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A B S T R A C T

Background: We aim to develop and validate predictive models for acute and late skin toxicity in breast cancer 
(BC) patients undergoing radiation therapy (RT). Models incorporate a genetic profile—comprising candidate 
single nucleotide polymorphisms (SNPs) in non-coding RNAs and previously reported toxicity-associated var
iants—combined with clinical variables.
Methods: The study involved 1979 BC patients monitored for two to eight years post-RT in a multi-centre study. 
We assessed acute (oedema/erythema) and late (atrophy/fibrosis) toxicity using logistic regression and Cox 
proportional hazards models. The cohort was divided into training and validation datasets.
Results: Six SNPs demonstrated to be predictors of acute (rs13116075, rs12565978, rs72550778 and rs7284767) 
and late toxicity (rs16837908 and rs61764370) either in the training or validation cohort. However, none of 
these SNPs were consistently associated with toxicity across both stages of analysis. The rs13116075, 
rs12565978 and rs16837908 were previously reported to be associated with RT toxicity. In the validation phase, 
SNP-based models showed limited predictive ability, with AUC values of 0.49 and c-index of 0.54 for acute and 
late toxicity, respectively. Models incorporating either clinical variables alone or in combination with SNPs 
achieved similar AUC and c-index values of ~0.60 for acute and late toxicity, respectively. However, the com
bined model exhibited the highest predictive accuracy for acute and late toxicity, both in the training and the 
validation cohorts.
Conclusions: Our findings highlight the importance of combining clinical data with genetic markers to enhance 
the accuracy of models predicting RT toxicity in BC.

1. Background

As long-term cancer survival rates rise, survivorship issues and 
quality of life are becoming an increasingly important research focus in 
oncology. Radiation therapy (RT) is an integral component of breast 
cancer (BC) treatment, with an increasing number of BC patients 
receiving potentially curative or palliative RT. RT effectively reduces the 
risk of local recurrence and contributes to a decrease in overall mortality 
[1]. However, breast RT can be associated with several side-effects due 
to normal tissue responses to ionising radiation, which can be acute 
and/or late [2]. Acute toxicities occur within 90 days of treatment, tend 
to be transient and include breast erythema, oedema, and desquamation 
[3]. Late toxicities may appear months or years after RT and are con
cerning due to their persistence, potential severity and impact on quality 
of life [4]. Examples of late toxicities mainly include telangiectasia, skin 
induration (fibrosis), skin hyperpigmentation, arm lymphoedema, and 
atrophy [5].

The therapeutic window of RT, which is the range of radiation doses 
that can effectively treat a tumour while minimizing damage to sur
rounding healthy tissues, is narrow and calculated from the average 
response, although patient-to-patient variability is high [6]. Patient 
stratification according to their risk of radiation toxicity would allow 
clinicians to adjust the treatment for each patient.

The risk of developing RT related toxicity is driven by patient, 
tumour, and treatment-related factors together with individual genetic 
predisposition-derived sensitivity. In the context of breast RT, numerous 
studies have explored the correlation between clinical and treatment 
risk factors and the occurrence of acute and late skin toxicity [7–12]. 
However, only a limited number of these studies have presented a 
comprehensive clinical prediction model [9]. In addition, the incorpo
ration of genetic susceptibility markers into these predictive models has 
been even rarer, with such integration having been partially explored 
and modelled so far only in the case of prostate cancer [13,14].

Radiosensitivity is believed to be a complex, inherited, and polygenic 
trait [15]. Previous research has provided evidence that the risk of 
radiation-induced toxicity is influenced by common low-penetrance 
single nucleotide polymorphisms (SNPs) [16–20]. Increasing evidence 
point to the non-coding RNAs as important biological regulators of 
numerous cellular processes and sequence variants in such regulatory 
elements have the potential to affect phenotype through altered gene 
expression [18]. To our knowledge, there is limited research regarding 

the impact of non-coding RNAs, such as microRNAs (miRNAs) and 
long-non-coding RNAs (lncRNAs), on the susceptibility to side effects 
from RT [18,21].

This study aims to examine the association between a set of SNPs 
located in non-coding RNAs in addition to gene variants previously 
linked to RT toxicity, and the development of acute and late RT-induced 
toxicity in 1979 BC patients followed for a minimum of two years and up 
to eight years after RT. Furthermore, the study seeks to develop and 
validate predictive models by integrating these SNPs and relevant clin
ical variables.

2. Methods

2.1. Patients

Germline blood DNA samples, collected before RT, along with clin
ical data recorded before and after RT, were obtained from two distinct 
cohorts of BC patients. The first cohort consisted of 115 BC patients 
treated at Vall d’Hebron University Hospital and prospectively recruited 
between 2009 and 2014 (Vall d’Hebron prospective cohort). The second 
cohort comprised 2057 BC patients treated at various European and USA 
hospitals recruited consecutively as part of the REQUITE European 
project between 2014 and 2016 (REQUITE cohort) [22].

For the two cohorts (Vall d’Hebron and REQUITE), the inclusion 
criteria encompassed patients suitable for postoperative RT for BC after 
breast-conserving surgery, including both invasive and in situ cases, as 
well as patients receiving primary systemic therapy. Male patients as 
well as patients who underwent concomitant chemo-radiation, mastec
tomy, partial breast irradiation, or had bilateral BC were excluded. All 
patients in both cohorts gave written informed consent and their 
respective protocols were approved by Vall d’Hebron and local ethics 
committees in REQUITE participating countries. REQUITE was regis
tered at www.controlled-trials.com (ISRCTN98496463).

