

# ©Efficacy and Safety of Avutometinib ± Defactinib in Recurrent Low-Grade Serous Ovarian Cancer: Primary Analysis of ENGOT-OV60/GOG-3052/RAMP 201

Susana N. Banerjee, PhD, MBBS, MA, FRCP<sup>1</sup> (b); Els Van Nieuwenhuysen, MD<sup>2</sup>; Carol Aghajanian, MD<sup>3,4</sup>; Véronique D'Hondt, MD, PhD<sup>5</sup> (b); Bradley J. Monk, MD, FACS, FACOG<sup>6</sup> ; Andrew Clamp, PhD, MSc, BMBCh, MRCP<sup>7</sup>; Emily Prendergast, MD<sup>8</sup> ; Ana Oaknin, MD, PhD<sup>9</sup> ; Kari Ring, MD<sup>10</sup>; Nicoletta Colombo, MD, PhD<sup>11,12</sup> ; Robert W. Holloway, MD<sup>13</sup>; Manuel Rodrigues, MD<sup>14,15</sup>; Hye Sook Chon, MD<sup>16</sup>; Charlie Gourley, PhD, FRCP<sup>17</sup> (b); Alessandro D. Santin, MD<sup>18</sup> (b); Premal H. Thaker, MD<sup>19</sup> (b); Christine Gennigens, MD, PhD<sup>20</sup> (b); Gregg Newman, MD<sup>21</sup>; Erin Salinas, MD<sup>22</sup>; Hagop Youssoufian, MD<sup>23</sup>; Kathleen N. Moore, MD, MS, FASCO<sup>24</sup> (D); Stephanie Lustgarten, PhD<sup>23</sup>; David M. O'Malley, MD<sup>25</sup> ; Toon Van Gorp, MD, PhD<sup>2</sup>; and Rachel N. Grisham, MD<sup>3,4</sup>

DOI https://doi.org/10.1200/JCO-25-00112

# **ABSTRACT**

PURPOSE This study evaluated the efficacy and safety of avutometinib (rapidly accelerated fibrosarcoma/mitogen-activated extracellular signal-regulated kinase [MEK] clamp) alone or in combination with defactinib (focal adhesion kinase inhibitor) in patients with recurrent low-grade serous ovarian cancer (LGSOC).

**METHODS** In this phase II, open-label study, patients with recurrent, measurable LGSOC after ≥1 line of platinum chemotherapy were stratified by tumor Kirsten rat sarcoma virus homolog (KRAS) mutation status and randomly assigned to oral avutometinib 4.0 mg two times per week monotherapy or avutometinib 3.2 mg two times per week in combination with oral defactinib 200 mg two times per day. The combination was selected as the go-forward regimen for expansion. The primary end point was objective response rate (ORR) by blinded independent central review.

**RESULTS** A total of 115 patients received the go-forward combination regimen. Patients had a median of 3 (range, 1-9) prior lines of therapy, including hormonal (86%), bevacizumab (51%), and MEK inhibitor (22%). Confirmed ORR was 31% (95% CI, 23% to 41%) with a median duration of response of 31.1 months (95% CI, 14.8 to 31.1). ORR was 44% in KRAS-mutant and 17% in KRAS wild-type cohorts. The median progression-free survival was 12.9 months (95% CI, 10.9 to 20.2) overall and 22.0 months (95% CI, 11.1 to 36.6) and 12.8 months (95% CI, 7.4 to 18.4) in KRAS-mutant and wild-type cohorts, respectively. The most frequent grade ≥3 treatment-related adverse events (AEs) were elevated creatine phosphokinase (24%), diarrhea (8%), and anemia (5%). Ten percent of patients discontinued because of AEs.

CONCLUSION

The efficacy and safety profile of avutometinib in combination with defactinib support this combination as a potential standard of care for recurrent LGSOC. A randomized phase 3 study of avutometinib and defactinib versus investigator's choice of therapy for women with recurrent LGSOC is currently enrolling (RAMP301; ClinicalTrials.gov identifier: NCT06072781).

# ACCOMPANYING CONTENT

Appendix

Data Sharing Statement

Protocol

Accepted May 21, 2025 Published July 11, 2025

J Clin Oncol 43:2782-2792 © 2025 by American Society of Clinical Oncology



View Online Article

Creative Commons Attribution Non-Commercial No Derivatives 4.0 License

# INTRODUCTION

Low-grade serous ovarian cancer (LGSOC) is a rare, histopathologically, molecularly, and clinically distinct cancer from high-grade serous ovarian cancer (HGSOC), accounting for <10% of new epithelial ovarian cancers.1-4 Relative to HGSOC, LGSOC generally presents at a younger age and is less sensitive to chemotherapy. 1,3,5,6 LGSOC is often driven by mitogen-activated protein kinase (MAPK) mutations, the most common of which are Kirsten rat sarcoma virus homolog (KRAS) mutations, which occur in approximately 30% of patients.<sup>7,8</sup> Furthermore, data suggest that patients with LGSOC tumors harboring KRAS mutations (KRAS mt) have an improved prognosis when compared with those with KRAS wild-type (KRAS wt) tumors.8,9

The initial preferred treatment of LGSOC is primary cytoreductive surgery with the goal of achieving a

# CONTEXT

#### **Key Objective**

What are the efficacy and safety of avutometinib (a rapidly accelerated fibrosarcoma/mitogen-activated extracellular signal-regulated kinase clamp) with and without defactinib (a focal adhesion kinase inhibitor) in a phase II trial of patients with recurrent low-grade serous ovarian cancer (LGSOC)?

#### **Knowledge Generated**

The combination of avutometinib 3.2 mg two times per week + defactinib 200 mg two times per day resulted in clinically meaningful responses, duration of response, and progression-free survival. Adverse events were manageable, mainly with dose holds or reductions, allowing most patients to stay on therapy.

