights the importance
of validation studies and the need for caution when interpreting the
significance of individual SNPs.

Multivariate analysis of clinical and treatment variables in the vali-
dation cohort (either analysed separately or combined with genetic
variants) identified the following independent predictors of toxicity
after RT: breast volume and whole-breast RT dose for acute toxicity, and
BMI and smoking for late toxicity (Supp. Figs. 2, 4, 6 and 8). These
findings align with previous studies, emphasizing the significant role of
patient and breast related factors on the development of acute and late
toxicities [7-9,36,37].

Previous research has primarily assessed the correlation between
clinical/treatment factors and acute skin toxicity in BC patients. How-
ever, a key limitation is the lack of validation in separate or external
cohorts, and these studies have not specifically addressed the develop-
ment of predictive models [7,37-39]. Two notable studies sought to fill
this gap [9,40]. Rattay et al. validated in the whole REQUITE cohort
known clinical risk factors for acute erythema, achieving an AUC of
0.65. In our study, a model for acute oedema and erythema using clinical
variables had a significant association (OR, 1.42; CI 1.03-1.94; p =
0.030) but a moderate AUC of 0.599 during validation. Differences in
our approach, where we considered both toxicities collectively, as
opposed to individual assessment, as well as in the study design may
explain varying AUC values. Aldraimli et al. used machine learning to
predict breast acute desquamation in the REQUITE cohort, achieving an
AUC of 0.77 in the validation cohort, that was created using a 50 % and
50 % cross-validation and therefore differing to our split-validation
method selecting non-overlapping hospitals.

The two mentioned studies suggested that adding genetic markers to
clinical factors might boost predictive performance for acute toxicity.
However, in our study, including selected genetic variables did not

improve the model performance, with the AUC staying at 0.597 in the
validation cohort. Still, the combined model was the most accurate (62
%) when compared to clinical (55 %) and SNP (55 %) models individ-
ually (Fig. 4C).

For late RT-induced toxicities, predictive models incorporating
clinical data have been created for different cancer sites, with AUC
values ranging from 0.60 to 0.75 [41-43]. Notably, there are no such
models tailored specifically for breast radiation toxicity. Our study
aimed to fill this gap, initially achieving a promising predictive power of
c-index = 0.75 using clinical variables. However, in the validation
cohort, the power dropped to c-index = 0.59. Combining clinical vari-
ables and SNPs in a single model showed higher accuracy compared to
separate models but also dropped to a c-index of 0.59 during validation
(Fig. 6A).

Our findings, from both the acute and late studies, indicate that
clinical and patient-related factors have a higher predictive value than
that offered by the specific set of SNPs included in our study (Figs. 4 and
6A-B), underscoring the importance of incorporating clinical variables
alongside genetic association studies [13,44].

So far, the relationship between acute and late effects has not yet
been clarified [45-47]. Interestingly, our data reveals that only around
25 % of patients who experience acute toxicity subsequently develop
late toxicity (Fig. 2). We included in the Lasso selection acute toxicity for
predicting late toxicity and it was not selected, suggesting that acute
toxicity is not a mandatory precursor for the occurrence of late toxicity
for BC patients at least for the studied endpoints.

As expected, our models showed better performance in the training
dataset but dropped in the validation cohort (Figs. 4 and 6). This sug-
gests potential overfitting, where the models don’t generalize well to
new data. Likewise, it is worth noting that there were differences in
radiation techniques between the training and validation cohorts
(Tables 1 and 2). In the training cohort there was a higher prevalence of
hypofractionated treatment, less IMRT and more 3D-CRT employment.
Additionally, boost treatments were less common in the training cohort,
especially for brachytherapy and electron-photon boost. These differ-
ences suggest that the construction of predictive models for RT side ef-
fects may benefit from subgroup analysis based on specific RT
modalities.