Patients recruited through Vall d’Hebron prospective cohort were 
followed for up to eight years. Patients from the REQUITE cohort were 
initially followed for a minimum of two years after RT. Their follow-up 
continued for up to eight years through the REQUITEplus and RAD
precise projects.

Genotyping was successful for 2125 patients. For this study, only 
patients of European descent were included in the analysis, resulting in 
the exclusion of 123 patients with diverse ethnicities. Patients that only 
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had baseline data and no follow-up were also excluded from the analysis 
(n = 23). Finally, a total of 1979 BC patients were included in the study 
(Fig. 1).

2.2. Data collection and toxicity endpoints definition

In both cohorts, the occurrence of acute and late effects of RT were 
monitored using Common Terminology Criteria for Adverse Events 
(CTCAE)v4.0 system. Toxicity data, as well as clinical data, were 
documented before RT (baseline), at the end of RT and at each annual 
follow-up after RT.

We defined as cases patients with acute RT-induced toxicity who had 
oedema or erythema grade ≥2 at the end of RT, provided that their 
baseline toxicity was 0 or 1. Patients with baseline grade ≥2 at baseline 
in oedema or erythema toxicity were excluded (n = 10). Patients 
without acute toxicity (controls) were those with oedema or erythema 
grade 0 or 1 both at baseline and at the end of RT. Seven patients did not 
have the toxicity recorded in the post-RT visit and thus were excluded 
from the acute toxicity study. In total there were 1962 patients for the 
acute toxicity study (Fig. 1).

For late toxicity, patients who had atrophy or fibrosis grade ≥2 at 
two years until maximum follow-up after RT and baseline toxicity 
grades 0 or 1 were defined as cases. Patients with baseline grade ≥2 in 
atrophy, nipple retraction, telangiectasia, oedema, fibrosis or arm lym
phedema toxicity were excluded (n = 126). Controls were those with 
grade 0 or 1 at baseline and at two years until maximum follow-up after 
RT in atrophy, nipple retraction, telangiectasia, fibrosis or arm lym
phedema. Patients who experienced a downgrade from grade 2 or 3 to 
grade 0 at consecutive years of the follow-up were excluded, as these 
were considered as unclear toxicities (n = 54). Two hundred thirty-nine 
patients did not have follow-up information after 12 months and were 
therefore excluded from the study. In total there were 1560 patients for 
the late toxicity study (Fig. 1).

2.3. Polymorphism selection and genotyping

Two sets of SNPs were examined in this study (Supp. Fig. 1). The first 
set comprised 53 SNPs located in miRNAs, the gene 3′ untranslated re
gions (3′UTRs), and lncRNAs which we consider novel candidates as 
they had not been previously evaluated. To improve model perfor
mance, the second set included 16 SNPs that had been associated with 
normal tissue reactions to RT in previously published GWAS or inde
pendent candidate gene studies. Blood DNA was genotyped using Mas
sArray Agena Bioscience or Illumina Oncoarray. In total, 44 SNPs were 
successfully genotyped and included in the study: 31 non-coding RNA 
SNPs and 13 SNPs previously reported in the literature (Supp. Fig. 1 and 
Supp. Tables 1–4). See Supplementary Material for more details on the 
SNPs’ selection criteria and genotyping techniques.

2.4. Statistical analysis

Clinical and treatment variables with more than 20 % missing values 
were excluded from further analysis. To address potential bias from 
analysing only complete cases, we utilized multivariate imputation via 
chained equations (MICE) to replace randomly missing values [23]. 
Differences between the imputed and non-imputed datasets were 
assessed using standardized mean differences (SMDs). As shown in 
Supplementary Table 5, all SMDs were below 0.2. According to Cohen’s 
guidelines, an SMD below 0.2 indicates a small effect size, suggesting 
minimal bias introduced by the imputation process [24].

We analysed the association of SNPs, clinical data, and their com
bination with acute and late toxicity separately. For each toxicity 
analysis, the dataset was split into training (acute toxicity: n = 920 [47 
%]; late toxicity: n = 739 [47 %]) and validation sets (acute toxicity: n =
1042 [53 %]; late toxicity: n = 821 [53 %]) (Fig. 1). Patients were 
divided by hospital or treatment centre to ensure that the training and 

validation datasets included patients from distinct, non-overlapping 
locations. This approach maintained independence between centres; 
however, no adjustments were made based on the analysed endpoints 
(Fig. 1 and Supp. Table 6).

In the training set and for acute toxicity, a logistic model was 
employed to estimate odds ratio (OR). In contrast, for late toxicity, a Cox 
proportional hazards model was selected to obtain hazard ratios (HR). 
Additionally, the Kaplan-Meier method was employed to calculate the 
cumulative incidence of late toxicity. The least absolute shrinkage and 
selection operator (Lasso) regression was used to select factors for the 
multivariable regression analysis [25]. Lasso with the minimum lambda 
was applied to clinical variables, while for SNPs, lambda was adjusted to 
maximize the area under the curve (AUC) or c-index while utilizing the 
minimum number of variables. Additionally, relevant clinical predictors 
identified through multivariate analyses previously reported in the 
literature, were retained in the analysis regardless of the Lasso selection 
output [9,26].