# Relevance (G.F. Fleming)

This combination regimen was recently granted accelerated approval by the US Food and Drug Administration for patients with recurrent LGSOC with a Kirsten rat sarcoma virus mutation.\*

\*Relevance section written by JCO Associate Editor Gini F. Fleming, MD.

complete gross resection followed by chemotherapy and/or hormonal therapy.<sup>4,10</sup> However, most patients will have disease recurrence.<sup>5,11</sup> Chemotherapy in the recurrent setting has shown overall response rates from 0% to 13%.<sup>9,12</sup> In randomized trials, mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors have shown overall response rates of 26% (trametinib) and 16% (binimetinib); however, approximately one third of patients discontinued because of toxicity.<sup>9,12</sup>

Avutometinib is a first-in-class oral rapidly accelerated fibrosarcoma (RAF)/MEK clamp that potently inhibits MEK while also blocking the compensatory reactivation of MEK by upstream RAF that occurs with MEK inhibition alone.13-16 However, inhibition of the MAPK pathway by avutometinib leads to a compensatory activation of focal adhesion kinase (FAK), a key adaptive resistance mechanism to MAPK inhibition.17-20 Addition of a FAK inhibitor to avutometinib in a preclinical model of LGSOC resulted in greater inhibition of tumor growth over avutometinib alone.<sup>21</sup> In a phase I study (FRAME), avutometinib + defactinib (a selective FAK inhibitor) demonstrated promising efficacy and tolerability in this patient population.<sup>22</sup> This phase II trial (ENGOT-ov60/ GOG-3052/RAMP 201) was designed to assess the efficacy and safety of avutometinib with and without defactinib in patients with recurrent LGSOC.

# **METHODS**

#### **Patients**

Patients age ≥18 years with histologically confirmed LGSOC (ovarian, peritoneal) and measurable disease by RECIST v1.1 were enrolled. Eligible patients had radiographic or clinical progression or recurrence of LGSOC after ≥1 prior systemic therapy that included prior platinum. One line of prior MEK

or RAF inhibitor therapy was permitted. KRAS tumor mutation status using a validated test was required before enrollment. Archival tissue was collected for central confirmation of histology and tumor KRAS testing (Protocol).

# Study Design and Treatment

This was an adaptive, four-part, phase II, multicenter, parallel cohort, randomized, open-label trial to evaluate the efficacy and safety of avutometinib alone and in combination with defactinib in patients with recurrent LGSOC (Fig 1). In Part A, patients were randomly assigned 1:1 to either avutometinib 4.0 mg orally two times per week for 3 weeks followed by a 1-week rest period (4-week cycle) or to avutometinib 3.2 mg orally two times per week + defactinib 200 mg orally two times per day for 3 weeks followed by a 1-week rest period (4-week cycle). Random assignment was stratified to achieve equal numbers of patients with KRAS mt and KRAS wt tumors in each regimen. On full enrollment in Part A, Part B was open to expanded enrollment. The combination of avutometinib with defactinib was identified as the go-forward regimen following interim analysis and expanded in Part C.

In Part D, a low starting dose of avutometinib (1.6 mg two times per week) was evaluated in combination with defactinib (200 mg two times per day) for 3 weeks followed by a 1-week rest period (4-week cycle).

Patients received prophylactic medication for rash during the first two cycles (hydrocortisone cream, moisturizer, sunscreen, and systemic antibiotic).

This clinical trial was conducted in the United States, the United Kingdom, France, Spain, Italy, Belgium, and Canada. The study was approved by the institutional review board at each participating site and was conducted in accordance with

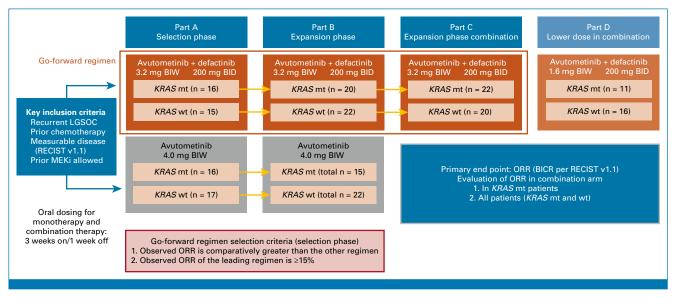



FIG 1. Study design. n values represent patients treated in the study. BICR, blinded independent central review; BID, two times per day; BIW, two times per week; LGSOC, low-grade serous ovarian cancer; KRAS, Kirsten rat sarcoma virus; MEKi, mitogen-activated extracellular signal-regulated kinase inhibitor; mt, mutant; ORR, objective response rate; wt, wild-type.

the International Council for Harmonization Good Clinical Practice guidelines, the Declaration of Helsinki, and local regulations regarding the conduct of clinical research. All patients provided written informed consent.

## **End Points**

The primary end point was objective response rate (ORR) according to RECIST v1.1 as assessed by blinded independent central review (BICR). Secondary end points included duration of response (DOR), ORR as assessed by the investigator, progression-free survival (PFS), overall survival, safety, and pharmacokinetics.

# Assessments

Tumor response was measured by RECIST v1.1. Patients were assessed for response by computed tomography or magnetic resonance imaging. *KRAS* mutation status was confirmed centrally using the tissue-based Tempus xT v4.0 LDT NGS-based assay.

# Statistical Analysis

Efficacy and safety analyses were conducted for all patients who received ≥1 dose of either study-assigned treatment (intention-to-treat population). The efficacy population included patients with ≥1 measurable lesion at baseline. Statistical analyses were conducted using SAS software.

For determination of the go-forward regimen, assuming an absolute difference in ORRs of ≥15%, 32 patients per group provided an 88% probability of choosing the correct regimen. Evaluation of the go-forward algorithm was based on a comparison of ORRs between the avutometinib and avutometinib +

defactinib groups, and the totality of efficacy and safety data was evaluated before proceeding to expansion in Part C.

