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Abstract 

Background:  Metastatic hormone-naïve prostate cancer (mHNPC) is an infrequent 
form of this tumor type that is characterized by metastasis at the time of diagnosis 
and accounts for up to 50% of prostate cancer-related deaths. Despite the exten-
sive characterization of localized and metastatic castration-resistant prostate cancer, 
the molecular characteristics of mHNPC remain largely unexplored.

Results:  Here, we provide the first extensive transcriptomics characterization of pri-
mary tumor specimens from patients with mHNPC. We generate discovery and vali-
dation bulk and single-cell RNA-seq datasets and perform integrative computational 
analysis in combination with experimental studies. Our results provide unprecedented 
evidence of the distinctive transcriptional profile of mHNPC and identify stroma 
remodeling as a predominant feature of these tumors. Importantly, we discover 
a central role for the SRY-box transcription factor 11 (SOX11) in triggering a heterotypic 
communication that is associated with the acquisition of metastatic properties.

Conclusions:  Our study will constitute an invaluable resource for a profound under-
standing of mHNPC that can influence patient management.
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Background
Prostate cancer (PC) is the most prevalent cancer type in men, and it is predominantly 
diagnosed in a localized stage, when curative-intended therapies are highly efficacious. 
Recurrent PC is subject to different means of androgen signaling inhibition and chemo-
therapy. Failure of these therapeutic approaches might result in an ultimately metastatic 
form of the disease (metastatic castration resistant PC, or mCRPC). The molecular land-
scape and driver alterations of localized PC and mCRPC have been extensively char-
acterized [1–3], contributing to build our current portrait of the disease. However, a 
minority of PC cases (estimated 10%) [4] are diagnosed in a disseminated stage, offering 
a unique biological scenario where metastatic disease emerges prior to systemic therapy 
(metastatic hormone-naïve PC, mHNPC).

Despite the low incidence of mHNPC, these patients account for up to 50% of mor-
tality by PC [5]. Prostatectomy is not a standard of care procedure in mHNPC cases, 
which limits biological sample availability and hampers the molecular characteriza-
tion of this rare form of PC. A recent comprehensive study has highlighted extensive 
genomic intra-tumoral heterogeneity in mHNPC primary tumors [4]. This and previous 
studies support that mHNPC primary tumors genetically resemble advanced mCRPC 
specimens rather than primary locoregional tumors [4, 6, 7] or, alternatively, present an 
intermediate profile [8, 9]. Alterations that are common to both mHNPC and mCRPC 
include inactivation of tumor suppressor genes TP53, PTEN, and RB1. In contrast, aber-
rations in androgen receptor (AR) gene are infrequent in mHNPC [4, 6, 7, 10] despite 
reduced AR activity in these tumors [11]. Altogether, genomic evidence suggests that the 
aggressive features of mHNPC primary tumors predate therapy exposure. Nevertheless, 
this rare subtype of the disease remains severely uncharacterized at the molecular level. 
Improved clinical management strategies in mHNPC demand the generation of molecu-
lar resources that can impact guidelines for patient stratification and treatment.

Here, we present the first comprehensive transcriptome-wide characterization of pri-
mary tumors obtained from mHNPC patients using bulk and single-cell RNA sequenc-
ing technologies. For appropriate biological comparison, we contrasted primary tumors 
from patients with localized disease to untreated mHNPC primary tumors using needle 
biopsy-derived tissue. To account for the extensive inter-patient molecular heterogene-
ity that characterizes PC primary lesions [1–3], we assembled and profiled two retro-
spective patient cohorts encompassing 110 individuals using bulk RNA-Seq. Extensive 
computational characterization of bulk RNA-Seq was combined with single-cell tran-
scriptomics analysis of 15 cases, leading to the identification of SOX11 as a potential 
driver of stroma remodeling and cancer cell dissemination in mHNPC.

Results
The transcriptional landscape of metastatic hormone‑naïve prostate cancer primary 

tumors is highly divergent

To undertake a profound molecular characterization of mHNPC, we generated a series 
of patient cohorts with either localized disease or metastatic dissemination at diagnosis 
leveraging from retrospective studies in different Spanish hospitals, prospective biopsy 
collection, and detailed clinical annotation of publicly available resources (Fig.  1A). 
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Taking advantage of the availability of prostate biological material from formalin-fixed 
and paraffin embedded (FFPE) diagnostic needle biopsies, we first performed bulk RNA 
sequencing in a discovery cohort comprising 47 localized (LPC) and 31 mHNPC speci-
mens (see workflow in Fig. 1A and Additional file 1: Table S1 for cohort characteristics). 
We hypothesized that comparing primary tumor biopsies from metastatic and non-met-
astatic disease without the influence of therapy-induced selection pressure would offer 
us unique insights into the molecular determinants of PC aggressiveness. Unsupervised 
hierarchical clustering and principal component analyses (Fig. 1B and Additional file 2: 
Fig. S1A) revealed highly distinct transcriptomic profiles in these two primary tumor 

Fig. 1  Divergent transcriptional profile of primary tumor specimens from localized and metastatic 
hormone-naïve prostate cancer patients. A Overview of the cohorts of localized (LPC) and metastatic 
hormone-naïve (mHNPC) prostate cancer patients and transcriptomic datasets from primary tumors included 
in this study. B Unsupervised hierarchical clustering of transcriptome-wide patterns of LPC and mHNPC 
primary tumors (discovery cohort). C Volcano plot of differential gene expression analysis for the mHNPC 
vs. LPC comparison. D Heatmap and unsupervised clustering of the top 50 differentially expressed genes 
including technical (RNA quality score on FFPE samples, DV200) and clinical variables (age, PSA, and ISUP). E 
Gene fusion detection in LPC and mHNPC tumors from transcriptomic data. Diversity estimates according to 
Shannon diversity index are shown (p-value from Hutcheson’s t-test). The zoom shows TMPRSS2-ERG gene 
fusion class with the relative fractions in each tumor type (p-values from binomial test)
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types, with notable interindividual variation within mHNPC tumors. We identified a 
large number of genes with significant transcriptional differences between disease clini-
cal states (5147 differentially expressed genes or DEGs, |log2(fold change > 1.5)| and false 
discovery rate (FDR) < 0.05, Fig. 1C and Additional file 3: Table S2) that were organized 
into hundreds of biological processes differentially enriched (Additional file 3: Table S3). 
These data unraveled a profound molecular difference between LPC and mHNPC. His-
topathological differences could represent a confounding factor in this analysis. Since 
mHNPC exhibited higher Gleason score (or ISUP grade [12]) (Fig. 1D), we took advan-
tage of four publicly available cohorts encompassing 780 patients with localized disease 
with annotated Gleason score (Additional file 3: Table S4). Top 50 DEGs failed to cluster 
the patients according to pathological grading, suggesting that the observed differential 
expression is not driven by this parameter (Additional file 2: Fig. S1B–E).

Transcriptional data can provide valuable information about genomic reorganization 
in these aggressive tumors [13]. In contrast to other cancer types, gene fusions represent 
the most common genetic alteration in PC, being present in over 70% of the cases [14, 
15]. We inferred gene fusions from the RNA-Seq data following the Trinity Cancer Tran-
scriptome Analysis Toolkit (CTAT) [13]. In line with previous studies, > 80% of patients 
in our cohort presented gene fusions (Additional file  3: Table  S5). Despite the similar 
number of individuals with gene fusions and the similar number of fusions per individ-
ual between the two groups (Additional file  2: Fig. S1F, G), the composition of fusion 
classes was markedly different in mHNPC, which exhibited remarkable diversity of 
fusion transcripts (Shannon Diversity Index, p-value = 2.83e−08, Fig. 1E). The increased 
diversity in genomic structural variation is in concordance with the larger inter-patient 
variability observed in the mHNPC transcriptome. Notably, while LPC showed a high 
frequency of TMPRSS2-ERG gene fusions, this event was underrepresented in mHNPC 
patients (19% in mHNPC vs 40% in LPC, binomial test, p-value = 0.011, Fig. 1E). This 
translocation juxtapositions the androgen-regulated promoter of TMPRSS2 with the 
coding region of the ERG oncogene. The existence of this gene fusion is associated with 
androgen-dependent tumors [16], and the reduction in this event in mHNPC is consist-
ent with decreased AR dependence and earlier development of resistance to androgen 
deprivation therapy [17].

Gene network analysis reveals increased stromal remodeling in mHNPC

Our transcriptomics results reveal profound gene expression differences between LPC 
and mHNPC, which represents an important challenge for the identification of driver 
candidate processes. Gene network analyses constitute powerful methods to identify 
coordinated activities of gene sets. To prioritize among the extensive list of potential 
biological processes underlying the metastatic capacity of mHNPC primary tumors, 
we applied weighted gene correlation network analyses (WGCNA) [18] (Fig. 2A, Addi-
tional file 2: Fig. S2A–C), where highly interconnected genes are clustered in modules. 
WGCNA identified 49 color-coded modules, and 7 were strongly positively associ-
ated with the mHNPC phenotype (Pearson’s r > 0.6 and FDR < 0.05, Fig. 2B). The “pur-
ple” module exhibited the highest coordinated overexpression in mHNPC (Fig.  2B, 
Additional file 2: Fig. S2D and Additional file 3: Table S6). This module (including 758 
genes) incorporated the largest proportion of DEGs (77.7%), Fig.  2B) highlighting the 
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convergence of gene-by-gene and network analyses on this gene set. Unsupervised hier-
archical clustering revealed that the top 30 genes of the purple module robustly dis-
criminated mHNPC from LPC (Fig. 2C) and this list was enriched in DEGs (Fig. 1D). 
The DEGs showed larger intramodular connectivity than non-DEGs (Wilcoxon test, 
p-value = 0.0013, Fig. 2D, Additional file 3: Table S2), implying that DEGs tend to be hub 
genes within the network. Interestingly, functional enrichment analysis identified pro-
cesses related to stroma remodeling within the purple module in mHNPC (Fig. 2E).