A risk prediction score was estimated using coefficients derived from 
the logistic regression and Cox proportional hazards multivariate 
models. The Youden index was used to determine an optimal cut-off of 
the scores obtained from the different toxicity prediction models (acute 
and late), which allowed us to categorize patients into high and low risk 
toxicity strata [27]. This cut-off obtained from the multivariate analysis 
with the training data was then applied to make predictions on both the 
training and validation sets.

We implemented bootstrapping as an internal validation technique 
to address over-fitting and correct for over-optimism [28]. Specifically, 
we iterated the model development process using 1000 bootstrap sam
ples for internal validation.

For evaluating performance, AUC-ROC was used for acute toxicity 
and c-index [29], for late toxicity. To assess whether the differences 
between AUC-ROC and c-index values were statistically significant, we 
applied the DeLong test [30] for acute toxicity, and the one-shot 
nonparametric approach described by Kang et al. (2015) for late 
toxicity, which is specifically designed for comparing two correlated 
c-indices in the presence of right-censored survival data [31]. Addi
tionally, we computed various performance metrics, including accuracy, 
sensitivity and specificity [32], based on the predictions made by the 
model using the determined cut-off. Calibration plots for acute toxicity 
were evaluated through grouped real proportions versus mean predicted 
probability, while for late toxicity calibration the plots were estimated 
through the Cox-Snell residuals [33] on the cumulative probability 
scale. Overall accuracy for acute toxicity was evaluated using the Brier 
score.

All analyses were conducted using the R statistical software version 
4.2.2.

3. Results

3.1. Toxicity distribution among training and validation cohorts

Fig. 2 presents the distribution of acute and late toxicities in the 
training and validation cohorts. In the training cohort, 29 % of patients 
experienced grade ≥2 acute toxicities, compared to 18 % in the vali
dation cohort. For late toxicities, 20 % of patients in the training cohort 
exhibited grade ≥2, whereas the validation cohort showed a higher 
prevalence at 25 %.

3.2. Acute toxicity study

3.2.1. Patient characteristics
A total of 1962 BC patients were included in the acute toxicity study, 

with available SNP, clinical, treatment, and toxicity data after RT. 
Table 1 provides an overview of the patients’ clinical and treatment 
characteristics.
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3.2.2. Clinical variables analysis
In the training cohort, comprising 920 patients, the Lasso method 

was performed in a total of 45 clinical variables to select those with the 
highest impact on acute toxicity for inclusion in the multivariate anal
ysis. The following 13 variables were identified by Lasso and included in 
the multivariate analysis: whole breast RT dose, breast volume in the 
planning computed tomography (CT), pathologic UICC stage, bra cup 
size, diabetes, RT toxicity family history, RT hypofractionation, tumour 
histological grade, analgesics, rheumatoid arthritis, 3D RT, intensity- 
modulated RT (IMRT), and surgery type. Seven clinically significant 
variables, previously known for their predictive value in toxicity, were 
also included in the analysis: body mass index (BMI), tamoxifen use, 
smoking status, axillary surgery type, chemotherapy, age at RT start, 
and RT boost [9,26].

After performing multivariate logistic regression analysing the effect 
on acute toxicity of the 20 variables listed above, breast volume in the 
planning CT and whole breast RT dose were consistently found to be 
significantly associated with acute toxicity in both in the training and 
validation cohorts [p-value (p) < 0.05] (Supp. Fig. 2).

We estimated a risk score for each patient of the training set using the 
coefficients derived from the previous logistic regression model 
involving the 20 clinical variables (Supp. Table 7). This score was then 
dichotomized into two levels (high risk and low risk) using the Youden 
index. This variable was found to exhibit a significant association with 
the occurrence of acute toxicity in the training cohort [OR, 5.84; 95 % 
confidence interval (CI), 4.19–8.24; p < 0.001] as well as in the vali
dation cohort (OR, 1.42; CI, 1.03–1.94; p = 0.030) (Fig. 3A).

3.2.3. SNPs analysis
After Lasso selection, 18 out of the 44 studied SNPs were selected to 

be included in the multivariate analysis. Twelve of them were in non- 
coding RNAs. Multivariate analysis of acute toxicity in the training 

cohort identified three SNPs with significant associations: rs13116075 
(OR, 1.45; CI, 1.09–1.93; p = 0.01), rs72550778 (OR, 1.73; CI, 
1.06–2.81; p = 0.03), and rs7284767 (OR, 1.29; CI, 1.03–1.61; p = 0.03) 
(Supp. Fig. 3 and Supp. Table 8). These three SNPs were in non-coding 
RNAs, including rs13116075, which was previously shown to be asso
ciated with overall late toxicity in an independent dataset [16]. How
ever, when testing the model in the validation cohort one different SNP, 
the rs12565978 (located near PLXNA2), previously reported to be linked 
to late toxicity in Barnett GC et al. Radiotherapy and Oncology (2014) 
[16], was significantly associated with acute toxicity (OR, 1.52; CI, 
1.10–2.07; p = 0.009) (Supp. Fig. 3).

The risk score obtained from the logistic regression model using the 
18 SNPs (Supp. Table 8), was found to be significantly associated with 
acute toxicity (OR, 2.31; CI, 1.73–3.10; p < 0.001) in the training 
cohort. However, when tested in the validation cohort, this association 
was not significant (OR, 0.98; CI, 0.71–1.34; p = 0.877) (Fig. 3A).