The primary efficacy and safety analysis of confirmed ORR was conducted for Parts A, B, and C combined in patients treated with the go-forward regimen of avutometinib and defactinib. ORR was assessed by an exact binomial test with a nominal 2.5% two-sided significance level using a null hypothesis ORR of 15% and alternative hypothesis of 40%, with 88% power to detect the difference between hypotheses when the sample size is 36 patients. Confirmed ORR was evaluated simultaneously in all patients and in patients with KRAS mutations as determined by local testing. DOR and PFS were estimated using the Kaplan-Meier method. The two-sided 95% CI for median DOR and median PFS were determined using the Brookmeyer-Crowley method.

Disease progression in the low-dose group (Part D) was compared with that of the go-forward regimen (Parts A, B, and C). If the rate of disease progression by 4 months was >50% higher than that observed with avutometinib 3.2 mg two times per week + defactinib, the starting dose combination of avutometinib 1.6 mg two times per week + defactinib was determined to be suboptimal.

Severity of adverse events (AEs) was graded according to the National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events, Version 5.0 or higher.

# **RESULTS**

# **Determination of KRAS Status**

The results are summarized for the monotherapy and combination therapy groups overall and by KRAS mutation

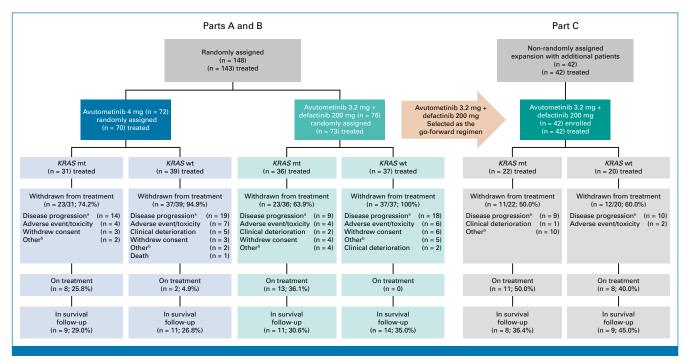



FIG 2. Patient disposition is depicted by a CONSORT diagram for Parts A, B, C, and is summarized by KRAS mutation status and treatment group. <sup>a</sup>Disease progression measured by RECIST v1.1. <sup>b</sup>Other reasons include clinical progression, patient noncompliance, physician decision, debulking surgery, patient withdrawal, and disease progression. KRAS, Kirsten rat sarcoma virus; mt, mutant; wt, wild-type.

status as determined by local testing. The concordance rate between local and central tumor tissue-based testing was 96% (78/81); Appendix Table A1, online only.

# **Determination of Go-Forward Regimen**

At the time of a prespecified analysis to determine the goforward regimen in Part A (data cutoff August 12, 2022), 33 patients receiving avutometinib 4.0 mg two times per week monotherapy and 31 receiving the combination of avutometinib 3.2 mg two times per week  $\pm$ 200 mg defactinib two times per day were evaluable for efficacy. ORR by BICR was higher in the combination group compared with the monotherapy group (28%  $\nu$  7%), with similar toxicity profiles. At the time of the current data cutoff (June 30, 2024), the updated ORR in Part A was 39% versus 9%, respectively.

# **Patient Disposition and Baseline Characteristics**

Avutometinib Monotherapy (Parts A and B) and Avutometinib + Defactinib (Parts A, B, and C)

At the time of data cutoff for the primary analysis (June 30, 2024), 115 patients received avutometinib + defactinib treatment (58 KRAS mt, 57 KRAS wt); 70 received avutometinib monotherapy (31 KRAS mt, 39 KRAS wt; Fig 2). A total of 109 and 69 patients in the combination and monotherapy groups, respectively, had measurable disease at baseline by BICR and were included in the efficacy-evaluable population. The

median duration of follow-up was 13.6 months (range, 1.4-39.5 months) in the combination treatment group and 18.5 months (range, 1.0-36.9 months) in the monotherapy group.

Demographic and baseline characteristics were generally similar between patients receiving avutometinib + defactinib combination therapy and avutometinib monotherapy (Table 1).

Lower Starting Dose of Avutometinib + Defactinib (Part D)

Of the 27 patients enrolled in Part D and treated with avutometinib 1.6 mg two times per week + defactinib 200 mg two times per day, 23 were evaluable for efficacy (Appendix 1).

# **Efficacy**

Avutometinib Monotherapy (Parts A and B) Versus Avutometinib + Defactinib (Parts A, B, and C)

The ORR by BICR (primary end point) was 31% in the combination treatment group (44% in KRAS mt, 17% in KRAS wt; Table 2) and 17% in the avutometinib monotherapy group (23% in KRAS mt, 13% in KRAS wt; Table 2). ORR values by investigator assessment are in Appendix Table A2. DOR and PFS by BICR in the monotherapy group are in Appendix Table A3.

TABLE 1. Baseline Characteristics in the Avutometinib (3.2 mg two times per week) + Defactinib (200 mg two times per day) Group and the Avutometinib (4.0 mg two times per week) Group