Fig. 2  Gene-network analyses point at upregulation of stroma remodeling in mHNPC. A Schematic 
representation of the gene module construction using weighted-gene network correlation analyses 
(WGCNA) and association with mHNPC and LPC phenotypes. B Volcano plot showing the results of the 
association of each module with the mHNPC phenotype and the percentage of differentially expressed 
genes (DEGs) per module (dot size). Lines represent significance thresholds at Pearson’s r > 0.6 and FDR < 0.05. 
C Heatmap and unsupervised clustering of the top 30 DEGs in the purple module. D Intramodular 
connectivity between the genes in the purple module (p-value from Wilcoxon test) according to differential 
expression (DEG status). E REACTOME pathway enrichment results for the DEGs in the purple module. F 
Correlation between the log2 fold changes of the differential expression analyses in the discovery (y-axis) and 
validation (x-axis) cohorts for all genes (p-values from Spearman’s correlation). Each gene is colored according 
to module membership in the discovery WGCNA analysis. G Boxplot of the log2 fold changes in the validation 
dataset for DEGs grouped by the modules identified by WGCNA in the discovery dataset. Only modules with 
at least 5 genes are shown
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To validate our observations, we generated a validation patient cohort comprising 
primary tumor specimens from 17 LPC and 15 mHNPC patients from an independent 
hospital (Fig. 1A and Additional file 1: Table S1). In line with the results from the discov-
ery cohort, transcriptome-wide variation robustly clustered the two disease types (Addi-
tional file 2: Fig. S2E, F). We identified 3180 DEGs in mHNPC tumors in the validation 
cohort (|log2 (fold change > 1.5)| and FDR < 0.05, Additional file 2: Fig. S2G, Additional 
file 3: Table S7). Notably, there was a significant overlap between the DEGs of both data-
sets (Additional file 2: Fig. S2H) and the fold changes obtained in both cohorts were sig-
nificantly correlated (Fig. 2F, Spearman’s rho = 0.373, p-value < 2.22e−16 for all genes and 
Additional file 2: Fig. S2I, Spearman’s rho = 0.833, p-value < 2.22e−16 for DEGs in both 
datasets). When projecting WGCNA module ascription into the validation dataset, we 
corroborated that genes in the purple module were the most robustly upregulated in 
mHNPC (Fig. 2G). Our computational strategy allowed us to reduce the transcriptional 
changes observed in mHNPC into a subset of coordinated genes associated with stroma 
remodeling.

Transcriptomics at single‑cell resolution identifies mHNPC‑specific heterotypic interaction 

programs coordinated by SOX11

Bulk transcriptomic analysis provides information of mRNA abundance with disregard 
to the cellular source, and obscure quantitative and functional cell type differences. 
To explore the compositional differences of the tumor biopsies, we employed in silico 
deconvolution methods that infer cell-type proportions from bulk transcriptomic data 
[19]. In the discovery cohort, the tumor purity estimates in mHNPC (namely, the rela-
tive abundance of the epithelial compartment) were significantly reduced, consistent 
with an increase in immune and stromal infiltration scores (Additional file 2: Fig. S3A 
and Additional file 4: Table S8). Analyses based on variance partitioning confirmed that 
the fraction of transcriptional variation explained by tumor purity was substantial and 
exhibited a larger contribution than the tumor type (mHNPC vs. LPC, Additional file 2: 
Fig. S3B and Additional file 4: Table S8). The validation cohort exhibited a similar trend 
towards a reduction in estimated tumor purity and increased non-immune stromal con-
tribution, while the reduced statistical significance could be due to the smaller cohort 
size or to the differences in sample collection (RNA from the validation cohort was 
obtained from frozen tissue that was collected from needle biopsies for mHNPC and 
prostatectomies for LPC [20]) (Additional file 2: Fig. S3C, D). Changes in stroma remod-
eling could be ascribed to qualitative (function) or quantitative (abundance) alterations, 
and the inference of qualitative stromal changes from bulk RNA-Seq [21]. To study 
functional tumor and stromal cell alterations in mHNPC, we analyzed transcriptomic 
changes at single-cell resolution. We first leveraged a publicly available single-cell RNA-
Seq [22] (Fig. 1A and Additional file 1: Table S1), and did not find evidence of differential 
composition in any of the identified 21 clusters (Fig. 3A, Additional file 2: Fig. S4A–C 
and Additional file 5: Table S9). To explore functional differences, we identified DEGs 
between mHNPC and LPC (Fig. 3B). The epithelial compartment, and specifically lumi-
nal cluster 6, exhibited the greatest number of DEGs (n = 14, |log2(fold change > 1.5)| 
and FDR < 0.1, Fig. 3B, Additional file 6: Table S10). To confirm that cluster 6 contained 
tumor cells, we performed copyKAT [23, 24] (Additional file  2: Fig. S4D). Consistent 
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with bulk transcriptomics analysis, stroma remodeling functions were overrepresented 
among the DEGs in cluster 6 (Fig. 3C). To test the coherence between single-cell and 
bulk differential expression analyses, we correlated the fold changes obtained for each 
strategy (minimum |log2(fold change > 1.5|). Notably, genes in the purple module 
showed the strongest correlation with cluster 6 in single-cell data and, conversely, genes 
within the purple module were best represented in cluster 6 (Fig. 3D, E and Additional 
file 6: Table S11). Taken together, the integration of bulk and single-cell analyses identi-
fies genuine molecular alterations in an epithelial tumor cell subset that is strongly asso-
ciated with mHNPC.

The presence of scDEGs in stromal clusters and the enrichment of mHNPC in stroma-
regulatory processes suggested that molecular alterations in these tumor cells could gov-
ern stromal remodeling. We modeled intercellular communication between cluster 6 (as 
sender cells expressing ligands) and stromal cells (fibroblast and endothelial clusters as 
receiver cells expressing receptors), using NicheNet [25]. Among all processes showing 
differential connectivity between the two pathological conditions (LPC and mHNPC), 
we found an overrepresentation of ligands assigned to the purple module (91/824, 11% 
of interactions in LPC, and 93/356, 26.12% in mHNPC, p-value = 1.004e−10, chi-squared 
test, Fig.  3F). Interestingly, some of the most differentially expressed genes replicated 
in bulk and single-cell cohorts were among the top ligands involved in the heterotypic 
communication process (Fig.  3G and Additional file  7: Table  S12), including SFRP2, 
INHBA, COMP, and IL11.

The transcriptional regulation of this ligand set belonging to purple module prompted 
us to search for transcriptional regulators that were perturbed in mHNPC and 

(See figure on next page.)
Fig. 3  Single cell molecular deconstruction of mHNPC. A Visualization of single-cell discovery dataset (36,424 
cells) using Uniform Manifold Approximation and Projection (UMAP). Colors code for the assignment of each 
cell to different clusters by graph-based clustering (Leiden algorithm). B Number of differentially expressed 
genes (DEG) per single-cell cluster comparing mHNPC and LPC. C Reactome pathway enrichment analysis for 
DEGs in cluster 6. D Correlation analyses between the fold changes of differential gene expression (mHNPC 
vs LPC, minimum |log2(fold change)|> 0.6) in bulk and single-cell for mHNPC-associated gene modules. 
Dark magenta did not show any genes above the fold change criteria and is not represented in the figure. 
Dot colors show Spearman’s correlation values and dot size represents p-value. E Correlation analysis of fold 
changes between bulk and single-cell data for genes in the purple module in cluster 6. F Bar plot showing 
the module classification of the ligands identified in cell–cell communication between cluster 6 (sender) and 
non-immune stromal cells (receiver). G Chord diagram of mHNPC-enriched ligands in the communication 
between cluster 6 and stromal cells that belong to the purple module. Different stromal clusters were 
merged into categories for visualization. H Spearman correlation of the purple ligands with transcription 
factors in bulk transcriptome data from mHNPC patients (discovery bulk cohort). I Spearman correlation of 
the purple ligands with transcription factors in bulk transcriptome data from mHNPC patients (validation 
bulk cohort). J Projection of 28 genes associated with cluster 6 in the discovery dataset (i.e. markers that 
distinguish cluster 6 from other epithelial cells) in the validation cohort, exhibiting highest similarity with 
cluster 12 within the epithelial compartment. K Correlation analysis of differential expression (fold change 
of mHNPC vs. LPC) between bulk and single-cell RNA-Seq in cluster 12 for purple module genes. L Bar plot 
showing the results of cell–cell communication between cluster 12 (sender) and non-immune stromal 
cells (receiver) in the single-cell validation cohort for ligands with purple module membership. M Chord 
diagram of mHNPC-enriched ligands in the communication between cluster 12 and stroma that belong to 
the purple module. Different stromal clusters were merged into categories for visualization. N Spearman 
correlation of the purple ligands identified in the single-cell validation cohort with transcription factors in 
bulk transcriptome data from mHNPC patients (discovery bulk dataset). O Spearman correlation of the purple 
ligands identified in the single-cell validation cohort with transcription factors in bulk transcriptome data 
from mHNPC patients (validation bulk dataset)
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coordinatedly altered the expression of these genes. To this end, we designed a strategy 
based on gene-to-gene correlation analysis, establishing that ligand expression would 
correlate with the abundance of upstream transcription factors. To avoid the sparsity of 
single-cell data at single-gene level, we used the discovery bulk transcriptomic dataset 
and explored the correlation between all annotated transcription factors [26] and the 
shortlisted purple module ligands. Interestingly, the SRY-Box Transcription Factor 11, 
SOX11, exhibited the strongest correlation with the ligand set (Fig. 3H, Additional file 8: 
Table S13). Of note, the corresponding cellular communication analyses between cluster 
6 and the whole stroma (including immune clusters), pointed to a similar set of ligands 
(10/11 shared) and SOX11 (Additional file 2: Fig. S4E, F). Importantly, this strategy was 
replicated using the bulk validation cohort (Fig. 3I and Additional file 2: Fig. S4G).