3.2.4. Integration of clinical variables and SNPs
Multivariate analysis involving clinical and SNP variables identified 

the same significant variables as those observed in separate models 
(Suppl. Fig. 4). The dichotomized risk score derived from the logistic 
regression model analysing the impact of the combination of the 20 
clinical variables with the 18 SNPs (Supp. Table 9), was found to be 
significantly associated with the acute toxicity (OR, 7.24; CI, 
5.25–10.07; p < 0.001) in the training cohort and in the validation 
cohort (OR, 1.66; CI, 1.21–2.29; p = 0.0017) (Fig. 3A).

3.2.5. Model performance
Fig. 4A, a ROC curve in the training cohort, demonstrated that the 

model utilizing clinical variables with an AUC of 0.747 (AUC after 
bootstrap optimism corrected (AUCom) = 0.708) outperformed the 
model using SNPs (AUC = 0.633, AUCom = 0.589), while combining 

Fig. 1. Study flow diagram depicting numbers of analysed patients included in training and validation cohorts. RT: radiation therapy. 12m: 12 months.
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both had the highest AUC of 0.776 (AUCom = 0.721). In Fig. 4B, we 
observed that all models performed worse in the validation cohort (SNPs 
model AUC = 0.487, the clinical model AUC = 0.599, and combined 
model AUC = 0.597). Supplementary Table 10 shows the statistical 
differences between the AUCs. In the training cohort, the SNPs model 
achieved 61 % accuracy, the clinical model achieved 66 %, and the 
combined model performed the best with 72 %. However, these values 
dropped to 55 % for the clinical and the genetic model, and to 62 % for 
the combined model in the validation cohort (Fig. 4C). Sensitivity and 
specificity values also decreased in the validation cohort (Fig. 4D and E). 
In the validation cohort, calibration slopes of − 0.142, 0.286, and 0.250, 
along with Brier scores of 0.178, 0.173, and 0.170, were observed for the 
SNPs, clinical, and combined models, respectively (Suppl. Fig. 5).

3.3. Late toxicity study

3.3.1. Patient characteristics
In the late toxicity study 1560 BC patients were included, all of 

whom had complete SNP, clinical, treatment, and toxicity data available 
for analysis ranging from two to eight years after RT treatment. Table 2
provides an overview of the patients’ clinical and treatment 
characteristics.

3.3.2. Clinical variables analysis
In the training cohort (739 patients), a total of 46 clinical variables 

were analysed using the Lasso method to select relevant variables for 
multivariate analysis. The following 16 variables were identified by 
Lasso and included in the multivariate analysis: whole breast RT dose, 
breast volume in planning CT scan, smoking status, alcohol intake, age 
at RT start, pathologic UICC stage, depression, hypertension, breast 
cancer phenotype (as defined in Table 2), tumour histological grade, 
tumour quadrant, RT hypofractionation, rheumatoid arthritis, IMRT, 
chemotherapy and BMI. Additionally, three variables were retained in 
the multivariate analysis based on previously data reporting their pre
dictive value: tamoxifen use, axillary surgery type, RT boost [9,34].

In the multivariate Cox proportional hazards model, only BMI was 
consistently found to be significantly associated with late toxicity in 
both training and validation cohorts (p < 0.05) (Supp. Fig. 6).

The categorised risk score derived from the Cox proportional hazards 
model for the 19 clinical variables was significantly associated with late 
toxicity [Hazard Ratio (HR), 4.12; CI, 2.93–5.79; p < 0.001] (Supp. 
Table 11) (Fig. 3B). The significance of this association remained robust 
after testing the model in the validation cohort consisting of 821 patients 
(HR, 1.83; CI, 1.37–2.44; p < 0.001) (Fig. 3B).

3.3.3. SNPs analysis
Following Lasso selection, 18 out of the 44 studied SNPs were 

selected to be included in the multivariate analysis. Thirteen of them 
were in non-coding RNAs. After multivariate analysis, rs61764370, 
which is in the 3′UTR of KRAS, was significantly associated with late 
toxicity in the training cohort (HR, 0.58; CI, 0.38–0.90; p = 0.01) (Supp. 
Fig. 7). However, when testing the model in the validation cohort one 
different SNP, rs16837908, was significantly associated with late 
toxicity (HR, 0.37; CI, 0.14–0.97; p = 0.04) (Supp. Fig. 7). This SNP was 
previously reported in Barnett GC et al. Radiotherapy and Oncology 
(2014) [16] to be associated with late RT toxicity, and it is located near 
INO80D.

The risk score obtained using the 18 SNPs (Supp. Table 12) was 
significantly associated with late toxicity, (HR, 3.26; CI, 1.99–5.34; p <
0.001), but not in the validation cohort (HR, 1.18; CI, 0.87–1.62; p =
0.2849) (Fig. 3B).

3.3.4. Integration of clinical variables and SNPs
Multivariate analysis involving clinical and SNP variables identified 

BMI and smoking as significant variables in both training and validation 
cohorts (Suppl. Fig. 8). The risk prediction score obtained using the 

combination of the 19 clinical variables and 18 SNPs (Supp. Table 13), 
was found to be significantly associated with late toxicity (HR, 3.26; CI, 
1.99–5.34; p < 0.001) in the training cohort as well as in the validation 
cohort (HR, 1.63; CI, 1.24–2.14; p < 0.001) (Fig. 3B).

