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Abstract
Background  The impact of chronic medication on COVID-19 outcomes has been a topic of ongoing debate since the onset 
of the pandemic. Investigating how specific long-term treatments influence infection severity and prognosis is essential for 
optimising patient management and care.
Aim  This study aimed to investigate the association between chronic medication and COVID-19 outcomes, using machine 
learning to identify key medication-related factors.
Method  We analysed 137,835 COVID-19 patients in Catalonia (February–September 2020) using eXtreme Gradient Boost-
ing to predict hospitalisation, ICU admission, and mortality. This was complemented by univariate logistic regression 
analyses and a sensitivity analysis focusing on diabetes, hypertension, and lipid disorders.
Results  Participants had a mean age of 53 (SD 20) years, with 57% female. The best model predicted mortality risk in 18 
to 65-year-olds (AUCROC 0.89, CI 0.85–0.92). Key features identified included the number of prescribed drugs, systemic 
corticoids, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, and hypertension drugs. A sensitivity analysis 
identified that hypertensive participants over 65 taking angiotensin-converting enzyme (ACE) inhibitors or angiotensin II 
receptor blockers (ARBs) had lower mortality risk (OR 0.78 CI 0.68–0.92) compared to those on other antihypertensive 
medication (OR 0.8 CI 0.68–0.95). Treatment with inhibitors of dipeptidyl peptidase 4 was associated to higher mortality in 
participants aged 18–65, while metformin showed a protective effect in those over 65 (OR 0.79, 95% CI 0.68–0.92).
Conclusion  Machine learning models effectively distinguished COVID-19 outcomes. Patients under ACEi or ARBs or 
biguanides should continue their prescribed medications, which may offer protection over alternative treatments.
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Impact statements

•	 Machine learning-driven models effectively predict 
hospitalisation, ICU admission, and death in COVID-
19 patients.

•	 ACEi, ARBs, and biguanides (metformin) demon-
strated potential protective effects.

•	 Findings support continued use of these medications 
without switching to alternatives.

•	 The study methodology is scalable and can be applied 
at a low additional cost using AI-driven analysis of 
administrative health databases.

Introduction

COVID-19 emerged as an unprecedented public health 
crisis, placing immense strain on national health systems. 
Globally, the outbreak disrupted economies, hindered 
trade, and restricted mobility [1], created challenges in 
medication supply, and pharmacy services [2].

Various studies have been conducted to determine risk 
factors associated with poor COVID-19 outcomes [3–8], 
although a reduced number used health record data [9–13]. 
While unmodifiable factors like age, sex, and comorbidi-
ties have been linked to severe COVID-19 outcomes [14, 
15], potentially modifiable factors such as chronic medi-
cation use have also drawn considerable attention. Since 
the first wave, studies have examined how long-term 
treatments [16–21], particularly cardiovascular drugs 
like angiotensin-converting enzyme (ACE) inhibitors and 
angiotensin II receptor blockers (ARBs), may influence 
disease severity. Evidence suggests there is no increase 
in mortality risk [22–24]. Corticosteroids and other anti-
inflammatories have also been used in managing COVID-
related respiratory distress [25].

The management of chronic conditions and associ-
ated medications has been a key focus [26], emphasiz-
ing the importance of effective disease control with drugs 
that either avoid harmful interactions or offer protection 
against COVID-19, thereby reducing potential complica-
tions [27].

Aim

This study aimed to investigate the association between 
chronic medication and COVID-19 outcomes, using 
machine learning to identify key medication-related 
factors.

Ethics approval

This study obtained ethical clearance from the Ethics 
Committee from Vall d’Hebrón in 2020 (reference num-
ber: PR (AG) 240/2020) and received approval through a 
public call for grants to utilize the PADRIS databases in 
research projects.

Method

Study population, registry features, and data 
acquisition

The Data Analytics Program for Research and Innovation 
in Health (PADRIS) provided the data used in this study, 
drawing administrative data primarily from the Electronic 
Health System of Catalonia, centralized by the Agency 
for Health Quality and Assessment of Catalonia (AQuaS). 
This study was not in any clinical trial registry.

The final PADRIS pseudonymised database was built 
by integrating six administrative databases: patient demo-
graphics and socioeconomic data, COVID-19 diagnoses, 
comorbidities, drugs dispensed by community pharma-
cies, drugs dispensed by hospital pharmacies, and ICU 
admissions. It included 138,218 individuals diagnosed 
with COVID-19 in Catalonia between February 27 and 
September 14, 2020.