Fig. 3  (See legend on previous page.)



Page 9 of 23Martin‑Martin et al. Genome Biology          (2025) 26:154 	

We generated a validation single-cell RNA-Seq dataset from fresh needle biopsies 
from 2 LPC and 2 mHNPC patients (Fig. 1A and Additional file 1: Table S1). In total, we 
profiled 36,424 cells and identified 21 clusters corresponding to epithelial, stromal, and 
immune compartments (Additional file 2: Fig. S5A–C). The compositional analyses of 
this dataset revealed no differences in cluster abundance, consistent with findings from 
the discovery cohort (Additional file 5: Table S9 and Additional file 2: Fig. S5D). In this 
new dataset, cluster 12 exhibited the greatest similarity to the cluster labeled as num-
ber 6 in the discovery single-cell dataset: (i) luminal nature and shared cluster markers 
enriched in stroma remodeling, (ii) large-scale chromosomal copy number alterations, 
and (iii) significant association with purple WGCNA module regarding differential 
mHNPC expression (Fig.  3J, K, Additional file  2: Fig. S5E–G).To further characterize 
these clusters, we identified biological processes specifically enriched in mHNPC within 
cluster 6 in the discovery dataset but absent in other luminal clusters. Functional gene 
set enrichment analysis (GSEA) highlighted 7 such unique processes (Additional file 2: 
Fig. S5H). When applying GSEA to the validation dataset, cluster 12 showed the strong-
est enrichment of these pathways in mHNPC, with 3 out of 7 reaching significance 
(compared to 0 - 1 significant pathway in other luminal clusters) (Additional file 2: Fig. 
S5H). Notably, validated functional categories related to extracellular matrix organiza-
tion (Extracellular Structure Organization, External Encapsulating Structure Organiza-
tion and Skeletal System Development) which is a hallmark of tumor-stroma crosstalk. 
This functional overlap further supports the equivalence between cluster 12 and cluster 
6 and reinforces their potential role in mHNPC-associated processes.

NicheNet-based cell–cell communication analysis in the validation single- cell  data-
set between cluster 12 and the stromal compartment corroborated the over-representa-
tion of ligands belonging to the purple module among the mHNPC-enriched molecular 
communication processes (178/2349, 7.5% in LPC and 256/2001, 12.8% in mHNPC, 
p-value = 1.426e−08, chi-squared test, Fig. 3L). Some of the top ligands involved in this 
communication were concordant with the single-cell discovery dataset (COMP, INHBA, 
and SFRP2), and new ones were also detected such as FN1 and SPP1 (Fig. 3M and Addi-
tional file 7: Table S12). The ligands were broadly expressed across stromal and immune 
compartments (Additional file  2: Fig. S6A, B), similar to the ligands in the discovery 
dataset (Additional file 2: Fig. S6C), and target gene activation in the receiver cells did 
not point at a specific stromal cell type being predominantly influenced in both cohorts 
(Additional file 2: Fig. S6D, E). These data suggest that epithelial tumor cells in mHNPC 
orchestrate a coordinated stromal reprogramming rather than a process driven by a sin-
gle cell type. Alternatively, it may reflect the resolution limits of single-cell data and the 
inherent constraints of ligand–receptor–target network structures.

Despite the expected variability in gene detection in highly sparse single-cell datasets 
between the two single-cell cohorts, SOX11 was corroborated as the transcription factor 
with the strongest correlation with this second set of ligands in mHNPC transcriptomes 
(Fig. 3N, O, discovery and validation bulk datasets, respectively, and Additional file 8: 
Table S13). In line with the discovery single-cell dataset, the ligand analysis including the 
immune stroma also pointed at SOX11 (Additional file 2: Fig. S6F, G). Collectively, by 
integrating bulk and single-cell datasets from four independent cohorts, we consistently 
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identified a tumor cell-intrinsic heterotypic communication program that is distinctive 
of mHNPC and potentially regulated by SOX11.

SOX11 promotes metastatic dissemination in PC

As a proof-of-concept of the potential relevance of the mHNPC transcriptional resource, 
we interrogated the relevance of SOX11 for the metastatic phenotype in PC. SOX11 
belongs to the SOX transcription factor family. It plays crucial roles in stem cell function 
and tissue specification during embryogenesis but is largely absent in most differentiated 
adult tissues [27]. SOX11 dysregulation is associated with oncogenesis, tumor progres-
sion, metastasis, and therapy resistance [28–30]. Our integrative transcriptomic analyses 
unveiled that SOX11 ranks prominently among the most overexpressed genes (Fig. 2F) 
and, importantly, it represents the top upregulated transcription factor (Fig.  4A). The 
observed elevation in SOX11 levels and activity in mHNPC prompted us to study the 
contribution of this transcription factor to the metastatic phenotype. To this end, we 
engineered DU145 PC cells (which do not exhibit detectable levels of the transcription 
factor) to overexpress SOX11 (Fig. 4B, Additional file 2: Fig. S7A). Importantly, ectopic 
SOX11 expression resulted in increased mRNA and protein abundance of several purple 
module ligands identified in our scRNA-Seq analyses as contributors to the heterotypic 
communication between cancer cells and the stroma (Fig. 4C, Additional file 2: Fig. S7B 
and Additional file  9: Table  S14). Next, we inoculated control (3HA) or SOX11-over-
expressing DU145 cells expressing orthotopically in the ventral prostate lobe of immu-
nocompromised nude mice. Of note, both cell lines expressed GFP and luciferase for 
in vivo bioluminescence monitoring. Remarkably, SOX11-overexpressing PC cells exhib-
ited increased metastatic capacity, with higher colonization of lumbar lymph nodes and 
bones (Fig. 4D, E, Additional file 2: Fig. S7C). Of interest, the effects of SOX11 overex-
pression on cell number in  vitro were negligible in contrast with the effect on tumor 
mass in vivo (Additional file 2: Fig. S7D–F). These data are consistent with the proposed 
role for this transcription factor in the activation of stroma remodeling processes, which 
would result in the manifestation of the phenotype in the presence of stroma but not in 
isolation (in vitro cancer cell culture).

Taking advantage of this cellular model, we characterized transcriptomics altera-
tions that emanate from SOX11 overexpression by RNA-Seq. Functional enrichment 
analysis highlighted the regulation of stroma remodeling processes in SOX11 overex-
pressing cells, consistent with our data in mHNPC (Fig. 4F, Additional file 2: Fig. S7G, 
Additional file 10: Table S15). Next, we generated a transcriptional signature of SOX11 
activity, composed of 55 genes positively regulated by the transcription factor (|log2(fold 
change)|> 1.5 and FDR < 0.05). This gene set was strongly associated with mHNPC in 
both the discovery and validation patient cohorts, confirming increased SOX11 activity 
in this aggressive form of PC (Fig. 4G). Our comprehensive transcriptional portrait of 
mHNPC reveals an unprecedented role for SOX11 in PC dissemination and supports its 
contribution to the acquisition of metastatic features in this disease.

The evidence pointing at alterations and functional contribution of SOX11 in pros-
tate cancer is limited, and current reports present conflicting results [30, 31]. On the 
one hand, upregulation of this gene was associated with the acquisition of aggressive 
features in prostate tumors after therapy, which would be conceptually aligned with 
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our observation [30]. On the other hand, SOX11 was postulated as a tumor suppres-
sor based on the reduction in its expression in prostate cancer localized disease com-
pared to benign prostate specimens [31]. Taking advantage of the availability of human 
prostate cancer transcriptional datasets [3, 15, 32–35], we decided to explore the expres-
sion of SOX11 in different pathological scenarios including localized prostate cancer 

Fig. 4  Proof-of-concept study of SOX11 as a metastatic driver in prostate cancer. A Waterfall plot 
representing the differential expression of transcription factors in mHNPC vs. LPC bulk RNA-Seq in discovery 
and validation cohorts. The position of SOX11 is highlighted. B Representative western blot in DU145 cells 
showing ectopic 3HA-SOX11 expression (n = 3). C Evaluation of mRNA abundance in the indicated genes by 
quantitative real-time PCR upon ectopic 3HA-SOX11 expression (n = 3–6). One sample t-test. D. Experimental 
design of the orthotopic injection of DU145 cells transduced with control and 3HA-SOX11-overexpressing 
lentiviral vectors into nude mice (n = 5 for 3HA, n = 6 for 3HA-SOX11). E Left, dot plot of lumbar lymph node 
(LLN) metastatic burden (day 51). One-tailed, Mann Whitney test. Middle, stacked bar plot of LLN metastasis 
appearance. One-tailed, Fisher test. Right, representative bioluminescence images of LLN metastasis. F 
REACTOME pathway enrichment analyses of the genes upregulated upon SOX11 overexpression. G Violin 
plots showing the levels of a SOX11-activity signature in the discovery and validation bulk RNA-Seq datasets. 
P-values from Wilcoxon test (two-tailed test for discovery and one-tailed for validation datasets, respectively). 
H Violin plots showing the levels of a signature composed of genes encoding for purple module ligands 
identified in single cell RNA-Seq and correlated with SOX11 in the discovery and validation bulk RNA-Seq 
datasets. P-values from Wilcoxon test (two-tailed test for discovery and one-tailed for validation datasets, 
respectively). I Hazard ratio (HR) and p-value of a signature based on the ligands used in H when analyzing as 
endpoint biochemical recurrence in the indicated datasets and comparing patients within quartiles 1 and 4. 
A representative Kaplan–Meyer curve is shown
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and adjacent normal tissue. Analysis of four independent patient cohorts did not show 
a reduction in SOX11 expression in any tumor condition, while we did observe a trend 
towards upregulation in metastatic specimens, which would be conceptually aligned 
with our findings (Additional file 2: Fig. S7H).