3.3.5. Cumulative incidence analysis
The Kaplan-Meier cumulative incidence plots (Fig. 5) display the 

predicted probabilities of developing toxicity for both high-risk and low- 
risk groups. In the training cohort, we observed that all model pre
dictions were able to significantly discriminate between the two groups 
(Fig. 5A, B, C, respectively, at the top). However, in the validation 
cohort, while the clinical and combined models remained significant, 
the SNP model did not.

3.3.6. Model performance
In the training cohort, the SNP model performed worse than the 

clinical model (c-index: 0.62 vs. 0.75). The combined model incorpo
rating clinical and SNP variables achieved the highest c-index of 0.77 
(Fig. 6A). However, after internal validation with bootstrapping, all 
models showed decreased performance, further dropping in the vali
dation cohort, with clinical and combined models at 0.59 and the SNP 
model at 0.54. The statistical differences between the c-index values are 
shown in Supplementary Table 10. Accuracy values, illustrated in 
Fig. 6B, showed that in the training cohort, the SNP model achieved 44 
% accuracy, the clinical model 71 %, and the combined model per
formed the best with 74 %. However, in the validation cohort, these 
values dropped to 40 % for the SNPs, 54 % for the clinical, and 57 % for 
the combined model (Fig. 6B). In Fig. 6C and D, the sensitivity and 
specificity values are presented, showing consistent patterns of 
decreasing performance in the validation cohort compared to the 
training cohort. However, it is noteworthy that the sensitivity of the 
clinical model exhibited an improvement from 62 % in the training 
cohort to 65 % in the validation cohort. Calibration plots in Suppl. Fig. 9
represent the agreement between observed and predicted proportions.

4. Discussion

This study aimed to develop predictive models for acute and late skin 
toxicity following RT in BC patients by incorporating SNPs and relevant 
clinical factors. The models were developed through training and vali
dation stages and included previously unexplored SNPs in non-coding 
genes, alongside variants previously associated with RT-induced 
toxicity in BC patients. The findings offer insights into potential pre
dictors of RT side effects.

In the multivariate analysis, four SNPs were identified as indepen
dent predictors of acute toxicity, either in the training or validation 
cohort. However, none of these SNPs were consistently associated with 
toxicity across both stages of analysis (Supp. Table 8 and Suppl. Fig. 3). 
Of note, rs13116075 (an intronic variant of the LOC105377448 
lncRNA) and rs12565978 (an intergenic variant near PLXNA2) had 
been previously reported to be associated with late toxicity in Barnett 
GC et al. Radiotherapy and Oncology (2014) [16] (Supp. Table 4). 
Among these, rs13116075 showed one of the strongest multivariable 
associations with overall late RT toxicity in BC patients [16]. The 
remaining two SNPs were in non-coding genes: rs72550778 within 
miR-34b (Supp. Table 2) and rs7284767 within the TUG1 lncRNA 
(Supp. Table 3). Interestingly, Kishan et al. (2022) identified another 
SNP (rs4938723) in the promoter region of miR-34b that was associated 
with long-term genitourinary toxicity following RT in prostate cancer 
patients [35]. For late toxicity, two SNPs exhibited significant associa
tions in the multivariate analysis within either the training or validation 
cohort (Supp. Table 12 and Suppl. Fig. 7). These included rs16837908, 
an intergenic variant near INO80D (Supp. Table 4) previously linked to 
late RT toxicity in BC patients [16], and rs61764370, located in the 
3′UTR of KRAS (Supp. Table 1).

Both sets of 18 SNPs selected by Lasso for acute and late toxicity did 
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not exhibit a significant association in the validation cohort, with AUC 
= 0.487 and accuracy = 55 % for acute toxicity and c-index = 0.54 and 
accuracy = 40 % for late toxicity. This suggests that the profile con
taining the 31 non-coding related candidate SNPs, and the 13 SNPs 
previously reported in the literature (Supp. Tables 1–4) confer a very 
low risk or no risk to develop acute or late toxicity after RT in BC pa
tients. In a recently published radiogenomic analysis on the same 
REQUITE cohort as in our study, the association between toxicity 
following RT and 10 out of the 13 SNPs previously documented in the 
literature was also not confirmed [17]. Overall, these findings indicate 
that the existing literature on this topic may be influenced by 
false-positive associations, which can be attributed to factors such as 
small sample sizes and multiple testing. This highlights the importance 
of validation studies and the need for caution when interpreting the 
significance of individual SNPs.

Multivariate analysis of clinical and treatment variables in the vali
dation cohort (either analysed separately or combined with genetic 
variants) identified the following independent predictors of toxicity 
after RT: breast volume and whole-breast RT dose for acute toxicity, and 
BMI and smoking for late toxicity (Supp. Figs. 2, 4, 6 and 8). These 
findings align with previous studies, emphasizing the significant role of 
patient and breast related factors on the development of acute and late 
toxicities [7–9,36,37].

Previous research has primarily assessed the correlation between 
clinical/treatment factors and acute skin toxicity in BC patients. How
ever, a key limitation is the lack of validation in separate or external 
cohorts, and these studies have not specifically addressed the develop
ment of predictive models [7,37–39]. Two notable studies sought to fill 
this gap [9,40]. Rattay et al. validated in the whole REQUITE cohort 
known clinical risk factors for acute erythema, achieving an AUC of 
0.65. In our study, a model for acute oedema and erythema using clinical 
variables had a significant association (OR, 1.42; CI 1.03–1.94; p =
0.030) but a moderate AUC of 0.599 during validation. Differences in 
our approach, where we considered both toxicities collectively, as 
opposed to individual assessment, as well as in the study design may 
explain varying AUC values. Aldraimli et al. used machine learning to 
predict breast acute desquamation in the REQUITE cohort, achieving an 
AUC of 0.77 in the validation cohort, that was created using a 50 % and 
50 % cross-validation and therefore differing to our split-validation 
method selecting non-overlapping hospitals.