Medical diagnosis and comorbidities adhered to the Inter-
national Statistical Classification of Diseases and Related 
Health Problems 10th Edition (ICD-10) [28]. The pharmacy 
invoicing data followed the Anatomical Therapeutic Chemi-
cal classification established by the World Health Organiza-
tion Collaborating Centre (Supplementary Material 1) [29]. 
Chronic medication use was defined as a drug dispensed 
from the community or hospital pharmacy for at least 
30 days prior to COVID-19 diagnosis, with continued use 
at diagnosis. For patients that initiated a medication within 
30 days of diagnosis, that exposure was classified as non-use 
and excluded, consistent with previous literature [30, 31].

SARS-CoV-2 infection was identified via positive 
nucleic acid amplification tests, approved rapid antigen 
tests or serology tests indicating recent infection, or clini-
cal symptoms with close epidemiological links to con-
firmed cases [32].

The Adjusted Morbidity Groups (GMA) categorised 
the population into five groups attributed to the risk of 
hospital admission and overall survival, and were used 
for comorbidity risk assessment [33]. The socioeconomic 
status information classified individuals into four groups 
based on annual gross income.
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Data processing

Data pre-processing was performed using Pentaho Data Inte-
gration 9.0.0.0–423. During extraction, missing or incon-
sistent data, non-study participants, and duplicates were 
identified and corrected, or removed. Participants missing 
GMA values (n = 7089) were excluded, with no signifi-
cant impact on variable distribution. Transformation steps 
included homogenisation of formats, unifying ICD or ATC 
nomenclatures (Supplementary Material 1), and generating 
binary variables for drugs and diseases. Comorbidities were 
cross-validated against administered medications, revealing 
under-registration of HIV, which was corrected by reclas-
sifying participants on HIV-specific treatments. No data 
imputation was performed. In the load phase, data were 
de-identified and integrated into a unified dataset. Privacy 
measures included numeric value replacement and removal 
of variables with fewer than 10 participants. The resulting 
database was reviewed by the data protection committee 
before use.

Statistical analyses

Three main analyses were conducted. First, a univariate 
descriptive analysis was performed for all variables, includ-
ing comparative analyses of potential predictive factors, 
stratified by age and sex. Next, prediction models for each 
COVID-19 outcome considered (hospitalisation, ICU admis-
sion, mortality, and in-hospital mortality) were developed 
using eXtreme Gradient Boosting (XGBoost). Medication 
and comorbidities were modelled separately, with both 
approaches incorporating demographic and socioeconomic 
features.

The dataset was split into a validation set (10%), and then 
outcomes were balanced by undersampling before being fur-
ther divided into training (70%) and testing (30%) sets. The 
data partitioning process was uniformly applied across all 
datasets to maintain methodological consistency and model 
fairness. However, if there were underrepresented groups in 
the original data, they remained equally underrepresented in 
each partition. Categorical variables were one-hot encoded, 
and grid search hyperparameter tuning was applied to opti-
mize the area under the receiver operating characteristic 
curve (AUROC) using log-loss. Models were trained using 
tenfold cross-validation, repeated 10 times. To enhance 
interpretability, SHapley Additive exPlanations (SHAP) 
were used to determine feature attributions [34]. SHAP sum-
mary plots were generated to assess feature importance and 
their effects on model predictions.

Finally, a sensitivity analysis was conducted on par-
ticipants with arterial hypertension, diabetes mellitus, and 
lipid disorders to evaluate the impact of specific prescribed 
medications on the outcomes. Odds ratios (OR) with 95% 

confidence intervals (CI) were calculated. In all analyses, 
participants were stratified into two age groups: 18 to 65 
and over 65.

Analyses were conducted using R software (version 
4.3.0), with specific packages and code accessible in GitHub 
(https://​github.​com/​berta​miro/​XGBoo​st_​code_​COVID_​
outco​mes).