Then, we sought to monitor the influence of SOX11 levels or activity in prostate can-
cer biochemical recurrence after first line therapy. We analyzed the aforementioned 
public transcriptomics datasets [3, 15, 32–35]. We did not observe a consistent asso-
ciation of SOX11 expression (SOX11 mRNA abundance) or SOX11 inferred activity (the 
aforementioned-gene signature) with biochemical recurrence-free survival in patients 
diagnosed with localized PC (Additional file 2: Fig. S7I, J). Our data suggest that SOX11 
presents a genuine role ascribed to the pathogenesis of mHNPC. We hypothesized that 
despite the differential contribution of SOX11 to LPC and mHNPC, the ligands iden-
tified in mHNPC could be contributing to the acquisition of aggressiveness features 
in localized disease governed by other transcriptional processes. To test this notion, 
we monitored the expression of the ligands reported to contribute to the heterotypic 
cell–cell communication in mHNPC under the control of SOX11. A gene expression 
signature based on the 13 ligands identified robustly discriminated mHNPC from LPC 
(Fig. 4H). Strikingly, this signature exhibited robust and consistent prognostic potential 
in patients with localized prostate cancer. This predictive capacity for biochemical recur-
rence after surgery is indicative of the presence of early disseminated tumor cells with 
metastatic potential (Fig. 4I, Additional file 2: Fig. S7K).

Discussion
Prostate cancer (PC) research has been dominated by the analysis of the most prevalent 
form of the disease, which refers to localized, prostate-confined tumors (LPC). The sci-
entific community has generated extensive clinical, biological, and molecular informa-
tion about PC based on the study of LPC [1–3]. Similarly, the alterations and therapeutic 
vulnerabilities of metastatic PC have been established upon the study of heavily treated 
PC patients that ultimately develop metastasis. Whereas this strategy has been tremen-
dously valuable in the establishment of clinical guidelines in this tumor type, the trans-
lation of this evidence to mHNPC is uncertain. Considering that mHNPC cases, albeit 
infrequent, represent a large fraction of the mortality by PC [4, 5], it is of the utmost 
importance to characterize the molecular features of this form of prostate tumor to 
establish therapeutic strategies tailored to this aggressive disease.

Bulk transcriptomics offers valuable insight about predominant differences among 
biological conditions. However, complex biological specimens can pose a challenge 
due to the influence of mRNAs coming from different cell types [19]. In addition, when 
comparing profoundly different tumors, differential expression can prove insufficient to 
identify relevant molecular processes. Our implementation of WGCA [18] together with 
the generation and  integrated use of bulk and single-cell transcriptomics has enabled 
us to identify consistent stroma remodeling processes that can be illustrated by a set of 
SOX11-regulated ligands. On the one hand, the capacity of SOX11 to promote a meta-
static phenotype suggests that the upregulation of this transcription factor contributes 
to the aggressiveness of mHNPC. On the other hand, the capacity of SOX11-regulated 
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secreted ligands identified in mHNPC to inform about the risk of biochemical recur-
rence (in the absence of overt SOX11 upregulation) suggests that the role of SOX11 in 
mHNPC might be exerted by other transcription factors in aggressive LPC.

Conclusions
This study provides the most comprehensive transcriptional portrait of mHNPC to 
date. The data generated and the various cohorts available will represent an invaluable 
resource to boost the molecular and biological deconstruction of mHNPC. We high-
light the biological and molecular uniqueness of this aggressive form of PC and present 
proof-of-concept evidence of the value of this resource through the study of SOX11 as 
a transcription factor selectively activated in mHNPC that supports the acquisition of 
metastatic features.

Methods
Sample and patient disposition

Detailed information about the clinical and pathological characteristics of the cohorts 
included in this study are shown in Additional file 1: Table S1. Samples were labeled as 
LPC and mHNPC groups according to the patient metastatic status at the time of first 
diagnosis (M0, no distant metastasis present; M1, distant metastasis present, according 
to AJCC TNM stating system), upon review of electronic patient records, and based on 
standard of care imaging and clinical evaluations. The samples included in the discov-
ery cohort for bulk RNA-Seq profiling (formalin fixed paraffin embedded specimens 
from primary tumor biopsies) were collected from patients at Basurto University Hos-
pital in Bilbao (Spain). Sample collection was coordinated by the Basque Biobank. Sam-
ples with at least 5 (out of 12) positive needle biopsies were selected to ensure sufficient 
tumoral material for analysis. Tumor-rich regions were selected for RNA extraction by 
the pathologist (A.U–O). The ethics approvals for this project are CEIC-E 14–14 and 
19–20. The patient cohort for bulk RNA-Seq for validation purposes was generated at 
the Morales Meseguer University Hospital in Murcia (Spain). Fresh frozen OCT-embed-
ded tissue specimens were obtained from prostatectomy for LPC patients and from nee-
dle biopsies for mHNPC patients. The ethics approval for this project was CEIC-HMM 
1/18. The single-cell validation cohort was generated from patients recruited in Bas-
urto University Hospital in Bilbao (LPC patients) and Vall d’Hebron University Hospi-
tal in Barcelona (mHNPC patients), under IRB-approved protocols CEIC-E 14–14 and 
19–20, and PRAG5248 respectively. The work with human samples was performed with 
informed consent and complies with the Helsinki Declaration (World Medical Asso-
ciation, Declaration of Helsinki: Recommendations Guiding Physicians in Biomedical 
Research Involving Human Subjects. Adopted by the 18th World Medical Assembly, 
Helsinki, Finland, June 1964).

Bulk RNA‑Seq analyses on discovery cohort

We performed RNA-Seq (paired-end 150 bp reads, 86 M reads per sample in average) 
from formalin-fixed paraffin-embedded (FFPE) specimens derived from primary tumors 
in patients presenting localized and metastatic prostate cancer at the time of diagnosis 
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(recruited at the Basurto University Hospital, Spain). Sequencing libraries were prepared 
using SMARTer Stranded Total RNA-seq Kit v2 – Pico Input Mammalian kit (Takara Bio 
USA, Cat.# 634,411) and following the user manual (Rev. 063017). Based on the library 
specifications and read length of 150 bp, reads were specifically trimmed for 3 specific 
nucleotides using cutadapt v3.5 software as follows. First, we removed the first 3 nucle-
otides of R2 (cutadapt -U 3 –pair-filter = any –minimum-length = 30), then removed 
adapters from both reads using TruSeq adapters (cutadapt -b file:cutadapt_TruSeq_CD_
R1.fa -B file:cutadapt_TruSeq_CD_R2.fa –minimum-length = 30 –pair-filter = any) and 
finally removed the last 3 nucleotides in R1 (cutadapt -u -3 -q 10 –pair-filter = any –
minimum-length = 30). After quality control using fastQC, we mapped the reads to the 
human genome (Ensmbl GRCh38.v94) using STAR [36] version = 2.7.0e with parame-
ters: – outFilterMultimapNmax 1 – twopassMode Basic.

We identified differentially expressed genes (DEGs) between the two tumor types 
using DESeq2 (V1.34.0) [37] and applying variance stabilizing transformation (VST). 
We pre-filtered genes with less than 10 counts per smallest group size. Given the lower 
RNA quality in FFPE samples we calculated the recommended DV200 parameter that 
quantifies the percentage of fragments over 200 nucleotides. 74 out of 76 samples in our 
discovery cohort passed the recommended threshold of DV200 > 30–50% (Additional 
file 1: Table S1). We used DV200 and age as covariates in the analyses. Cell composition 
analyses were performed using ESTIMATE [19] R package (v1.0.13). Variance partition-
ing was performed using variancePartition [38] R package (v1.24.1). Enrichment analy-
ses were performed using gprofiler2 (v0.2.1) [39]. Gene fusions were detected with the 
Trinity CTAT Fusion workflow [13] using docker trinityctat/starfusion (CTAT library 
version Apr062020). First, we ran STAR-Fusion to identify candidate fusion transcripts 
based on discordant read alignments. The predicted gene fusions were ’in silico vali-
dated’ using FusionInspector. WGCNA [18] was run using R package “wgcna” (v1.64.1 in 
docker mochar/wgcna). We used VST counts as input and automatic, one-step method 
with the following parameters: corType = ”bicor”, deepSplit = 2, networkType = ”signed”.

Bulk RNA‑Seq data analyses on validation cohort

We performed RNA-Seq (paired-end 150 bp reads, 46 M reads per sample in average) 
from snap frozen OCT primary tumors collected from patients at the Morales Meseg-
uer University Hospital. Sequencing libraries were prepared using the TruSeq Stranded 
mRNA LibraryPrep kit (Illumina Inc. Cat. # 20,020,594) and TruSeq RNA CD Index 
Plate (Illumina Inc. Cat. # 20,019,792). Reads were trimmed for Illumina universal 
adapter using cutadapt: cutadapt -a "AGA​TCG​GAA​GAG​CAC​ACG​TCT​GAA​CTC​CAG​
TCA" -A "AGA​TCG​GAA​GAG​CGT​CGT​GTA​GGG​AAA​GAG​TGT" -j 0 -q 10 -m 30). 
Mapping and differential expression analyses were performed as described above for 
the discovery cohort, using RIN values in DESeq2 (instead of DV200) as covariates and 
applying no filtering for minimum reads in this validation cohort.