|                                                 | Avutometinib (3.2 mg two times per week) + Defactinib (200 mg two times per day) |                   |                 | Avutometinib (4.0 mg two times per week) |                   |                   |
|-------------------------------------------------|----------------------------------------------------------------------------------|-------------------|-----------------|------------------------------------------|-------------------|-------------------|
| Characteristic                                  | All Patients, n = 115                                                            | KRAS mt, $n = 58$ | KRAS wt, n = 57 | All Patients, n = 70                     | KRAS mt, $n = 31$ | KRAS wt, $n = 39$ |
| Age (years), median (min, max)                  | 54 (21, 87)                                                                      | 60 (29, 87)       | 45 (21, 80)     | 54 (21, 77)                              | 57 (27, 74)       | 48 (21, 77)       |
| Race, <sup>a</sup> No. (%)                      |                                                                                  |                   |                 |                                          |                   |                   |
| White                                           | 88 (77)                                                                          | 43 (74)           | 45 (80)         | 59 (84)                                  | 24 (77)           | 35 (90)           |
| Asian                                           | 4 (3)                                                                            | 2 (3)             | 2 (4)           | 1 (3)                                    | 1 (3)             | 0                 |
| Black or African American                       | 5 (4)                                                                            | 3 (5)             | 2 (4)           | 1 (3)                                    | 1 (3)             | 0                 |
| Other                                           | 5 (4)                                                                            | 0                 | 5 (9)           | 2 (3)                                    | 2 (6)             | 0                 |
| Not reported                                    | 13 (11)                                                                          | 10 (17)           | 3 (5)           | 6 (9)                                    | 3 (10)            | 3 (8)             |
| Unknown                                         | 0                                                                                | 0                 | 0               | 1 (1)                                    | 0                 | 1 (3)             |
| ECOG PS, No. (%)                                |                                                                                  |                   |                 |                                          |                   |                   |
| 0                                               | 78 (68)                                                                          | 42 (72)           | 36 (63)         | 50 (71)                                  | 19 (61)           | 31 (80)           |
| 1                                               | 37 (32)                                                                          | 16 (28)           | 21 (37)         | 20 (29)                                  | 12 (39)           | 9 (20)            |
| Prior systemic regimens, No., median (min, max) | 3 (1, 9)                                                                         | 3 (1, 9)          | 3 (1, 9)        | 3 (1, 10)                                | 3 (1, 10)         | 3 (1, 9)          |
| Prior platinum-based chemotherapy, No. (%)      | 114 (99)                                                                         | 58 (100)          | 56 (98)         | 69 (99)                                  | 30 (97)           | 39 (100)          |
| Prior hormonal therapy, No. (%)                 | 99 (86)                                                                          | 49 (85)           | 50 (88)         | 58 (83)                                  | 25 (81)           | 33 (85)           |
| Prior bevacizumab, No. (%)                      | 59 (51)                                                                          | 23 (40)           | 36 (63)         | 34 (49)                                  | 17 (55)           | 17 (44)           |
| Prior MEK inhibitor therapy, No. (%)            | 25 (22)                                                                          | 12 (21)           | 13 (23)         | 18 (26)                                  | 8 (26)            | 10 (26)           |

Abbreviations: ECOG PS, Eastern Cooperative Oncology Group Performance Status; KRAS, Kirsten rat sarcoma virus homolog; MEK, mitogen-activated extracellular signal-regulated kinase; mt, mutant; wt, wild type.

<sup>a</sup>Self-reported.

**TABLE 2.** ORR (RECIST v1.1) by BICR in the Avutometinib (3.2 mg two times per week) + Defactinib (200 mg two times per day) Group and the Avutometinib (4.0 mg two times per week) Monotherapy Group

|                                      | Avutometinib (3.2 mg two times per week) + Defactinib (200 mg two times per day) |                   |                   | Avutometinib (4.0 mg two times per week) |                   |                   |
|--------------------------------------|----------------------------------------------------------------------------------|-------------------|-------------------|------------------------------------------|-------------------|-------------------|
| Clinical Outcome                     | All Patients, n = 109                                                            | KRAS  mt,  n = 57 | KRAS wt, $n = 52$ | All Patients, n = 69                     | KRAS  mt,  n = 30 | KRAS wt, $n = 39$ |
| Confirmed <sup>a</sup> ORR, No. (%)  | 34 (31)                                                                          | 25 (44)           | 9 (17)            | 12 (17)                                  | 7 (23)            | 5 (13)            |
| Complete response                    | 2 (2)                                                                            | 2 (4)             | 0                 | 1 (1)                                    | 1 (3)             | 0                 |
| Partial response                     | 32 (29)                                                                          | 23 (40)           | 9 (17)            | 11 (16)                                  | 6 (20)            | 5 (13)            |
| Stable disease, <sup>b</sup> No. (%) | 62 (57)                                                                          | 28 (49)           | 34 (65)           | 43 (62)                                  | 17 (57)           | 26 (67)           |
| Progressive disease, No. (%)         | 9 (8)                                                                            | 2 (4)             | 7 (14)            | 7 (10)                                   | 3 (10)            | 4 (10)            |
| Not evaluable, No. (%)               | 4 (4)                                                                            | 2 (4)             | 2 (4)             | 7 (10)                                   | 3 (10)            | 4 (10)            |

Abbreviations: BICR, blinded independent central review; KRAS, Kirsten rat sarcoma virus homolog; mt, mutant; ORR, objective response rate; wt, wild type.

# Avutometinib + Defactinib (Parts A, B, and C)

In the combination treatment group, the median time to confirmed response was 3.7 months (range, 1.7–19.2), and the median DOR (Kaplan-Meier estimate) was 31.1 months (95% CI, 14.8 to 31.1; Fig 3A). Among patients with confirmed objective responses, 81% (95% CI, 62% to 91%) and 72% (95% CI, 54% to 89%) of responses were maintained at 6 months and 12 months, respectively. Kaplan-Meier estimates by KRAS mutation status are shown in Figure 3A.

A planned subgroup analysis of confirmed ORR was conducted on the basis of prior therapies: prior MEK inhibitor (24%; 95% CI, 9% to 45%), no prior MEK inhibitor (33%; 95% CI, 23%, to 44%), prior bevacizumab (20%; 95% CI, 10% to 33%), no prior bevacizumab (43%; 95% CI, 29% to 57%), >3 prior regimens (24%; 95% CI, 13% to 39%), and 1–3 prior lines of therapy (37%; 95% CI, 25% to 50%; Appendix Fig A1). The study was not powered to assess differences in efficacy between these subgroups.