Another limitation of this study is the inclusion of only patients of
European descent, which may affect the generalizability of our findings
to more diverse populations. This restriction was necessary to minimize
potential confounding due to population stratification; however, it may
limit the applicability of our model across different ethnic groups.
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Table 1
Patient characteristics in the acute toxicity cohort.
Characteristic Overall Training Validation Missings
population population population
N = 1962 N =920 N = 1042
Patient characteristics
Age at RT start (years) (mean + SD) 58.46 + 11.09 58.25 +£11.35 58.66 + 10.85 4 (0.20 %)
BMI (kg/mz) (mean + SD) 26.47 + 5.60 27.21 £6.18 25.85 + 4.98 73 (3.72 %)
Smoker 21 (1.07 %)
Never 1087 (55.40 %) 527 (57.28 %) 560 (53.74 %)
Ex 590 (30.07 %) 286 (31.09 %) 304 (29.17 %)
Current 264 (13.46 %) 106 (11.52 %) 158 (15.16 %)
Bra cup size 163 (8.31 %)
AA-A 144 (7.34 %) 61 (6.63 %) 83 (7.97 %)
B 623 (31.75 %) 273 (29.67 %) 350 (33.59 %)
C 538 (27.42 %) 265 (28.80 %) 273 (26.20 %)
>D 494 (25.18 %) 218 (23.70 %) 276 (26.49 %)
Diabetes 113 (5.76 %) 57 (6.20 %) 56 (5.37 %) 1 (0.05 %)
Breast Cancer Phenotype 16 (0.82 %)
DCIS 190 (9.68 %) 61 (6.63 %) 129 (12.38 %)
HER2+ 55 (2.80 %) 35 (3.80 %) 20 (1.92 %)
Luminal 424 (21.61 %) 291 (31.63 %) 133 (12.76 %)
Luminal A 686 (34.96 %) 242 (26.3 %) 444 (42.61 %)

Luminal B HER2+
Luminal B HER2-
Triple Negative

Side of primary tumour

133 (6.78 %)
327 (16.67 %)
131 (6.68 %)

Left 1008 (51.38 %)
Right 950 (48.42 %)
Cancer treatment

Surgery type

Segmentectomy/Quadrantectomy

Wide local excision

Axillary surgery type

No axillary surgery

Sentinel node biopsy

Planned axillary dissection

Sentinel node biopsy + axillary dissection
Chemotherapy

Neoadjuvant chemotherapy

Adjuvant chemotherapy

Tamoxifen

Anti-HER2 therapy

Whole breast RT dose (Gy) (mean + SD)
Breast volume in the CT (¢cm®) (mean + SD) 806.77 + 500.02
RT hypofractionation 735 (37.46 %)
IMRT 952 (48.52 %)

1097 (55.91 %)
854 (43.53 %)

145 (7.39 %)
1223 (62.33 %)
135 (6.88 %)
194 (9.89 %)
630 (32.11 %)
189 (9.63 %)
462 (23.55 %)
817 (41.64 %)
158 (8.05 %)
45.28 +£5.48

3D-CRT 1574 (80.22 %)
RT boost 1358 (69.22 %)
RT boost type

Electrons 324 (16.51 %)
Photons 701 (35.73 %)
Brachytherapy 111 (5.66 %)

Electrons + Photons 222 (11.31 %)

66 (7.17 %)
159 (17.28 %)
54 (5.87 %)

67 (6.43 %)
168 (16.12 %)
77 (7.39 %)

4 (0.20 %)
467 (50.76 %)
449 (48.8 %)

541 (51.92 %)
501 (48.08 %)

11 (0.56 %)
618 (67.17 %)
296 (32.17 %)

479 (45.97 %)
558 (53.55 %)

265 (13.51 %)
56 (6.09 %)
500 (54.35 %)
76 (8.26 %)
89 (9.67 %)

89 (8.54 %)
723 (69.39 %)
59 (5.66 %)
105 (10.08 %)

350 (38.04 %) 280 (26.87 %) 2(0.10 %)
115 (12.50 %) 74 (7.10 %) 4 (0.20 %)
254 (27.61 %) 208 (19.96 %) 3 (0.15 %)