Analyses on single‑cell discovery cohort

We accessed single-cell RNA-Seq data (10X Genomics) from GEO with accession ID 
GSE141445. The data consisted of a processed count matrix on 13 patients with filtered 
mitochondrial genes. We used DoubletFinder (version 2.0.3) [40] to identify doublets. 
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The samples were SCTransformed by v2 regularization by Seurat [41]. To integrate the 
samples, we used 3000 anchor genes using the Canonical Correlation Analysis reduc-
tion method. We performed the linear dimensional reduction and the Uniform Mani-
fold Approximation and Projection (UMAP) analysis with the top 13 PCs. The clustering 
was performed using a resolution of 0.8. Cluster markers were identified using the Fin-
dAllMarkers function, and cell types were annotated based on well-established mark-
ers: T cells (CD3D, CD3E, CD3G, and PTPRC), B cells (CD79A, CD79B, IGKC, and 
MS4A1), macrophages (CD14, CD68, CSF1R, FCGR3A, and LYZ), mast cells (KIT, 
MS4A2, TPSAB1, and TPSB2), fibroblasts (COL1A1, COL1A2, COL3A1, DCN, RGS5, 
and ACTA2), endothelial cells (CDH5, ENG, PECAM1, and VWF), epithelial cells (AR, 
EPCAM, KRT5, KRT8, KRT14) and cell cycling marker genes (BIRC5 and CENPF). For 
downstream computational analyses, we excluded cases that were not representing pros-
tate biopsies or that were obtained from patients after therapy exposure. These criteria 
led to the selection of 3 mHNPC and 8 LPC (we excluded the treated individual SC173 
and lymph node SC172). The IDs of the included patients are provided in Additional 
file 2: Fig. S4C.

Differential expression analysis per cluster was performed using a pseudo-bulk 
approach with DESeq2 (version 1.36.0) using only the singlets (Benjamini–Hochberg 
FDR < 0.1). UCell (version 2.0.1) [42] was used for evaluating gene signature scores, 
based on the Mann–Whitney U statistic. CopyKAT [23] R package (version 1.1.0) 
was used to identify genome-wide aneuploidy at 5 MB resolution in single cells, non-
epithelial clusters 9, 10, 11, 13, 14, 16, 17, 18, and 19 were used as reference. Cell–cell 
communication analyses were performed using NicheNet [25] R package (v1.1.1). For 
prioritization based on differential expression, we used Wilcoxon test on SCT counts 
(log fold change of 0.25 and expression pct of 0.1). The transcription factor list was 
obtained from https://​human​tfs.​ccbr.​utoro​nto.​ca/​downl​oad.​php. For NicheNet target 
analysis, we utilized the construct_ligand_target_matrix function to infer potential tar-
get genes of ligands. For each compartment, we selected the ligands that were actively 
communicating with the compartment of interest. This approach allowed us to construct 
a compartment-specific ligand-target matrix, facilitating the identification of key down-
stream targets influenced by ligand-receptor interactions within each compartment of 
the tumor microenvironment.

To assess compositional differences in cell populations across conditions, we employed 
scCODA (v0.1.9.) (single-cell Compositional Data Analysis) [43]. For the discovery data-
set, cluster 20 was automatically chosen by the tool as the reference, while for the valida-
tion dataset, cluster 15 was selected. Model convergence was assessed using trace plots, 
and posterior inclusion probabilities ensured result robustness. The analyses were con-
ducted using Python 3.9.

Generation of the validation single‑cell RNA‑Seq dataset

The tumor was washed with cold phosphate-buffered saline (PBS; GIBCO) and minced 
into fragments under 0.4  mm. The tissue was chemically dissociated in a filter-ster-
ilized with Liberase TH solution (2.5  mg/ml; REF QZY-5401135001, Thermo Sci-
entific) in complete media composed of Advanced DMEM/F-12 (REF 12–634-010, 
Fisher Scientific), Pen/strep 1% (REF 15–140,122, GIBCO), MgCl2 (5 mM, REF M4880, 

https://humantfs.ccbr.utoronto.ca/download.php


Page 16 of 23Martin‑Martin et al. Genome Biology          (2025) 26:154 

Sigma-Aldrich), DNAse I (200 μg/ml, REF 11284932001, Sigma-Aldrich), and Y-27632 
dihydrochloride (10 μM; AbMole) at 37 °C shaking at 800 r.p.m. for 40 min. The tissue 
solution was manually disaggregated with a pipette every 10 min during the incubation 
followed by centrifugation at 2400 × g for 5 min. Next, a second chemical dissociation 
was performed with TrypLE (REF 12605010, Thermo Scientific) supplemented with 
Y-27632 dihydrochloride under constant pipetting for 2 min. The inactivation of TrypLE 
was done by adding fetal bovine serum (FBS, GIBCO) and centrifuged at 2400 × g for 
5 min. The cell pellet was resuspended in PBS, filtered through 40 μm filter, and washed 
with PBS. The suspension was centrifuged at 2400 × g for 5  min and resuspended in 
200 µl of PBS. Cells were counted on a Neubauer chamber and 20,000 cells were then 
centrifuged at 2400 × g for 5  min and resuspended in PBS for scRNA-Seq analysis 
according to manufacturers’ indications (targeted number of cells: 10,000).

We use the 10X Chromium Controller to encapsulate and barcode single cells (Reagent 
Kits v3.1). The sequenced data were mapped to human reference genome GRCh38 with 
Cell Ranger (version 7.0.1). Seurat package (version 4.3.0) in R (version 4.2.1) was used 
for downstream analyses. Low quality cells expressing less than 200 unique genes, show-
ing novelty score < 80% (the ratio of number of genes over number of UMIs) or > 20% of 
mitochondrial genes were excluded. Only genes expressed in more than 10 cells were 
shortlisted for subsequent analyses. We integrated and normalized data as explained 
above. For this dataset, during the normalization step we regressed out the mitochon-
drial percentage and we used a resolution of 0.6. Cell-type annotation was based on the 
following markers: T cells (CD3D, CD3E, CD3G, and PTPRC), B cells (CD79A, CD79B, 
IGKC, and MS4A1), macrophages (CD14, CD68, CSF1R, FCGR3A, and LYZ), mast cells 
(KIT, MS4A2, TPSAB1, and TPSB2), fibroblasts (COL1A1, COL1A2, COL3A1, DCN, 
RGS5, and ACTA2), endothelial cells (CDH5, ENG, PECAM1, and VWF), epithelial 
cells (AR, EPCAM, KRT5, KRT8, and KRT14), and Schwann cells (S100B, NRXN1, and 
SOX10). CopyKAT R package (version 1.1.0) was used to identify genome-wide aneu-
ploidy at 5 MB resolution in single cells, non-epithelial clusters 0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 
13, 14, 16, 17, 18, 19, and 20 were used as reference.

Enrichment analyses

We performed functional enrichment analyses using g:Profiler (https://​biit.​cs.​ut.​ee/​
gprof​iler/​gost) to identify overrepresented biological processes, molecular functions, 
and pathways. For each analysis, we applied multiple testing correction using the g:SCS 
algorithm. For background correction, we carefully selected the gene sets to ensure 
appropriate comparisons. For bulk RNA-Seq analysis, the background gene set included 
all expressed genes with a valid gene symbol. For module-based enrichments, we used 
all genes assigned to co-expression modules as background. Finally, for single-cell RNA-
Seq analysis, the background gene set comprised all genes expressed in the specific 
cluster or compartment being analyzed. Gene Set Enrichment Analysis (GSEA) was per-
formed using the GSEApy (v1.0.4) library on single-cell RNA-Sequencing data. Genes 
with more than 15 counts were included in the analysis. Enrichment was assessed using 
1000 permutations with permutation_type = “gene_set”. Pathways with at least 3 genes 
were retained and considered significant if they had a false discovery rate (FDR) < 0.25.

https://biit.cs.ut.ee/gprofiler/gost
https://biit.cs.ut.ee/gprofiler/gost
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Cell culture

The human prostate carcinoma cell lines used were purchased from Leibniz-Institut 
DSMZ (Deutsche SammLung von Mikroorganismen und Zellkulturen GmbH), which 
provided an authentication certificate: DU145 (ACC261). Human embryonic kidney 
293FT cells were generously provided by the laboratory of Dr. Rosa Barrio. Cell lines 
were subjected to microsatellite-based identity validation. Cell lines were tested for 
mycoplasma contamination routinely using MycoAlert detection Kit (Lonza; LT07-318). 
DU145 and HEK 293FT were cultured in Dulbecco’s modified Eagle’s medium (DMEM, 
Gibco) supplemented with 10% (v/v) FBS (Gibco) and 1% (v/v) penicillin–streptomycin 
(Gibco). Cells were maintained at 37 °C and 5% CO2 in a humidified atmosphere. Pos-
sible mycoplasma contamination was routinely monitored across all cell lines using the 
MycoAlert detection Kit (Lonza; LT07-318).

Generation of stable cell lines

For constitutive SOX11 overexpression (3HA-SOX11) previously generated DU145 
GFP-Luc cells were infected with a modified Lenti-EFS/P2A-blast plasmid donated by 
Dr. James D. Sutherland (Addgene: #208,041) in which the TURBO-ID region was sub-
stituted by a 3HA-tag and the murine form of Sox11 (obtained from Addgene: #120,387) 
was cloned after the tag (between restriction sites for EcoRI and BamHI). The same plas-
mid without the SOX11 insert was used as a control (3HA). The infection was performed 
using standard procedures: 293FT cells were transfected with the appropriate lentiviral 
vectors using the calcium phosphate method and the viral supernatant plus protamine 
sulfate (8 µg/ml) were used to infect the DU145-GFP-luc cells. Cells were selected with 
blasticidin (10 µg/ml) for 5 days (blasticidin was renewed after the first 3 days) [44].