The two mentioned studies suggested that adding genetic markers to 
clinical factors might boost predictive performance for acute toxicity. 
However, in our study, including selected genetic variables did not 

improve the model performance, with the AUC staying at 0.597 in the 
validation cohort. Still, the combined model was the most accurate (62 
%) when compared to clinical (55 %) and SNP (55 %) models individ
ually (Fig. 4C).

For late RT-induced toxicities, predictive models incorporating 
clinical data have been created for different cancer sites, with AUC 
values ranging from 0.60 to 0.75 [41–43]. Notably, there are no such 
models tailored specifically for breast radiation toxicity. Our study 
aimed to fill this gap, initially achieving a promising predictive power of 
c-index = 0.75 using clinical variables. However, in the validation 
cohort, the power dropped to c-index = 0.59. Combining clinical vari
ables and SNPs in a single model showed higher accuracy compared to 
separate models but also dropped to a c-index of 0.59 during validation 
(Fig. 6A).

Our findings, from both the acute and late studies, indicate that 
clinical and patient-related factors have a higher predictive value than 
that offered by the specific set of SNPs included in our study (Figs. 4 and 
6A-B), underscoring the importance of incorporating clinical variables 
alongside genetic association studies [13,44].

So far, the relationship between acute and late effects has not yet 
been clarified [45–47]. Interestingly, our data reveals that only around 
25 % of patients who experience acute toxicity subsequently develop 
late toxicity (Fig. 2). We included in the Lasso selection acute toxicity for 
predicting late toxicity and it was not selected, suggesting that acute 
toxicity is not a mandatory precursor for the occurrence of late toxicity 
for BC patients at least for the studied endpoints.

As expected, our models showed better performance in the training 
dataset but dropped in the validation cohort (Figs. 4 and 6). This sug
gests potential overfitting, where the models don’t generalize well to 
new data. Likewise, it is worth noting that there were differences in 
radiation techniques between the training and validation cohorts 
(Tables 1 and 2). In the training cohort there was a higher prevalence of 
hypofractionated treatment, less IMRT and more 3D-CRT employment. 
Additionally, boost treatments were less common in the training cohort, 
especially for brachytherapy and electron-photon boost. These differ
ences suggest that the construction of predictive models for RT side ef
fects may benefit from subgroup analysis based on specific RT 
modalities.

Another limitation of this study is the inclusion of only patients of 
European descent, which may affect the generalizability of our findings 
to more diverse populations. This restriction was necessary to minimize 
potential confounding due to population stratification; however, it may 
limit the applicability of our model across different ethnic groups. 

Fig. 2. Sankey diagram illustrating the distribution of acute and late toxicity among the training and validation cohorts. Patients without acute toxicity are depicted 
in blue, while those experiencing acute toxicity are represented in red. Patients without late toxicity are shown in green, and those with late toxicity are displayed in 
violet. Excluded patients are represented in grey.
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Future studies should include more diverse cohorts to ensure broader 
validity and to mitigate potential biases in genetic associations.

Our study’s strengths include extended, prospective follow-up 
beyond the conventional two years, revealing reliable long-term 
toxicity trends. Additionally, our development of predictive models 
coupled with the use of training and validation sets involving different 
hospitals ensures reliability, albeit at the potential cost of reduced sta
tistical power due to smaller sample sizes. However, a limitation is our 
use of candidate genetic variants for SNP profiling, potentially missing 
the full genetic complexity of toxicity responses.

5. Conclusions

When combining clinical variables and SNPs, the model exhibited 
the highest predictive accuracy for acute and late toxicity, highlighting 

the potential benefits of integrating both types of variables for opti
mising model performance. However, the combined models’ limited 
improvement in AUC or c-index during validation underlines the 
ongoing difficulties in developing robust, clinically meaningful SNP- 
based predictive models. Further research is warranted to refine/vali
date the predictive models, considering larger and diverse patient co
horts. Additionally, incorporating other relevant factors, such as 
dosimetry, additional genetic markers or SNP interactions, and using 
machine learning approaches may enhance the accuracy and general
izability of toxicity prediction models. Furthermore, integrating multi- 
omics approaches, including emerging predictive factors such as radio
mic parameters, the radiation-induced lymphocyte apoptosis (RILA) 
test, transcriptomic data, and immune response markers, may contribute 
to improving risk stratification and could inform future research that 
complements our findings.

Table 1 
Patient characteristics in the acute toxicity cohort.