Fifty-seven percent of patients had stable disease as their best response, for a disease control rate (DCR) of 88%. DCR was maintained for  $\geq$ 6 months in 61% of patients, with 70% in *KRAS* mt and 50% in *KRAS* wt. The majority of patients (82%) had some reduction in target lesions, regardless of *KRAS* mutation status (Fig 3C).

The median PFS was 12.9 months (95% CI, 10.9 to 20.2). In the *KRAS* mt and wt groups, the median PFS was 22.0 months (95% CI, 11.1 to 36.6) and 12.8 months (95% CI, 7.4 to 18.4), respectively (Fig 3B). For all patients, the 6-month PFS rate was 79% (95% CI, 70% to 86%), and the 12-month PFS rate was 58% (95% CI, 47% to 68%).

Lower Starting Dose of Avutometinib + Defactinib (Part D)

The rate of disease progression within 4 months was 83% greater with avutometinib 1.6 mg two times per week +

defactinib 200 mg two times per day compared with avutometinib 3.2 mg two times per week + defactinib 200 mg two times per day (22%  $\nu$  12%). The lower starting dose was determined to be suboptimal per protocol definition.

# Safety

Avutometinib Monotherapy (Parts A and B)

AEs in the monotherapy group are in Table 3. AEs (regardless of causality) led to treatment discontinuation in 16% of patients. Treatment-related serious AEs (SAEs) occurred in 7% of patients, the most common of which was diarrhea in two patients.

Avutometinib + Defactinib (Parts A, B, and C)

In the combination treatment group, the most frequent treatment–related nonlaboratory AEs (all grades) were nausea (67%), diarrhea (58%), peripheral edema (53%), rash (50%), fatigue (44%), and vomiting (43%). Most events were grade 1 or 2 (Table 3). The most frequent grade 3 or 4 treatment–related nonlaboratory AEs were diarrhea (8%), anemia (5%), and dermatitis acneiform (4%). Increased creatine phosphokinase (CPK) related to treatment occurred in 60% of patients, with 19% grade 3 and 5% grade 4. These laboratory events were manageable and resolved mainly with dose holds per protocol.

AEs (regardless of causality) led to treatment discontinuation in 10% of patients; the most common was elevated CPK (4% of patients). Patients with repeat grade 3 or grade 4 CPK elevation were required to discontinue treatment in initial protocol versions; however, the protocol was amended to allow initial management with drug interruption and, subsequently, no patient discontinued for elevated CPK.

Treatment-related skin reactions reported in >20% of patients included rash (50%), dermatitis acneiform (34%), and

<sup>&</sup>lt;sup>a</sup>By BICR.

blincludes unconfirmed partial response; stable disease (or unconfirmed partial response) must occur ≥53 days after first dose date.

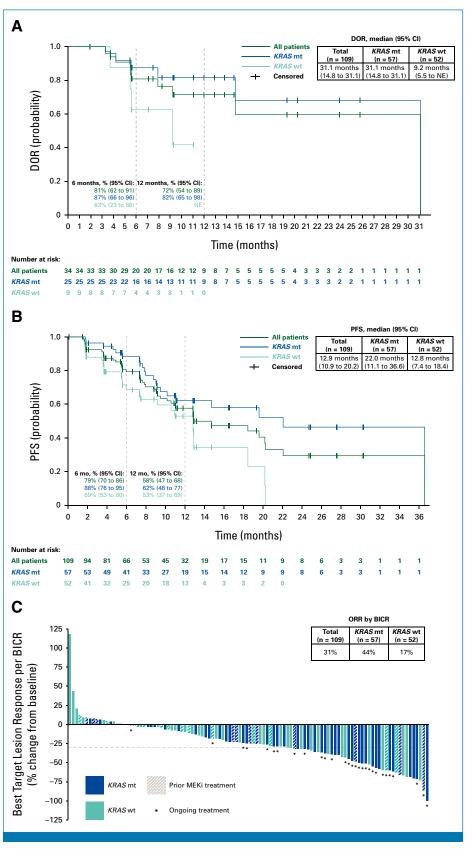



FIG 3. (A) DOR as assessed by the BIRC was calculated for patients with a complete response or partial response from the time of first response to progressive disease using Kaplan-Meier methods and (B) PFS as assessed by the BIRC is summarized by KRAS mutation status, phase, and treatment group for the efficacy-evaluable population. (C) Best response (percent change from baseline) of the sum of target lesions as assessed by the BIRC for the (continued on following page)

**FIG 3.** (Continued). efficacy evaluable population for the avutometinib 3.2 mg BIW + defactinib 200 mg BID combination therapy group. BID, two times per day; BIRC, blinded independent central review; BIW, two times per week; DOR, duration of response; *KRAS*, Kirsten rat sarcoma virus homolog; MEKi, mitogen-activated extracellular signal-regulated kinase inhibitor; mt, mutant; NE, not evaluable or unknown; PFS, progression-free survival; wt, wild type.

dry skin (26%); most were grade 1 or 2. The median onset of the first treatment-related skin reaction was 15 days, with a median duration of 35 days. A total of 6% of patients had a treatment-related skin reaction that resulted in a dose interruption or dose reduction. One patient discontinued because of dermatitis acneiform; no grade 4 or serious skin reactions were observed.

Blurred vision was the most common treatment-related ocular event (41% of patients), with the majority of events occurring within the first week (median onset 2 days). All events of blurred vision were grade 1 or 2, often resolved without treatment interruption, and did not lead to treatment discontinuation. Two patients had a treatment-related ocular event of ≥grade 3 (chorioretinopathy and retinal detachment); both resolved with dose modifications. Cardiovascular events were infrequent (2 patients with ≥grade 3 treatment-related events). One patient experienced decreased ventricular ejection fraction that resolved.