Cellular and molecular assays

Proliferation assays were performed by plating 5000 DU145 cells in triplicate in 12-well 
dishes and fixing in formalin at the indicated time points. Cells were stained with crystal 
violet as previously described [45] and quantified after the resuspension of the crystals 
in 10% acetic acid by measuring the absorbance at 595 nm.

Protein extraction and Western blot were performed as previously described [46]. 
Briefly, samples were run in 4–12% gradient Nupage precast gels (Life Technologies, 
WG1403BX10) in MOPS buffer. Primary antibodies for HA (Cell Signalling Technolo-
gies, 3724), SOX11 (Cell Signalling Technologies, 58,207), and HSP90 (Cell Signalling 
Technologies, 4874S) were used at a 1:1000 dilution. Secondary anti-rabbit antibody 
(Jackson ImmunoResearch, 111–035-144) was used at a 1:4000 dilution.

RNA was automatically extracted using the Maxwell RSC (Promega) platform and 
extraction kits (Promega, AS1390), following the manufacturer’s instructions. Com-
plementary DNA (cDNA) from 1000  ng of the extracted RNA was synthesized with 
Maxima™ H Minus cDNA Synthesis Master Mix (Invitrogen Ref: M1682). Synthe-
sized cDNA was diluted 1:3 and QS5 or QS6 (Life Technologies) systems were used for 
performing RT-qPCR analyses. Gene expression was normalized to GAPDH expres-
sion. Applied Biosystems TaqMan probes or primers with their corresponding Uni-
versal Probe Library (Roche) probes were used: mSOX11 (Probe 11, F: ACA​ACG​CCG​
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AGA​TCT​CCA​AG, R: TGA​ACG​GGA​TCT​TCT​CGC​TG), THBS1 (Hs00962908_m1), 
THBS2 (Hs01568063_m1), COMP (Hs00164359_m1), INHBA (Hs01081598_m1), DKK2 
(Hs00205294_m1), SPP1 (Hs00959010_m1), FN1 (Probe 25, F: GGG​AGA​ATA​AGC​
TGT​ACC​ATCG, R: TCC​ATT​ACC​AAG​ACA​CAC​ACACT), MEX3A (Hs00863536_m1), 
GAPDH (Hs02758991g1).

Prostate orthotopic xenograft model of metastasis

The procedures for animal experimentation were carried out in compliance with the 
ethical guidelines defined by the Biosafety and Animal Welfare Committee at CIC bio-
GUNE, following AAALAC recommendations. Mice were maintained in a controlled 
environment, with standard 12:12 light:dark cycles, 30–50% humidity, and controlled 
temperature at 22 ± 2 °C. Diet and water were provided ad libitum. At the experimental 
endpoint, mice were sacrificed by CO2 inhalation followed by cervical dislocation.

Orthotopic models were generated by injection of either DU145 GFP-Luc 3HA-ctrl or 
DU145 GFP-Luc 3HA-SOX11 into the ventral lobe of the prostate of nude mice. 2 × 106 
cells were injected per mice in 50  µl of PBS:Matrigel (Corning, 356,231) (70:30) mix-
ture. Mice were imaged by IVIS right after the surgery to check that the injection was 
properly performed as well as to check for accidental dissemination (day 0) and were 
subsequently monitored by IVIS on a weekly basis. Mice were sacrificed after 51 days 
and prostate cancer cell dissemination to distant organs was assessed by ex vivo moni-
toring of selected organs by IVIS. Due to challenges in in vivo handling, including hem-
orrhages, the recovery of the LLNs is sometimes compromised. As a result, in this study, 
we were able to recover 9 LLNs from the control group and 12 from the SOX11 group. 
Furthermore, following an outlier analysis using Grubbs’ test (α = 0.05), we excluded one 
LLN from each group, resulting in a final count of 8 LLNs in the control group and 11 in 
the SOX11 group.

Bulk RNA‑Seq data analyses on SOX11 overexpression

We performed RNA-Seq (paired-end 100  bp reads, > 43  M reads per sample in aver-
age) from DU145 cells. Sequencing libraries were prepared using the TruSeq Stranded 
mRNA LibraryPrep kit (Illumina Inc. Cat. # 20,020,594) and TruSeq RNA CD Index 
Plate (Illumina Inc. Cat. # 20,019,792). Reads were trimmed for Illumina universal 
adapter using cutadapt: cutadapt -a "AGA​TCG​GAA​GAG​CAC​ACG​TCT​GAA​CTC​CAG​
TCA" -A "AGA​TCG​GAA​GAG​CGT​CGT​GTA​GGG​AAA​GAG​TGT" -j 0 -q 10 -m 30). 
Mapping and differential expression analyses were performed as described above, apply-
ing the filtering for minimum reads but setting independent filtering parameter from 
DESeq2 to false. The signature for SOX11 activity (comprising 55 upregulated genes, 53 
of which had gene symbol) was obtained by doing the average of the z-score values of 
these genes per sample.

Proteomic analysis

Sample preparation

Protein was extracted by incubating cells in a buffer containing 7  M urea, 2  M thio-
urea, and 4% CHAPS. Samples were incubated in this buffer for 30  min at RT under 
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agitation and digested following the FASP protocol described by Wisniewski et al. 2009 
with minor modifications (PMID: 19,377,485). Trypsin was added in 50 mM ammonium 
bicarbonate to a trypsin:protein ratio of 1:10, and the mixture was incubated for over-
night at 37  °C. Peptides were dried out in an RVC2 25 speedvac concentrator (Christ) 
and resuspended in 0.1% FA. Peptides were desalted and resuspended in 0.1% FA using 
C18 stage tips (Millipore) prior to acquisition.

Mass spectrometry analysis

The resulting peptides were loaded onto an EvoSep One (EvoSep) chromatograph cou-
pled on-line to a TIMS ToF Pro mass spectrometer (Bruker) that uses Parallel Accu-
mulation Serial Fragmentation (PASEF) acquisition to provide extremely high speed and 
sensitivity. Thirty SPD protocol (approx. 44 min. runs) was used, under default Evosep 
settings. Data-independent acquisition (DIA) was used for the acquisition of data.

Protein identification and quantification

The obtained data was then processed with DIA-NN [47] software for protein identi-
fication and quantification. Searches were carried out against a database consisting 
of human protein entries from Uniprot in library-free mode. Search parameters were 
20  ppm precursor and fragment tolerance, 0.05 carbamidomethylation of cysteines as 
fixed modification and oxidation of methionines as variable modification.

Quantitative protein data was loaded onto Perseus software (free software from Max 
Plank Institute, Munich) [48]. This program was used for the differential protein abun-
dance analyses. For this purpose, protein abundance data was log2 transformed, filtered 
based on reproducibility (proteins present in at least 70% of the samples of one of the 
groups were kept in the analysis) and imputated (missing values were substituted by 
abundances randomly taken from the 10% least abundant proteins in each sample). A 
Student’s T-test was applied, and proteins with a p < 0.05 were considered as significantly 
differential.

Statistical analysis on in vitro and in vivo experimental data

Sample size was not predetermined using any statistical method and experiments were 
not randomized. Investigators were not blinded during experiments or outcome assess-
ment. All the experiments were performed with at least three biological replicates. N 
values represent the number of independent biological experiments, the number of indi-
vidual mice, or the number of patient samples.

For in  vitro experiments, a one-sample t-test was used to compare the values nor-
malized to the control with a hypothetical value of 1, and results are presented as 
mean ± standard deviation. For in  vivo experiments, a one-tailed Mann–Whitney test 
was used, and results are presented either as the mean in a dop plot or as a stacked bar 
plot where a one-tailed Fisher-test analysis was applied in the contingency table. The 
confidence level used for all statistical analyses was 95% (p-value = 0.05). Outliers were 
determined by an interval spanning over the mean plus/minus two standard deviations.



Page 20 of 23Martin‑Martin et al. Genome Biology          (2025) 26:154 

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​025-​03623-5.

Additional file 1: Table S1.

Additional file 2: Figures S1-S7.

Additional file 3: Table S2-S7.

Additional file 4: Table S8.

Additional file 5: Table S9.

Additional file 6: Table S10, S11.

Additional file 7: Table S12.

Additional file 8: Table S13.

Additional file 9: Table S14.

Additional file 10: Table S15.

Additional file 11.

Acknowledgements
We thank Monika Gonzalez, Laura Bárcena and Nuria Macias-Cámara from the Genome Platform Analyses at the CIC 
bioGUNE and Lidia López Jiménez from the single-cell Unit at the Josep Carreras Institute for generation of single-
cell RNA-Seq libraries. We thank James D. Sutherland for the donation of the overexpression plasmid. We thank Felix 
Elortza and Mikel Azkargorta from CIC bioGUNE proteomics platform for proteomics sample processing and analysis. 
We thank Edurne Berra, Amaia Ercilla and Amaia Zabala for the critical comments on the manuscript. Illustrations were 
created with BioRender. We thank the Basque Biobank for Research (BIOEF) for the support with clinical sample and data 
management.

Authors’ contributions
S.G.-L., U.L. and I.M. performed bioinformatic analyses on bulk and single-cell transcriptomic datasets and contributed 
to the preparation of the figures for the manuscript. I.M. supervised the work of S.G.-L. and U.L. J.C.-M. and N.M.-M. 
performed most in vitro and in vivo assays, performed the data analysis and contributed to the preparation of the figures 
of the manuscript. N.M.-M. supervised the work of J.C.-M. I.A., M.P.-V., O.C., and M.T.B. provided technical advice with the 
in vivo experiments. A.M.A. performed wet-lab procedures on single-cell RNA-Seq and provided technical support with 
bulk RNA sequencing. R.R.G. provided guidance and training on the in vivo experiments. D.G., S.R., A.S.-M., A.U.-O., M.U. 
and A.L.-I. generated the Basurto cohort and provided biological specimens. E.G.-B., A.R., J.T., D.J. and A.M. performed 
patient selection, tissue obtention and clinical annotation of the Morales Meseguer cohort. E.G.-B. supervised A.R., J.T., 
D.J. and A.M. N.M.-M., J.C.-M., L.B.-B., N.H., A.S. and H.V.S. performed the tissue preparation for single-cell experiments. J.M. 
recruited mHNPC patients in the single-cell validation cohort. M.G. supervised the single-cell preparation. A.C. conceived 
the study. I.M. and A.C. supervised the execution of the project and wrote the manuscript. All authors have read and 
approved the final version of the manuscript.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora-
tion with the rest of the editorial team. The peer-review history is available in the online version of this article.