Results

Characteristics of the cohort

The final dataset had 121,650 participants (Fig. 1), with a 
mean age of 53 years (SD 20), 68,528 (57%) of which were 
female (Supplementary Material 2). In the logistic regres-
sion analysis for participants aged 18 to 65, age at exposure 
was the strongest predictor of hospitalisation (60–64 years 
OR 12.75, CI 11.03–14.82). Other factors were rituximab 

Fig. 1   Description of the cohort used in the study. Data was col-
lected from several data administrative databases centralized by 
AQuaS within the PADRIS framework. Those participants with miss-
ing GMA data were excluded from the study, as those younger than 
18 years old. The final dataset used for analysis had 121,650 partici-
pants and included 255 variables spanning sociodemographic factors, 
comorbidities, chronic medication, and clinical outcomes

https://github.com/bertamiro/XGBoost_code_COVID_outcomes
https://github.com/bertamiro/XGBoost_code_COVID_outcomes
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use (OR 15.19, CI 7.06–35.26), other antivirals (OR 14.37, 
CI 1.38–309.14), polypharmacy (OR 8.15, CI 4.06–16.52), 
and heparins (OR 8.07, CI 6.74–9.66). Among participants 
over 65, rituximab (OR 3.08 CI 1.56–6.31), calcineurin 
inhibitors (OR 3.01 CI 2.15–4.26), and Janus Kinase inhibi-
tors (OR 2.96 CI 1.3–7.12) were most strongly associated 
with hospitalisation risk (Supplementary Material 3). Age 
was less important in the older groups (75–79 age OR 1.22, 
CI 1.13–1.31).

Risk of mortality among participants aged 18 to 65 was 
also determined by age (OR 74.21, CI 28.33–299.93). Other 
factors included rituximab use (OR 18.91, CI 4.49–54.1), 
polypharmacy (OR 16.3, CI 3.9–46.04), heart failure (OR 
16.05, CI 11.35–22.09), and systemic corticosteroids (OR 
15.39, CI 11.69–19.96) (Supplementary Material 4). In par-
ticipants over 65, age remained a key determinant of mor-
tality risk (85–89 years OR 4.15, CI 3.7–4.66), GMA score 
(very high risk GMA OR 2.87, CI 2.54–3.25), calcineurin 
inhibitors (OR 2.15, CI 1.48–3.07), and selective immuno-
suppressants (OR 1.97, CI 1.45–2.64; Supplementary Mate-
rial 5).

The risk of ICU admission was also strongly associated 
with age (60–64 years 18.42, CI 11.82–30.71;), rituximab 
use (OR 14.87, CI 4.99–36.13), calcineurin inhibitors (OR 
8.66, CI 5.51–13.02), direct-acting anticoagulants (OR 7.99, 
CI 4.57–13.03), and polypharmacy (OR 7.06, CI 1.69–19.9, 
Supplementary Material 6). Among participants over 65, the 
most relevant factors for ICU admission were calcineurin 
inhibitors (OR 3.53, CI 1.94–5.94), a history of transplants 
(OR 3.13, CI 1.72–5.24), male sex (OR 3.01, CI 2.65–3.43), 
and the use of selective immunosuppressants (OR 2.53, CI 
1.46–4.1; Supplementary Material 7).

Finally, features associated with in-hospital death in par-
ticipants aged 18 to 65 were age (60–64 years OR 8.53, 
CI 2.7–51.77), use of calcineurin inhibitors (OR 6.38, 
CI 3.72–10.39), selective immunosuppressants (OR 5.8, 
CI 3.49–9.2) or polypharmacy (OR 5.69, CI 1.31–17.51; 
Supplementary Material 8). Comparable characteristics to 
mortality risk, whether occurring in or outside the hospital 
were found relevant in participants over 65 (Supplementary 
Material 9).

Machine learning model performance 
and interpretability

Eight distinct models were evaluated, one for each outcome 
and age group combinations. This approach allowed isolat-
ing the impact of pharmacological variables while minimiz-
ing collinearity with the disease-related variables for which 
these medications were prescribed. XGBoost was selected 
due to its robust tree-based ensemble, enabling the model-
ling of non-linear relationships, mitigation of predictor col-
linearity, and superior performance compared to K-Nearest 

Neighbors, AdaBoost, and Support Vector Machine methods 
(Supplementary Material 10).Pharmacological models dem-
onstrated similar performance overall (Figs. 2 and 3). How-
ever, models for participants older than 65 performed worse. 
For hospitalisation risk, the model for participants aged 18 
to 65 (Fig. 2a) achieved an AUC of 0.70 (CI 0.69–0.71), 
compared to 0.58 (CI 0.57–0.60) for those older than 65 
(Fig. 3a). Similarly, for mortality risk in participants aged 
18 to 65 (Fig. 2b) showed strong discrimination (AUC 0.89, 
CI 0.85–0.92), versus 0.65 (CI 0.63–0.67) model in older 
participants (Fig. 3b).