351 (38.15 %)
86 (9.35 %)

466 (44.72 %)
72 (6.91 %)

347 (17.69 %)
356 (18.14 %)

44.94 £ 4.97 45.57 +5.88 1 (0.05 %)
876.26 + 536.12 745.45 + 457.40 21 (1.07 %)
429 (46.63 %) 306 (29.37 %) 4 (0.20 %)
340 (36.96 %) 612 (58.73 %) 3 (0.15 %)
869 (94.46 %) 705 (67.66 %) 21 (1.07 %)
510 (55.43 %) 848 (81.38 %) 0 (0.00 %)
0 (0.00 %)

203 (22.07 %)
306 (33.26 %)
1(0.11 %)
0 (0.00 %)

121 (11.61 %)
395 (37.91 %)
110 (10.56 %)
222 (21.31 %)

SD: Standard deviation; RT: Radiotherapy; BMI: Body mass index; CT: computed tomography; IMRT: Intensity-modulated radiotherapy; 3D RT: 3D conformal radiation

therapy.

Future studies should include more diverse cohorts to ensure broader
validity and to mitigate potential biases in genetic associations.

Our study’s strengths include extended, prospective follow-up
beyond the conventional two years, revealing reliable long-term
toxicity trends. Additionally, our development of predictive models
coupled with the use of training and validation sets involving different
hospitals ensures reliability, albeit at the potential cost of reduced sta-
tistical power due to smaller sample sizes. However, a limitation is our
use of candidate genetic variants for SNP profiling, potentially missing
the full genetic complexity of toxicity responses.

5. Conclusions

When combining clinical variables and SNPs, the model exhibited
the highest predictive accuracy for acute and late toxicity, highlighting

the potential benefits of integrating both types of variables for opti-
mising model performance. However, the combined models’ limited
improvement in AUC or c-index during validation underlines the
ongoing difficulties in developing robust, clinically meaningful SNP-
based predictive models. Further research is warranted to refine/vali-
date the predictive models, considering larger and diverse patient co-
horts. Additionally, incorporating other relevant factors, such as
dosimetry, additional genetic markers or SNP interactions, and using
machine learning approaches may enhance the accuracy and general-
izability of toxicity prediction models. Furthermore, integrating multi-
omics approaches, including emerging predictive factors such as radio-
mic parameters, the radiation-induced lymphocyte apoptosis (RILA)
test, transcriptomic data, and immune response markers, may contribute
to improving risk stratification and could inform future research that
complements our findings.
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Fig. 3. Forest plots showing the association of clinical (orange), SNPs (blue) and SNPs + Clinical factors (violet) with radiation therapy-induced according to
dichotomized high and low risk toxicity groups, in the training and validation cohorts from the acute toxicity study (A) and late toxicity study (B). CI: Confi-

dence interval.
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Table 2
Patient characteristics in the late toxicity cohort.
Characteristic Overall Training Validation Missings
population population population
N = 1560 N =739 N =821
Patient characteristics
Time of follow-up (months) (median [min-max]) 48 [24-96] 48 [24-84] 36 [24-96] 0 (0.00 %)
Age at RT start (years) (mean + SD) 58.02 + 10.79 57.64 +10.91 58.35 + 10.68 4 (0.26 %)
BMI (kg/mz) (mean + SD) 26.31 + 5.33 26.97 + 5.87 25.76 + 4.77 64 (4.10 %)
Smoker 16 (1.03 %)
Never 885 (56.73 %) 434 (58.73 %) 451 (54.93 %)
Ex 454 (29.1 %) 223 (30.18 %) 231 (28.14 %)
Current 205 (13.14 %) 82 (11.1 %) 123 (14.98 %)
Bra cup size 151 (9.68 %)
AA-A 115 (7.37 %) 51 (6.9 %) 64 (7.8 %)
B 484 (31.03 %) 217 (29.36 %) 267 (32.52 %)
C 436 (27.95 %) 216 (29.23 %) 220 (26.8 %)
>D 374 (23.97 %) 162 (21.92 %) 212 (25.82 %)
Diabetes 90 (5.77 %) 43 (5.82 %) 47 (5.72 %) 1 (0.06 %)
Breast Cancer Phenotype 15 (0.96 %)
DCIS 150 (9.62 %) 50 (6.77 %) 100 (12.18 %)
HER2+ 47 (3.01 %) 32 (4.33 %) 15 (1.83 %)
Luminal 308 (19.74 %) 206 (27.88 %) 102 (12.42 %)
Luminal A 560 (35.9 %) 210 (28.42 %) 350 (42.63 %)