Characteristic Overall Training Validation Missings

population population population

N = 1962 N = 920 N = 1042

Patient characteristics
Age at RT start (years) (mean ± SD) 58.46 ± 11.09 58.25 ± 11.35 58.66 ± 10.85 4 (0.20 %)
BMI (kg/m2) (mean ± SD) 26.47 ± 5.60 27.21 ± 6.18 25.85 ± 4.98 73 (3.72 %)
Smoker ​ ​ ​ 21 (1.07 %)
Never 1087 (55.40 %) 527 (57.28 %) 560 (53.74 %) ​
Ex 590 (30.07 %) 286 (31.09 %) 304 (29.17 %) ​
Current 264 (13.46 %) 106 (11.52 %) 158 (15.16 %) ​
Bra cup size ​ ​ ​ 163 (8.31 %)
AA-A 144 (7.34 %) 61 (6.63 %) 83 (7.97 %) ​
B 623 (31.75 %) 273 (29.67 %) 350 (33.59 %) ​
C 538 (27.42 %) 265 (28.80 %) 273 (26.20 %) ​
≥D 494 (25.18 %) 218 (23.70 %) 276 (26.49 %) ​
Diabetes 113 (5.76 %) 57 (6.20 %) 56 (5.37 %) 1 (0.05 %)
Breast Cancer Phenotype ​ ​ ​ 16 (0.82 %)
DCIS 190 (9.68 %) 61 (6.63 %) 129 (12.38 %) ​
HER2þ 55 (2.80 %) 35 (3.80 %) 20 (1.92 %) ​
Luminal 424 (21.61 %) 291 (31.63 %) 133 (12.76 %) ​
Luminal A 686 (34.96 %) 242 (26.3 %) 444 (42.61 %) ​
Luminal B HER2þ 133 (6.78 %) 66 (7.17 %) 67 (6.43 %) ​
Luminal B HER2- 327 (16.67 %) 159 (17.28 %) 168 (16.12 %) ​
Triple Negative 131 (6.68 %) 54 (5.87 %) 77 (7.39 %) ​
Side of primary tumour ​ ​ ​ 4 (0.20 %)
Left 1008 (51.38 %) 467 (50.76 %) 541 (51.92 %) ​
Right 950 (48.42 %) 449 (48.8 %) 501 (48.08 %) ​
Cancer treatment
Surgery type ​ ​ ​ 11 (0.56 %)
Segmentectomy/Quadrantectomy 1097 (55.91 %) 618 (67.17 %) 479 (45.97 %) ​
Wide local excision 854 (43.53 %) 296 (32.17 %) 558 (53.55 %) ​
Axillary surgery type ​ ​ ​ 265 (13.51 %)
No axillary surgery 145 (7.39 %) 56 (6.09 %) 89 (8.54 %) ​
Sentinel node biopsy 1223 (62.33 %) 500 (54.35 %) 723 (69.39 %) ​
Planned axillary dissection 135 (6.88 %) 76 (8.26 %) 59 (5.66 %) ​
Sentinel node biopsy þ axillary dissection 194 (9.89 %) 89 (9.67 %) 105 (10.08 %) ​
Chemotherapy 630 (32.11 %) 350 (38.04 %) 280 (26.87 %) 2 (0.10 %)
Neoadjuvant chemotherapy 189 (9.63 %) 115 (12.50 %) 74 (7.10 %) 4 (0.20 %)
Adjuvant chemotherapy 462 (23.55 %) 254 (27.61 %) 208 (19.96 %) 3 (0.15 %)
Tamoxifen 817 (41.64 %) 351 (38.15 %) 466 (44.72 %) 347 (17.69 %)
Anti-HER2 therapy 158 (8.05 %) 86 (9.35 %) 72 (6.91 %) 356 (18.14 %)
Whole breast RT dose (Gy) (mean ± SD) 45.28 ± 5.48 44.94 ± 4.97 45.57 ± 5.88 1 (0.05 %)
Breast volume in the CT (cm3) (mean ± SD) 806.77 ± 500.02 876.26 ± 536.12 745.45 ± 457.40 21 (1.07 %)
RT hypofractionation 735 (37.46 %) 429 (46.63 %) 306 (29.37 %) 4 (0.20 %)
IMRT 952 (48.52 %) 340 (36.96 %) 612 (58.73 %) 3 (0.15 %)
3D-CRT 1574 (80.22 %) 869 (94.46 %) 705 (67.66 %) 21 (1.07 %)
RT boost 1358 (69.22 %) 510 (55.43 %) 848 (81.38 %) 0 (0.00 %)
RT boost type ​ ​ ​ 0 (0.00 %)
Electrons 324 (16.51 %) 203 (22.07 %) 121 (11.61 %) ​
Photons 701 (35.73 %) 306 (33.26 %) 395 (37.91 %) ​
Brachytherapy 111 (5.66 %) 1 (0.11 %) 110 (10.56 %) ​
Electrons þ Photons 222 (11.31 %) 0 (0.00 %) 222 (21.31 %) ​

SD: Standard deviation; RT: Radiotherapy; BMI: Body mass index; CT: computed tomography; IMRT: Intensity-modulated radiotherapy; 3D RT: 3D conformal radiation 
therapy.
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Fig. 3. Forest plots showing the association of clinical (orange), SNPs (blue) and SNPs + Clinical factors (violet) with radiation therapy-induced according to 
dichotomized high and low risk toxicity groups, in the training and validation cohorts from the acute toxicity study (A) and late toxicity study (B). CI: Confi
dence interval.

Fig. 4. Comparative performance metrics of the three predictive models (Clinical in orange, SNPs in blue, and SNPs + Clinical in violet) in training and validation 
cohort for acute toxicity. A) Receiver operating characteristic (ROC) curves in the training cohort. B) ROC curves in the validation cohort. C) Accuracy comparison in 
the training and validation cohorts. D) Sensitivity evaluation in the training and validation cohorts. E) Specificity assessment in the training and validation cohorts.
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Table 2 
Patient characteristics in the late toxicity cohort.