For ICU admission, the model for participants aged 18 to 
65 (Fig. 2c) exhibited a similar performance to that of the 
model for older participants (Fig. 3c), with AUC values of 
0.74 (CI 0.70–0.78) and 0.73 (CI 0.67–0.79), respectively. 
In contrast, the models predicting the risk of death during 
hospitalisation demonstrated greater variability: it achieved 
an AUC of 0.53 (CI 0.51–0.55) for participants aged 18 to 
65, while it reached an AUC of 0.65 (CI 0.64–0.66) for those 
over 65 (Figs. 2d and 3d).

Models based on disease-related features performed simi-
larly to those using medication data. The best performing 
model predicted risk of death in participants aged 18 to 65 
(AUC 0.92, CI 0.89–0.95), while the hospitalisation model 
for those older than 65 showed the lowest performance 
(AUC 0.59, CI 0.58–0.61; Supplementary Material 11).

Variable importance

Most models consistently identified age and sex as the most 
influential features, with older age and male sex linked to 
worst COVID-19 outcomes. In participants aged 18 to 65, 
hospitalisation risk was associated with the number of pre-
scribed drugs and heparin use (Fig. 4a). In participants older 
than 65, the use of systemic corticosteroids was also linked 
to a higher risk (Fig. 4b).

In mortality models, key features for participants aged 18 
to 65 included the use ACEi, ARBs, and HMG-CoA reduc-
tase inhibitors, all linked to increased risk (Fig. 5a); in those 
older than 65, ACEi and systemic corticosteroids were the 
main determinants (Fig. 5b).

Predictors of ICU admission in both age groups included 
the use of HMG-CoA reductase inhibitors and ACEi or 
ARBs (Fig. 6a, b). While ACEi and ARBs were linked to a 
slightly lower ICU admission risk, participants using HMG-
CoA reductase inhibitors were at higher risk.

In models evaluating COVID-19 outcomes and chronic 
diseases, main predictors of hospitalisation in participants 
aged 18 to 65 included age, sex, obesity, social status, smok-
ing, and metabolic disorders (Supplementary Material 12), 
while in those older than 65, key features were age, demen-
tia, sex, and social status (Supplementary Material 12). 
Mortality risk models identified age, sex, neoplasms, social 
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status, COPD, and diabetes as significant predictors in the 18 
to 65 age group (Supplementary Material 13); whereas age, 
sex, renal insufficiency, and metabolic disorders were the 
most relevant factors in those older than 65 (Supplementary 
Material 13).

Finally, the top predictors of ICU admission in partici-
pants aged 18 to 65 were sex, hypertension, obesity, and 
diabetes (Supplementary Material 14), whereas in those 
older than 65, age, sex, dementia, metabolic disorders, and 
GMA were most relevant (Supplementary Material 14). 
Local model predictions for hospitalisation risk in three 
representative participants aged 18 to 65 are shown in Sup-
plementary Material 15, with accurate predictions at p 0.05.

Sensitivity analysis

A multivariate analysis was conducted to evaluate the rela-
tionship between selected comorbidities and their associated 
medications, specifically hypertension (ACEi and ARBs), 
diabetes (biguanides and DPP4 inhibitors), and metabolic 
disorders (statins).

Participants receiving ACEi or ARBs for hypertension 
did not show an increased risk for any of the outcomes com-
pared to those with compared to patients not using ACEi or 
ARBs to treat hypertension.. However, in individuals over 
65, treatment with ACEi and ARBs was associated with a 
reduced risk of death (OR 0.78, 95% CI 0.68–0.92 and OR 

Fig. 2   ROC values with a 95% CI for the pharmacological models 
evaluated in participants 18 to 65. XGBoost models for prescription 
medication-related features were built for the four outcomes: a risk of 

hospitalisation from COVID-19, b risk of death, c risk of ICU admis-
sion, and d risk of death while hospitalized separately in participants 
aged 18 to 65 years old
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0.8, 95% CI: 0.68–0.95, respectively, Supplementary Mate-
rial 17). Among participants aged 65 or below, none of the 
analysed medications were linked to an increased risk of 
hospitalisation or ICU admission (Supplementary Material 
16, Supplementary Material 18).