Luminal B HER2+
Luminal B HER2-
Triple Negative

Side of primary tumour

106 (6.79 %)
270 (17.31 %)
104 (6.67 %)

Left 810 (51.92 %)
Right 747 (47.88 %)
Cancer treatment

Surgery type

Segmentectomy/Quadrantectomy

Wide local excision

Axillary surgery type

No axillary surgery

Sentinel node biopsy

Planned axillary dissection

Sentinel node biopsy + axillary dissection
Chemotherapy

Neoadjuvant chemotherapy

Adjuvant chemotherapy

Tamoxifen

Anti-HER2 therapy

Whole breast RT dose (Gy) (mean + SD)
Breast volume in the CT (¢cm®) (mean + SD) 791.03 + 468.01
RT hypofractionation 533 (34.17 %)
IMRT 739 (47.37 %)

897 (57.5 %)
654 (41.92 %)

112 (7.18 %)
982 (62.95 %)
104 (6.67 %)
163 (10.45 %)
520 (33.33 %)
158 (10.13 %)
381 (24.42 %)
666 (42.69 %)
130 (8.33 %)
45.53 + 5.38

3D-CRT 1272 (81.54 %)
RT boost 1124 (72.05 %)
RT boost type

Electrons 286 (18.33 %)
Photons 563 (36.09 %)
Brachytherapy 101 (6.47 %)

Electrons + Photons 174 (11.15 %)

51 (6.9 %)
139 (18.81 %)
41 (5.55 %)

55 (6.7 %)
131 (15.96 %)
63 (7.67 %)

3(0.19 %)
377 (51.01 %)
360 (48.71 %)

433 (52.74 %)
387 (47.14 %)

9 (0.58 %)
529 (71.58 %)
206 (27.88 %)

368 (44.82 %)
448 (54.57 %)

199 (12.76 %)
47 (6.36 %)
410 (55.48 %)
61 (8.25 %)
77 (10.42 %)

65 (7.92 %)
572 (69.67 %)
43 (5.24 %)
86 (10.48 %)

289 (39.11 %) 231 (28.14 %) 2 (0.13 %)
95 (12.86 %) 63 (7.67 %) 4 (0.26 %)
211 (28.55 %) 170 (20.71 %) 3(0.19 %)

280 (37.89 %)
73 (9.88 %)

386 (47.02 %)
57 (6.94 %)

267 (17.12 %)
275 (17.63 %)

45.35 + 4.95 45.69 + 5.74 0 (0.00 %)
855.57 + 506.86 733.3 +422.33 14 (0.90 %)
309 (41.81 %) 224 (27.28 %) 3 (0.19 %)
246 (33.29 %) 493 (60.05 %) 1 (0.06 %)
700 (94.72 %) 572 (69.67 %) 14 (0.9 %)
436 (59 %) 688 (83.8 %) 0 (0.00 %)
0 (0.00 %)

174 (23.55 %)
260 (35.18 %)
1 (0.14 %)
1 (0.14 %)

112 (13.64 %)
303 (36.91 %)
100 (12.18 %)
173 (21.07 %)

SD: Standard deviation; RT: Radiotherapy; BMI: Body mass index; CT: computed tomography; IMRT: Intensity-modulated radiotherapy; 3D RT: 3D conformal radiation

therapy.
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