Characteristic Overall Training Validation Missings

population population population

N = 1560 N = 739 N = 821

Patient characteristics
Time of follow-up (months) (median [min-max]) 48 [24–96] 48 [24–84] 36 [24–96] 0 (0.00 %)
Age at RT start (years) (mean ± SD) 58.02 ± 10.79 57.64 ± 10.91 58.35 ± 10.68 4 (0.26 %)
BMI (kg/m2) (mean ± SD) 26.31 ± 5.33 26.97 ± 5.87 25.76 ± 4.77 64 (4.10 %)
Smoker ​ ​ ​ 16 (1.03 %)
Never 885 (56.73 %) 434 (58.73 %) 451 (54.93 %) ​
Ex 454 (29.1 %) 223 (30.18 %) 231 (28.14 %) ​
Current 205 (13.14 %) 82 (11.1 %) 123 (14.98 %) ​
Bra cup size ​ ​ ​ 151 (9.68 %)
AA-A 115 (7.37 %) 51 (6.9 %) 64 (7.8 %) ​
B 484 (31.03 %) 217 (29.36 %) 267 (32.52 %) ​
C 436 (27.95 %) 216 (29.23 %) 220 (26.8 %) ​
≥D 374 (23.97 %) 162 (21.92 %) 212 (25.82 %) ​
Diabetes 90 (5.77 %) 43 (5.82 %) 47 (5.72 %) 1 (0.06 %)
Breast Cancer Phenotype ​ ​ ​ 15 (0.96 %)
DCIS 150 (9.62 %) 50 (6.77 %) 100 (12.18 %) ​
HER2þ 47 (3.01 %) 32 (4.33 %) 15 (1.83 %) ​
Luminal 308 (19.74 %) 206 (27.88 %) 102 (12.42 %) ​
Luminal A 560 (35.9 %) 210 (28.42 %) 350 (42.63 %) ​
Luminal B HER2þ 106 (6.79 %) 51 (6.9 %) 55 (6.7 %) ​
Luminal B HER2- 270 (17.31 %) 139 (18.81 %) 131 (15.96 %) ​
Triple Negative 104 (6.67 %) 41 (5.55 %) 63 (7.67 %) ​
Side of primary tumour ​ ​ ​ 3 (0.19 %)
Left 810 (51.92 %) 377 (51.01 %) 433 (52.74 %) ​
Right 747 (47.88 %) 360 (48.71 %) 387 (47.14 %) ​
Cancer treatment
Surgery type ​ ​ ​ 9 (0.58 %)
Segmentectomy/Quadrantectomy 897 (57.5 %) 529 (71.58 %) 368 (44.82 %) ​
Wide local excision 654 (41.92 %) 206 (27.88 %) 448 (54.57 %) ​
Axillary surgery type ​ ​ ​ 199 (12.76 %)
No axillary surgery 112 (7.18 %) 47 (6.36 %) 65 (7.92 %) ​
Sentinel node biopsy 982 (62.95 %) 410 (55.48 %) 572 (69.67 %) ​
Planned axillary dissection 104 (6.67 %) 61 (8.25 %) 43 (5.24 %) ​
Sentinel node biopsy þ axillary dissection 163 (10.45 %) 77 (10.42 %) 86 (10.48 %) ​
Chemotherapy 520 (33.33 %) 289 (39.11 %) 231 (28.14 %) 2 (0.13 %)
Neoadjuvant chemotherapy 158 (10.13 %) 95 (12.86 %) 63 (7.67 %) 4 (0.26 %)
Adjuvant chemotherapy 381 (24.42 %) 211 (28.55 %) 170 (20.71 %) 3 (0.19 %)
Tamoxifen 666 (42.69 %) 280 (37.89 %) 386 (47.02 %) 267 (17.12 %)
Anti-HER2 therapy 130 (8.33 %) 73 (9.88 %) 57 (6.94 %) 275 (17.63 %)
Whole breast RT dose (Gy) (mean ± SD) 45.53 ± 5.38 45.35 ± 4.95 45.69 ± 5.74 0 (0.00 %)
Breast volume in the CT (cm3) (mean ± SD) 791.03 ± 468.01 855.57 ± 506.86 733.3 ± 422.33 14 (0.90 %)
RT hypofractionation 533 (34.17 %) 309 (41.81 %) 224 (27.28 %) 3 (0.19 %)
IMRT 739 (47.37 %) 246 (33.29 %) 493 (60.05 %) 1 (0.06 %)
3D-CRT 1272 (81.54 %) 700 (94.72 %) 572 (69.67 %) 14 (0.9 %)
RT boost 1124 (72.05 %) 436 (59 %) 688 (83.8 %) 0 (0.00 %)
RT boost type ​ ​ ​ 0 (0.00 %)
Electrons 286 (18.33 %) 174 (23.55 %) 112 (13.64 %) ​
Photons 563 (36.09 %) 260 (35.18 %) 303 (36.91 %) ​
Brachytherapy 101 (6.47 %) 1 (0.14 %) 100 (12.18 %) ​
Electrons þ Photons 174 (11.15 %) 1 (0.14 %) 173 (21.07 %) ​

SD: Standard deviation; RT: Radiotherapy; BMI: Body mass index; CT: computed tomography; IMRT: Intensity-modulated radiotherapy; 3D RT: 3D conformal radiation 
therapy.
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