For diabetic participants, treatment with DPP4 inhibitors 
in the 18 to 65 age group was associated with a higher risk 
of death (OR 3.03, 95% CI 1.17–7.00, Supplementary Mate-
rial 17). In contrast, among participants over 65, biguanides 
demonstrated a protective effect on overall mortality (OR 
0.79, 95% CI 0.68–0.92), an effect not observed with DPP4 
inhibitors (OR 1.2, 95% CI 0.96–1.49). Furthermore, when 
comparing biguanides to DPP4 inhibitors in participants 

older than 65, biguanides consistently showed better out-
comes across all measures. Statins did not provide a protec-
tive effect for any of the assessed outcomes in either age 
group.

Discussion

Statement of key findings

This study showed that models for chronic medication exhib-
ited AUCROC values ranging from 0.70 to 0.89 for COVID-
19 participants aged 18 to 65; however, these predictions 

Fig. 3   ROC values with a 95% CI for the pharmacological models 
evaluated in participants above 65. XGBoost models for prescription 
medication-related features were built for the four outcomes: a risk of 

hospitalisation from COVID-19, b risk of death, c risk of ICU admis-
sion, and d risk of death while hospitalized separately in participants 
aged older than 65 years
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showed a poorer fit in participants older than 65 for all tested 
outcomes (AUROC between 0.58 and 0.73). This could be 
attributed to the more complex context observed in elderly 
participants. Age, sex, number of drugs, and previous 
pathologies were consistently important predictors across 
models. Hypertension drugs such as ACEi and ARBs were 
associated especially in the risk of death and ICU admission 
in participants aged 18 to 65. By contrast, the sensitivity 
study found that in participants with arterial hypertension 

older than 65, ACEi and ARBs were protective factors for 
death when compared with participants with arterial hyper-
tension without other medications (OR 0.78, and OR 0.8, 
respectively).

Interpretation

We conducted a retrospective study of chronic medication 
use employing XGBoost to identify key factors and predict 

Fig. 4   SHAP summary plot 
for hospitalisation risk in 
the chronic medication and 
demographics model. Variable 
importance (SHAP values) for 
the XGBoost model to deter-
mine the risk of hospitalisation 
from COVID-19 in participants 
by age groups: a from 18 to 
65 years old, and b above 
65 years old, for the pharmaco-
logical features model. SHAP 
values are ranked in descending 
order based on the absolute 
value of their influence on the 
XGBoost model; high values 
mean a higher probability of 
hospitalisation. Purple repre-
sents high variable values and 
yellow represents lower vari-
able values (in the categorical 
variables one-hot-encoded, it 
is 0 yellow and 1 purple). Each 
point represents an instance 
(participant) for that variable in 
the dataset
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relevant outcomes. The models achieved robust predic-
tive power for COVID-19 participants aged 18 to 65, but 
showed diminished performance in participants over 65, 
likely reflecting population heterogeneity and unaccounted 
confounding factors [35]. While prior research examined 
chronic medication, many studies had smaller sample sizes 
or relied on population-based statistical methods [36]. This 
study highlighted the role of age, sex, chronic medica-
tion, socioeconomic factors, and pre-existing conditions in 

predicting COVID-19 outcomes. Our findings align with 
previous evidence identifying these factors and pre-existing 
comorbidities as key determinants of COVID-19 severity 
[37–41].

As pathologies increase with age, so does medication 
use and its associated side effects, all of which influence 
COVID-19 severity [42]. We found that the number of pre-
scribed drugs correlated with a higher risk of negative out-
comes. Other studies have linked polypharmacy to increased 

Fig. 5   SHAP summary plot for 
mortality risk in the chronic 
medication and demographics 
model. Variable importance 
(SHAP values) for the XGBoost 
model to determine the risk of 
death from COVID-19 in par-
ticipants by age groups: a from 
18 to 65 years old, and b above 
65 years old, for the pharmaco-
logical features model. SHAP 
values are ranked in descending 
order based on the absolute 
value of their influence on the 
XGBoost model; high values 
mean a higher probability of 
hospitalisation. Purple repre-
sents high variable values and 
yellow represents lower vari-
able values (in the categorical 
variables one-hot-encoded, it 
is 0 yellow and 1 purple). Each 
point represents an instance 
(participant) for that variable in 
the dataset
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vulnerability [27, 43] and a higher risk of hospitalisation and 
mortality from COVID-19.