The proportion of patients with blood bilirubin increased and hyperbilirubinemia resulting in reduction or hold of study drug was 22%. None required study treatment discontinuation. Few patients with increased ALT or AST required treatment interruption (four and three patients, respectively), or dose reduction (one patient each). One and o patients, respectively, discontinued for increased ALT or AST.

Dose holds were the most common intervention to mitigate AEs. Treatment-related AEs led to dose holds of avutometinib and defactinib in 56% of patients and to dose reductions in 10% of patients. Patients maintained a high relative dose intensity (mean actual/planned cumulative dose) for both avutometinib (0.84) and defactinib (0.77).

Treatment-related SAEs occurred in 7% of patients, the most common was abdominal pain in two patients. There were five deaths in the combination group (on treatment or within 30 days of discontinuation): one each with GI hemorrhage, intestinal obstruction, and large intestine perforation and 2 with disease progression; none were considered by the investigator to be related to study treatment.

# DISCUSSION

These findings represent a promising advance in the management of patients with recurrent LGSOC, who currently have few effective treatment options. Conventional

treatment approaches have been adopted from HGSOC with limited success, both in terms of efficacy and safety. The combination of avutometinib 3.2 mg twice weekly with defactinib 200 mg twice daily resulted in clinically meaningful and durable responses. Overall, 31% of patients achieved an objective response by BICR with a median DOR of 31 months.

Although avutometinib monotherapy (4.0 mg twice weekly) demonstrated clinical activity, the combination regimen demonstrated more robust efficacy without the addition of significant toxicities, supporting the combination as the goforward regimen. The higher ORR observed with the combination versus avutometinib monotherapy is consistent with the known mechanism of action of each drug. Avutometinib inhibits MEK activities and induces dominant negative RAF/MEK complexes (RAF/MEK clamp), thereby blocking compensatory reactivation of MEK. The addition of defactinib may deepen and prolong responses by addressing adaptive resistance by FAK than occurs with MAPK inhibition alone.

In patients receiving the go-forward combination regimen, ORR was higher in patients with the KRAS mutation (44%) than in patients without the KRAS mutation (17%). A similar trend was observed in PFS, with a median of 22.0 months in KRAS mt and 12.8 months in KRAS wt patients. The differences in efficacy by KRAS mutation status may be driven by differences in prognosis, supported by other LGSOC studies showing worse outcomes and more rapid disease progression in KRAS wt patients.8,9,12,23 Similarly, KRAS wt patients in this study had a younger median age than KRAS mt patients (45  $\nu$  60 years), consistent with previous studies showing that patients with KRAS mt LGSOC are more likely to be diagnosed at a more advanced age and have improved response rates to chemotherapy and improved overall survival. However, despite differences in prognosis, most (82%) patients achieved some reduction in target lesions, including both KRAS mt and wt patients as well as those who had received prior MEK inhibitor therapy.

AEs were manageable with dose holds or reductions, allowing most patients to have prolonged exposure and remain on treatment until disease progression. This was demonstrated by the high relative dose intensity (mean, 0.8) and 10% discontinuation rate because of AEs. By contrast, prior phase II/III studies with MEK-only inhibitors (trametinib and binimetinib) have reported discontinuation rates for AEs of >30%. 9.12 In addition to the use of dose

TABLE 3. Most Frequently Reported Treatment-Related AEs (>20% of Patients) for Avutometinib (3.2 mg two times per week) + Defactinib (200 mg two times per day) and Avutometinib (4.0 mg two times per week)

|                                              |                     |                    | Avutometinib<br>(4.0 mg two times per week), n = 70 |                    |  |
|----------------------------------------------|---------------------|--------------------|-----------------------------------------------------|--------------------|--|
| Preferred Term                               | All Grades, No. (%) | Grade ≥3,ª No. (%) | All Grades, No. (%)                                 | Grade ≥3,ª No. (%) |  |
| Nonlaboratory AEs                            |                     |                    |                                                     |                    |  |
| Nausea                                       | 77 (67)             | 3 (3)              | 29 (41)                                             | 2 (2)              |  |
| Diarrhea                                     | 67 (58)             | 9 (8)              | 46 (66)                                             | 7 (10)             |  |
| Edema peripheral                             | 61 (53)             | 1 (1)              | 30 (43)                                             | 0                  |  |
| Rash <sup>b</sup>                            | 58 (50)             | 3 (3)              | 41 (59)                                             | 7 (10)             |  |
| Fatigue                                      | 50 (44)             | 3 (3)              | 26 (37)                                             | 1 (1)              |  |
| Vomiting                                     | 49 (43)             | 3 (3)              | 19 (27)                                             | 2 (3)              |  |
| Vision blurred                               | 47 (41)             | 0                  | 28 (40)                                             | 1 (1)              |  |
| Dermatitis acneiform                         | 39 (34)             | 5 (4)              | 28 (40)                                             | 7 (10)             |  |
| Dry skin                                     | 30 (26)             | 0                  | 25 (36)                                             | 0                  |  |
| Anemia                                       | 26 (23)             | 6 (5)              | 17 (24)                                             | 7 (10)             |  |
| Stomatitis                                   | 18 (16)             | 3 (3)              | 17 (24)                                             | 1 (1)              |  |
| Laboratory-related AEs                       |                     |                    |                                                     |                    |  |
| Increased blood CPK                          | 69 (60)             | 28 (24)            | 40 (57)                                             | 17 (24)            |  |
| Increased blood bilirubin/hyperbilirubinemia | 38 (33)             | 5 (4)              | 1 (1)                                               | 0                  |  |
| AST increased                                | 36 (31)             | 2 (2)              | 11 (16)                                             | 1 (1)              |  |
| ALT increased                                | 25 (22)             | 2 (2)              | 7 (10)                                              | 1 (1)              |  |

NOTE. Most common AEs (preferred term) considered by the investigator to be related to study drug (either avutometinib or defactinib). Abbreviations: AE, adverse event; CPK, creatine phosphokinase.