Funding
This study was predominantly funded by the Spanish Association Against Cancer (AECC, GCTRA18006CARR to Car-
racedo, Gomis, Unda, Graupera and González-Billalabeitia as PIs) and AstraZeneca Jóvenes Investigadores 2023 Award 
(To Carracedo, Mateo, Mendizabal and Herranz). The work of A. Carracedo is supported by the Basque Department 
of Industry, Tourism, and Trade (Elkartek), the BBVA foundation (Becas Leonardo), the MICINN (PID2022-141553OB-I0 
(FEDER/EU), Fundación Cris Contra el Cáncer (PR_EX_2021-22), Severo Ochoa Excellence Accreditation (CEX2021-
001136-S), European Training Networks Project (H2020-MSCA-ITN-2020 955534), the Fundación Jesús Serra, iDIFFER 
network of Excellence (RED2022-134792-T), and the European Research Council (Consolidator Grant 819242). CIBERONC 
was co-funded with FEDER funds and funded by ISCIII. I. Mendizabal is supported by CRIS Contra El Cancer Founda-
tion (PR_TPD_2020-19) and a Ramón y Cajal contract (RYC2023-044682-I) funded by the MCIN. U. Lazcano is supported 
by the AECC Foundation (PRDVZ245829LAZC). L. Bozal was supported by the AECC Foundation (POSTD19048BOZA). 
H. van Splunder received funding from the European Union’s Horizon 2020 research and innovation program under 
the Marie Skłodowska-Curie grant agreement No 955951. M. Graupera is supported by Worldwide Cancer Research 
(WCR 21–0159). R. Gomis and M.T. Blasco were supported by the BBVA Foundation, Fundación Científica AECC 
(PRYGN223207GOMI), and MICINN (PID2022-143093OB-I00; FEDER/EU). J. Mateo is supported by CRIS Talent Award 
(TALENT20-10) and a Department of Defense CDMPR Physician-Science Award (PC220307). VHIO authors would like to 
acknowledge the Spanish State Agency for Research (Agencia Estatal de Investigación) for the financial support as a 
Center of Excellence Severo Ochoa (CEX2020-001024-S/AEI/https://doi.org/10.13039/501100011033), the Cellex Founda-
tion for providing research facilities and equipment, FERO Foundation, and the CERCA Programme from Generalitat de 
Catalunya for their support.

Data availability
All data generated in this project (raw and processed) are available in GEO and SRA including bulk discovery (GSE268308) 
[49], bulk validation (GSE268309) [50], single-cell RNA-Seq (GSE268307) [51], and the DU145 SOX11-overexpression bulk 

https://doi.org/10.1186/s13059-025-03623-5
https://doi.org/10.13039/501100011033


Page 21 of 23Martin‑Martin et al. Genome Biology          (2025) 26:154 	

dataset (GSE268408) [52]. Proteomics data is available in ProteomeXchange (PXD063665) [53]. Code for data analyses are 
publicly available in GitHub [54]. Scripts are also uploaded to Zenodo [55]. Creative Commons Attribution 4.0 Interna-
tional license is assigned to the GitHub and Zenodo scripts.

Declarations

Ethics approval and consent to participate
The ethics approvals for this project are CEIC-E 14–14 and 19–20 (Basurto University Hospital, Bilbao), CEIC-HMM 1/18 
(Morales Meseguer University Hospital, Murcia) and PRAG5248 (Vall d’Hebron University Hospital, Barcelona, under 
IRB-approval). See Methods section for more details. Animal experiments have been approved by CIC bioGUNE Ethics 
committee and the local authorities with codes P-CBG-CBBA-0121 and P-CBG-CBBA-1321.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 
Bizkaia, Spain. 2 Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain. 3 Traslational 
Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute Technology Park, Building 
801A, 48160 Derio, Spain. 4 Vall Hebron Institute of Oncology, Hebron University Hospital Campus, Vall d’Barcelona, 
Spain. 5 Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukemia Research Institute (IJC), 
08916 Badalona, Barcelona, Catalonia, Spain. 6 Cancer Science Program, Institute for Research in Biomedicine (IRB 
Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain. 7 Centro de Investigación Biomédica en 
Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain. 8 Department 
of Urology, Morales Meseguer University Hospital, Murcia, Spain. 9 Department of Pathology, Morales Meseguer Uni-
versity Hospital, Murcia, Spain. 10 Biobanco Nodo 3, Morales Meseguer University Hospital, Murcia, Spain. 11 Department 
of Urology, Basurto University Hospital, 48013 Bilbao, Spain. 12 Department of Pathology, Basurto University Hospital, 
48013 Bilbao, Spain. 13 Institución Catalana de Investigación y Estudios Avanzados (ICREA), Passeig de Lluís Companys 
23, Barcelona, Spain. 14 Medical Oncology Department, University Hospital, UCAM, 12 de Octubre, IMAS12 Madrid, Spain. 
15 Ikerbasque, Basque Foundation for Science, Bilbao, Spain. 16 Biochemistry and Molecular Biology Department, Univer-
sity of the Basque Country (UPV/EHU), Bilbao, Spain. 

Received: 7 August 2024   Accepted: 16 May 2025

References
	1.	 Cancer Genome Atlas Research N. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–1025.
	2.	 Fraser M, Sabelnykova VY, Yamaguchi TN, Heisler LE, Livingstone J, Huang V, et al. Genomic hallmarks of localized, 

non-indolent prostate cancer. Nature. 2017;541:359–64.
	3.	 Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human 

prostate cancer. Cancer Cell. 2010;18:11–22.
	4.	 Warner EW, Van der Eecken K, Murtha AJ, Kwan EM, Herberts C, Sipola J, et al. Multiregion sampling of de novo met-

astatic prostate cancer reveals complex polyclonality and augments clinical genotyping. Nat Cancer. 2024;5:114–30.
	5.	 Helgstrand JT, Roder MA, Klemann N, Toft BG, Lichtensztajn DY, Brooks JD, et al. Trends in incidence and 5-year mor-

tality in men with newly diagnosed, metastatic prostate cancer-a population-based analysis of 2 national cohorts. 
Cancer. 2018;124:2931–8.

	6.	 Gilson C, Ingleby F, Gilbert DC, Parry MA, Atako NB, Ali A, et al. Genomic profiles of de novo high- and low-volume 
metastatic prostate cancer: results from a 2-stage feasibility and prevalence study in the STAMPEDE Trial. JCO Precis 
Oncol. 2020;4:882–97.

	7.	 Velez MG, Kosiorek HE, Egan JB, McNatty AL, Riaz IB, Hwang SR, et al. Differential impact of tumor suppressor gene 
(TP53, PTEN, RB1) alterations and treatment outcomes in metastatic, hormone-sensitive prostate cancer. Prostate 
Cancer Prostatic Dis. 2022;25:479–83.

	8.	 Abida W, Armenia J, Gopalan A, Brennan R, Walsh M, Barron D, et al. Prospective genomic profiling of prostate 
cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO 
Precis Oncol. 2017;2017:PO.17.00029.

	9.	 Hamid AA, Gray KP, Shaw G, MacConaill LE, Evan C, Bernard B, et al. Compound genomic alterations of TP53, PTEN, 
and RB1 tumor suppressors in localized and metastatic prostate cancer. Eur Urol. 2019;76:89–97.

	10.	 Stopsack KH, Nandakumar S, Wibmer AG, Haywood S, Weg ES, Barnett ES, et al. Oncogenic genomic alterations, clin-
ical phenotypes, and outcomes in metastatic castration-sensitive prostate cancer. Clin Cancer Res. 2020;26:3230–8.

	11.	 Hamid AA, Huang HC, Wang V, Chen YH, Feng F, Den R, et al. Transcriptional profiling of primary prostate tumor in 
metastatic hormone-sensitive prostate cancer and association with clinical outcomes: correlative analysis of the 
E3805 CHAARTED trial. Ann Oncol. 2021;32:1157–66.

	12.	 van Leenders G, van der Kwast TH, Grignon DJ, Evans AJ, Kristiansen G, Kweldam CF, et al: The 2019 International 
Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am J Surg Pathol. 
2020;44:e87-e99.



Page 22 of 23Martin‑Martin et al. Genome Biology          (2025) 26:154 

	13.	 Haas BJ, Dobin A, Li B, Stransky N, Pochet N, Regev A. Accuracy assessment of fusion transcript detection via read-
mapping and de novo fusion transcript assembly-based methods. Genome Biol. 2019;20:213.

	14.	 Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, et al. The genomic complexity of primary 
human prostate cancer. Nature. 2011;470:214–20.

	15.	 Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW,  et al. Recurrent fusion of TMPRSS2 and ETS 
transcription factor genes in prostate cancer. Science. 2005;310:644–8.

	16.	 Hermans KG, van Marion R, van Dekken H, Jenster G, van Weerden WM, Trapman J. TMPRSS2:ERG fusion by 
translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in 
late-stage androgen receptor-negative prostate cancer. Cancer Res. 2006;66:10658–63.