Conflicting findings regarding ACEi and ARBs empha-
sise the need for subpopulation-specific analyses [44–46]. 
Although these drugs were associated with a higher risk of 

death when compared with participants who did not take 
antihypertensive drugs, they were inversely associated with 
ICU admission risk in the same age group. While XGBoost 
suggested an association between these drugs and increased 
mortality in participants aged 18 to 65, our sensitivity 

Fig. 6   SHAP summary plot 
for ICU admission risk in 
the chronic medication and 
demographics model. Variable 
importance (SHAP values) for 
the XGBoost model to deter-
mine the risk of ICU admission 
from COVID-19 in participants 
by age groups: a from 18 to 
65 years old, and b above 
65 years old, for the pharmaco-
logical features model. SHAP 
values are ranked in descending 
order based on the absolute 
value of their influence on the 
XGBoost model; high values 
mean a higher probability of 
hospitalisation. Purple repre-
sents high variable values and 
yellow represents lower vari-
able values (in the categorical 
variables one-hot-encoded, it 
is 0 yellow and 1 purple). Each 
point represents an instance 
(participant) for that variable in 
the dataset
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analysis did not confirm this. Instead, we found a protec-
tive effect in hypertensive participants taking these drugs 
compared with hypertensive participants taking other anti-
hypertensive drugs [47]. The discrepancy likely arises from 
differences in cohort composition; XGBoost included both 
hypertensive and non-hypertensive participants, but the sen-
sitivity analysis focused solely on hypertensive individuals.

We also observed a potential protective effect of met-
formin against severe COVID-19 outcomes, likely due to 
its immunomodulatory properties [48]. This aligns with 
hypotheses suggesting its role in mitigating hyper-inflam-
matory responses. In the sensitivity study, treatment with 
DPP4 inhibitors conferred higher probability of death in 
younger diabetic participants [49], whereas biguanides had 
a protective effect on overall fatality rates in diabetic partici-
pants over 65 [50]. Metformin could reduce viral affinity for 
angiotensin-converting enzyme 2 and inhibit inflammation 
via adenosine monophosphate-activated protein activation, 
potentially protecting against severe COVID-19 [51, 52].

ML-driven patient prioritization tools are needed in emer-
gency settings [53]; our analysis of medications associated 
with severe COVID-19 outcomes represents a foundational 
step toward their development.

Our results highlight strong associations between socio-
economic vulnerability and COVID-19 severity and mortal-
ity [54, 55].

Strengths and weaknesses

This study uniquely analyses the relationship between pre-
scribed chronic medication and COVID-19 outcomes using a 
large cohort. Our findings are concordant with other popula-
tions studied with different methodologies, reinforcing their 
robustness. Sensitivity analyses further provided insights 
into specific medications within hypertensive and diabetic 
subpopulations.

However, the study has limitations. Results depend on age 
and sex, factors that may limit the impact of other predictors. 
Additionally, medication data, sourced from community 
and hospital pharmacy invoicing systems, cannot guaran-
tee adherence. To mitigate this, only medications dispensed 
within three months prior to inclusion were considered. 
Moreover, medications were grouped by active ingredient, 
without accounting for dosage variations. Furthermore, the 
evolving COVID-19 management criteria during the pan-
demic introduced potential inconsistencies. Lastly, models 
performed poorly for participants over 65, limiting results 
interpretation for this relevant age group.

Future research

Future studies should investigate the mechanisms underlying 
the protective effects of ACEi, ARBs, and metformin in spe-
cific subpopulations. Additionally, research to develop pre-
dictive models tailored to elderly participants is still needed, 
since they are more prone to severe COVID-19 outcomes. It 
would be interesting to conduct prospective studies to vali-
date these findings and explore causal relationships between 
chronic medication and COVID-19 outcomes. Finally, the 
impact of socioeconomic factors on COVID-19 outcomes 
requires further exploration to design equitable healthcare 
interventions.

Conclusion

Machine learning predictive models have high performance 
predicting hospitalisation, ICU admission, and death in 
COVID-19 participants. Key factors influencing outcomes 
include age, sex, comorbidities, socioeconomic status and 
chronic medication. Our findings support decreased risks 
of poor outcomes in participants with arterial hypertension 
under ACEi or ARBs treatment. Additionally, biguanides 
showed potential protective effects for participants with 
diabetes. Participants taking metformin, ACEi, or ARBs 
should not be switched to alternative medications in rela-
tion to COVID-19.

Our findings leveraged administrative databases and 
advanced AI querying tools. Given their regular updates 
and compliance with EU data protection regulations, the 
methodology is readily applicable with limited additional 
system cost.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11096-​025-​01955-7.
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