<sup>a</sup>Grade 4 treatment-related AEs were reported in 7 (6%) patients in the combination treatment group (six [5%] patients with CPK increased, and one [1%] patient with magnesium decreased); and two (3%) patients in the monotherapy group (one [1%] patient with large intestinal obstruction, and one [1%] patient with CPK increased).

bTreatment-related AEs for rash include the preferred terms: butterfly rash, rash, rash erythematous, rash macular, rash maculopapular, rash papular, and rash pruritic

modifications (mainly dose holds) to manage toxicities with avutometinib + defactinib, the dosing schedule of 3 weeks on and 1 week off may mitigate the accumulation of toxicities and contribute to a low discontinuation rate.

Elevated blood CPK, a recognized mechanism-based effect of drugs that inhibit the MAPK pathway, 12,24 was the most common laboratory abnormality; however, these events were mainly asymptomatic and effectively managed with dose holds. The majority of skin reactions occurred within the first 2 months of the study and were grade 1 or 2. To mitigate dermatologic toxicities, prophylactic medications were mandatory during the first 2 cycles and optional from Cycle 3 onward. Ocular events are a recognized class-effect toxicity of MEK inhibitors. 25,26 Abnormal ophthalmologic examination findings were recorded as AEs even if they were asymptomatic. Overall, ocular events had an early onset, were generally nonserious and mild in severity, and were self-limiting without treatment or discontinuation of study drugs.

Unlike previous studies in LGSOC, 9,12 patients were stratified by the presence or absence of KRAS mutation. More than 20% of patients enrolled had received prior MEK inhibitor therapy, and more than 50% received prior bevacizumab. The impact of prior therapies on patient outcomes warrants further investigation. The main limitation of this study is the lack of a comparator arm with current standard of care, which is currently being explored in a phase 3 trial with PFS as the primary end point (GOG-3097/ENGOT-ov81/GTG-UK/RAMP 301; ClinicalTrials.gov identifier: NCT06072781).27

In this population of women with recurrent LGSOC and few available treatment options, the combination of avutometinib 3.2 mg twice weekly + defactinib 200 mg twice daily resulted in clinically meaningful response rates, DOR, and PFS. AEs were manageable, allowing most patients to stay on therapy. These data support the combination of avutometinib and defactinib as a potential new standard of care for women with recurrent LGSOC.

# **AFFILIATIONS**

<sup>1</sup>The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, GTG-UK, London, United Kingdom

<sup>2</sup>University Hospitals Leuven, Leuven Cancer Institute, BGOG, Leuven, Belgium

<sup>3</sup>Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY

<sup>4</sup>Weill Cornell Medical College, New York, NY

<sup>5</sup>Institut du Cancer de Montpellier (ICM) Val d'Aurelle Parc

Euromedecine, Oncologie Médicale, GINECO, Montpellier, France

<sup>6</sup>Florida Cancer Specialists, West Palm Beach, FL

<sup>7</sup>Medical Oncology, The Christie NHS Foundation Trust and University of Manchester, GTG-UK, Manchester, United Kingdom

<sup>8</sup>Gynecologic Oncology, Minnesota Oncology, Minneapolis, MN <sup>9</sup>Medical Oncology Service, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain

<sup>10</sup>Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA

<sup>11</sup>Università degli Studi di Milano Bicocca, Bicocca, Italy

12 European Institute of Oncology, Milan, Italy

<sup>13</sup>AdventHealth Cancer Institute, Orlando, FL

<sup>14</sup>Department of Medical Oncology, Institut Curie, Paris, France

<sup>15</sup>DRUM Team, INSERM U830, Institut Curie, Paris, France

<sup>16</sup>Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL

<sup>17</sup>CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom

<sup>18</sup>Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Gynecologic Oncology, Yale School of Medicine, New Haven, CT

<sup>19</sup>Division of Gynecologic Oncology, Washington University School of Medicine and Siteman Cancer Center, St Louis, MO

<sup>20</sup>Department of Medical Oncology, University Hospital of Liège, CHU of Liège, Liège, Belgium

<sup>21</sup>Sansum Clinic Healthcare, USO, Santa Barbara, CA

<sup>22</sup>Northwest Cancer Specialists, P.C., USO, Portland, OR

<sup>23</sup>Verastem Oncology, Boston, MA

<sup>24</sup>Stephenson Oklahoma Cancer Center at the University of Oklahoma Health Sciences Center, Oklahoma City, OK

<sup>25</sup>The Ohio State University, James Comprehensive Cancer Center, Columbus, OH

# **CORRESPONDING AUTHOR**

Susana N. Banerjee, PhD, MBBS, MA, FRCP; Social Media Handle: @BanerjeeSusana; e-mail: susana.banerjee@rmh.nhs.uk.

#### PRIOR PRESENTATION

Presented at International Gynecologic Cancer Society 2024 Annual Global Meeting, Dublin, Ireland, October 16-18, 2024.

#### SUPPORT

Supported by Verastem Oncology (Needham, MA) and conducted in collaboration with GOG Foundation and ENGOT.

# CLINICAL TRIAL INFORMATION

NCT04625270 (RAMP201)

# AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO-25-00112.

#### DATA SHARING STATEMENT

A data sharing statement provided by the authors is available with this article at DOI https://doi.org/10.1200/JCO-25-00112.