	17.	 Finianos A, Gupta K, Clark B, Simmens SJ, Aragon-Ching JB. Characterization of differences between prostate 
cancer patients presenting with de novo versus primary progressive metastatic disease. Clin Genitourin Cancer. 
2017;15:30247–1.

	18.	 Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 
2008;9:559.

	19.	 Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and 
stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.

	20.	 Ugalde-Olano A, Egia A, Fernandez-Ruiz S, Loizaga-Iriarte A, Zuniga-Garcia P, Garcia S, et al. Methodological aspects 
of the molecular and histological study of prostate cancer: focus on PTEN. Methods. 2015;77–78:25–30.

	21.	 Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of tumour purity. Nat Commun. 2015;6:8971.
	22.	 Chen S, Zhu G, Yang Y, Wang F, Xiao YT, Zhang N, et al. Single-cell analysis reveals transcriptomic remodellings in 

distinct cell types that contribute to human prostate cancer progression. Nat Cell Biol. 2021;23:87–98.
	23.	 Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating copy number and clonal substructure in human 

tumors from single-cell transcriptomes. Nat Biotechnol. 2021;39:599–608.
	24.	 Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, et al. Genomic and Functional Approaches to Understanding 

Cancer Aneuploidy. Cancer Cell. 2018;33(676–689):e673.
	25.	 Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking ligands to target genes. 

Nat Methods. 2020;17:159–62.
	26.	 Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The Human Transcription Factors. Cell. 

2018;172:650–65.
	27.	 Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. 

Cell Stem Cell. 2013;12:15–30.
	28.	 Dy P, Penzo-Mendez A, Wang H, Pedraza CE, Macklin WB, Lefebvre V. The three SoxC proteins–Sox4, Sox11 and 

Sox12–exhibit overlapping expression patterns and molecular properties. Nucleic Acids Res. 2008;36:3101–17.
	29.	 Tsang SM, Oliemuller E, Howard BA. Regulatory roles for SOX11 in development, stem cells and cancer. Semin 

Cancer Biol. 2020;67:3–11.
	30.	 Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S, Sun Y, et al. Transdifferentiation as a Mechanism of Treatment 

Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. Cancer Discov. 2017;7:736–49.
	31.	 Yao Z, Sun B, Hong Q, Yan J, Mu D, Li J, et al. The role of tumor suppressor gene SOX11 in prostate cancer. Tumour 

Biol. 2015;36:6133–8.
	32.	 Cortazar AR, Torrano V, Martin-Martin N, Caro-Maldonado A, Camacho L, Hermanova I, et al. CANCERTOOL: A Visuali-

zation and Representation Interface to Exploit Cancer Datasets. Cancer Res. 2018;78:6320–8.
	33.	 Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal 

castration-resistant prostate cancer. Nature. 2012;487:239–43.
	34.	 Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K, et al. Gene expression profiling identifies clinically 

relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A. 2004;101:811–6.
	35.	 Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM, et al. Integrative molecular concept modeling of 

prostate cancer progression. Nat Genet. 2007;39:41–51.
	36.	 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinfor-

matics. 2013;29:15–21.
	37.	 Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. 

Genome Biol. 2014;15:550.
	38.	 Hoffman GE, Schadt EE. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC 

Bioinformatics. 2016;17:483.
	39.	 Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H. gprofiler2 -- an R package for gene list functional enrichment 

analysis and namespace conversion toolset g:Profiler. F1000Res. 2020;9:ELIXIR–709.
	40.	 McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using 

Artificial Nearest Neighbors. Cell Syst. 2019;8(329–337):e324.
	41.	 Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al. Integrated analysis of multimodal single-

cell data. Cell. 2021;184(3573–3587):e3529.
	42.	 Andreatta M, Carmona SJ. UCell: Robust and scalable single-cell gene signature scoring. Comput Struct Biotechnol 

J. 2021;19:3796–8.
	43.	 Büttner M, Ostner J, Müller CL, Theis FJ, Schubert B. scCODA is a Bayesian model for compositional single-cell data 

analysis. Nat Commun. 2021;12:6876.
	44.	 Barroso-Gomila O, Trulsson F, Muratore V, Canosa I, Merino-Cacho L, Cortazar AR, et al. Identification of proximal 

SUMO-dependent interactors using SUMO-ID. Nat Commun. 2021;12:6671.
	45.	 Torrano V, Valcarcel-Jimenez L, Cortazar AR, Liu X, Urosevic J, Castillo-Martin M, et al. The metabolic co-regulator 

PGC1alpha suppresses prostate cancer metastasis. Nat Cell Biol. 2016;18:645–56.
	46.	 Zabala-Letona A, Arruabarrena-Aristorena A, Martin-Martin N, Fernandez-Ruiz S, Sutherland JD, Clasquin M, et al. 

mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature. 2017;547:109–13.
	47.	 Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. DIA-NN: neural networks and interference correction 

enable deep proteome coverage in high throughput. Nat Methods. 2020;17:41–4.



Page 23 of 23Martin‑Martin et al. Genome Biology          (2025) 26:154 	

	48.	 Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for compre-
hensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40.

	49.	 Martin-Martin N, Garcia-Longarte S, Corres-Mendizabal J, Lazcano U, Astobiza I, Bozal-Basterra L, et al. Transcriptional 
analysis of metastatic hormone-naïve prostate cancer primary tumour biopsies reveals a relevant role for SOX11 in 
prostate cancer cell dissemination [Discovery dataset]. 2025. GSE268308. https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​
acc.​cgi?​acc=​GSE26​8308.

	50.	 Martin-Martin N, Garcia-Longarte S, Corres-Mendizabal J, Lazcano U, Astobiza I, Bozal-Basterra L, et al. Transcriptional 
analysis of metastatic hormone-naïve prostate cancer primary tumour biopsies reveals a relevant role for SOX11 in 
prostate cancer cell dissemination [Validation dataset]. 2025. GSE268309. https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​
acc.​cgi?​acc=​GSE26​8309. 

	51.	 Martin-Martin N, Garcia-Longarte S, Corres-Mendizabal J, Lazcano U, Astobiza I, Bozal-Basterra L, et al. Transcriptional 
analysis of metastatic hormone-naïve prostate cancer primary tumour biopsies reveals a relevant role for SOX11 in 
prostate cancer cell dissemination [scRNA-Seq]. 2025. GSE268307. https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​
cgi?​acc=​GSE26​8307. 

	52.	 Martin-Martin N, Garcia-Longarte S, Corres-Mendizabal J, Lazcano U, Astobiza I, Bozal-Basterra L, et al. Transcriptional 
analysis of metastatic hormone-naïve prostate cancer primary tumour biopsies reveals a relevant role for SOX11 in 
prostate cancer cell dissemination [DU145-SOX11overexpression_dataset]. 2025. GSE268408. https://​www.​ncbi.​nlm.​
nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE26​8408. 

	53.	 Martin-Martin N, Garcia-Longarte S, Corres-Mendizabal J, Lazcano U, Astobiza I, Bozal-Basterra L, et al. Transcriptional 
analysis of metastatic hormone-naïve prostate cancer primary tumour biopsies reveals a relevant role for SOX11 in 
prostate cancer cell dissemination [DU145-SOX11overexpression_Proteomics_dataset]. 2025. PXD063665. https://​
prote​omece​ntral.​prote​omexc​hange.​org/​cgi/​GetDa​taset?​ID=​PXD06​3665.

	54.	 Martin-Martin N, Garcia-Longarte S, Corres-Mendizabal J, Lazcano U, Astobiza I, Bozal-Basterra L, et al. Transcriptional 
analysis of metastatic hormone-naïve prostate cancer primary tumour biopsies reveals a relevant role for SOX11 in 
prostate cancer cell dissemination [Script repository]. 2025. Github. https://​github.​com/​imend​izaba​lCIC/​Trans​cript​
ional_​Lands​cape_​mHNPC. 

	55.	 Martin-Martin N, Garcia-Longarte S, Corres-Mendizabal J, Lazcano U, Astobiza I, Bozal-Basterra L, et al. Transcriptional 
analysis of metastatic hormone-naïve prostate cancer primary tumour biopsies reveals a relevant role for SOX11 in 
prostate cancer cell dissemination [Script repository]. 2025. Zenodo. https://​zenodo.​org/​recor​ds/​15356​690. 

Publisher’ s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE268308
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE268308
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE268309
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE268309
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE268307
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE268307
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE268408
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE268408
https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD063665
https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD063665
https://github.com/imendizabalCIC/Transcriptional_Landscape_mHNPC
https://github.com/imendizabalCIC/Transcriptional_Landscape_mHNPC
https://zenodo.org/records/15356690

	Transcriptional analysis of metastatic hormone-naïve prostate cancer primary tumor biopsies reveals a relevant role for SOX11 in prostate cancer cell dissemination
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	The transcriptional landscape of metastatic hormone-naïve prostate cancer primary tumors is highly divergent
	Gene network analysis reveals increased stromal remodeling in mHNPC
	Transcriptomics at single-cell resolution identifies mHNPC-specific heterotypic interaction programs coordinated by SOX11
	SOX11 promotes metastatic dissemination in PC

	Discussion
	Conclusions
	Methods
	Sample and patient disposition
	Bulk RNA-Seq analyses on discovery cohort
	Bulk RNA-Seq data analyses on validation cohort
	Analyses on single-cell discovery cohort
	Generation of the validation single-cell RNA-Seq dataset
	Enrichment analyses
	Cell culture
	Generation of stable cell lines
	Cellular and molecular assays
	Prostate orthotopic xenograft model of metastasis
	Bulk RNA-Seq data analyses on SOX11 overexpression
	Proteomic analysis
	Sample preparation
	Mass spectrometry analysis
	Protein identification and quantification

	Statistical analysis on in vitro and in vivo experimental data

	Acknowledgements
	References