#### **AUTHOR CONTRIBUTIONS**

Conception and design: Susana N. Banerjee, Carol Aghajanian, Bradley J. Monk, Hagop Youssoufian, Stephanie Lustgarten, David M. O'Malley, Rachel N. Grisham

Provision of study materials or patients: Carol Aghajanian, Bradley J. Monk, Andrew Clamp, Emily Prendergast, Ana Oaknin, Manuel Rodrigues, Hye Sook Chon, Charlie Gourley, Alessandro D. Santin, Premal H. Thaker, Christine Gennigens

Collection and assembly of data: Carol Aghajanian, Véronique D'Hondt, Bradley J. Monk, Andrew Clamp, Emily Prendergast, Ana Oaknin, Kari Ring, Robert W. Holloway, Hye Sook Chon, Charlie Gourley, Premal H. Thaker, Gregg Newman, Erin Salinas, Hagop Youssoufian, Kathleen N. Moore, Stephanie Lustgarten, David M. O'Malley, Toon Van Gorp, Rachel N. Grisham

Data analysis and interpretation: Susana N. Banerjee, Els Van Nieuwenhuysen, Carol Aghajanian, Bradley J. Monk, Andrew Clamp, Emily Prendergast, Ana Oaknin, Kari Ring, Nicoletta Colombo, Robert W. Holloway, Manuel Rodrigues, Hye Sook Chon, Alessandro D. Santin, Premal H. Thaker, Christine Gennigens, Gregg Newman, Hagop Youssoufian, Stephanie Lustgarten, David M. O'Malley, Toon Van Gorp, Rachel N. Grisham

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

# ACKNOWLEDGMENT

We thank the patients, their families, the clinical investigators, and site personnel who participated in the trial; as well as the ENGOT and GOG Foundation personnel. Medical writing support was provided by Kelly Helton from Verastem Oncology (Needham, MA) and by Kelby Killoy, PhD, from The Curry Rockefeller Group, a Citrus Health Group, Inc., company (Chicago, IL), and was funded by Verastem Oncology (Needham, MA). Drs Aghajanian and Grisham are supported in part by the NIH/NCI Cancer Center Support Grant P30 CA008748. Prof Banerjee acknowledges the NIHR Biomedical Research Centers at The Royal Marsden NHS Foundation Trust/Institute of Cancer Research. RAMP 201 Investigators are listed in Appendix Table A4.

# REFERENCES

- 1. Grisham RN, Manning-Geist BL, Chui MH: The highs and lows of serous ovarian cancer. Cancer 129:2613-2620, 2023
- 2. Matsuo K, Machida H, Grubbs BH, et al: Trends of low-grade serous ovarian carcinoma in the United States. J Gynecol Oncol 29:e15, 2018
- 3. Plaxe SC: Epidemiology of low-grade serous ovarian cancer. Am J Obstet Gynecol 198:459.e1-459.e9, 2008; discussion 459.e458-459
- 4. Grisham RN, Slomovitz BM, Andrews N, et al: Low-grade serous ovarian cancer: Expert consensus report on the state of the science. Int J Gynecol Cancer 33:1331-1344, 2023
- 5. Gershenson DM: Low-grade serous carcinoma of the ovary or peritoneum. Ann Oncol 27:i45-i49, 2016 (suppl 1)

- Slomovitz B, Gourley C, Carey MS, et al: Low-grade serous ovarian cancer: State of the science. Gynecol Oncol 156:715-725, 2020
- ElNaggar A, Robins D, Baca Y, et al: Genomic profiling in low grade serous ovarian cancer: Identification of novel markers for disease diagnosis and therapy. Gynecol Oncol 167:306-313, 2022
- Manning-Geist B, Gordhandas S, Liu YL, et al: MAPK pathway genetic alterations are associated with prolonged overall survival in low-grade serous ovarian carcinoma. Clin Cancer Res 28: 4456-4465, 2022
- Gershenson DM, Miller A, Brady WE, et al: Trametinib versus standard of care in patients with recurrent low-grade serous ovarian cancer (GOG 281/LOGS): An international, randomised, open-label, multicentre, phase 2/3 trial. Lancet 399:541-553, 2022
- National Comprehensive Care Network: NCCN clinical Practice guidelines in Oncology (NCCN Guidelines®): Ovarian cancer including fallopian tube cancer and primary peritoneal cancer. 2024
- Gershenson DM, Bodurka DC, Lu KH, et al: Impact of age and primary disease site on outcome in women with low-grade serous carcinoma of the ovary or peritoneum: Results of a large single institution registry of a rare tumor. J Clin Oncol 33:2675-2682, 2015
- Monk BJ, Grisham RN, Banerjee S, et al: MILO/ENGOT-ov11: Binimetinib versus physician's choice chemotherapy in recurrent or persistent low-grade serous carcinomas of the ovary, fallopian tube, or primary peritoneum. J Clin Oncol 38:3753-3762, 2020
- Gonzalez-Del Pino GL, Li K, Park E, et al: Allosteric MEK inhibitors act on BRAF/MEK complexes to block MEK activation. Proc Natl Acad Sci U S A 118:e2107207118, 2021
- Ishii N, Harada N, Joseph EW, et al: Enhanced inhibition of ERK signaling by a novel allosteric MEK inhibitor, CH5126766, that suppresses feedback reactivation of RAF activity. Cancer Res 73: 4050-4060, 2013
- Lito P, Saborowski A, Yue J, et al: Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors. Cancer Cell 25:697-710, 2014
- Martinez-Garcia M, Banerji U, Albanell J, et al: First-in-human, phase I dose-escalation study of the safety, pharmacokinetics, and pharmacodynamics of R05126766, a first-in-class dual MEK/RAF inhibitor in patients with solid tumors. Clin Cancer Res 18:4806-4819, 2012
- Dawson JC, Serrels A, Stupack DG, et al: Targeting FAK in anticancer combination therapies. Nat Rev Cancer 21:313-324, 2021
- 18. Hirata E, Girotti MR, Viros A, et al: Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 27:574-588, 2015
- 19. Kang Y, Hu W, Ivan C, et al: Role of focal adhesion kinase in regulating YB-1-mediated paclitaxel resistance in ovarian cancer. J Natl Cancer Inst 105:1485-1495, 2013
- Shinde R, Terbuch A, Little M, et al: Abstract CT143: Phase I study of the combination of a RAF-MEK inhibitor CH5126766 and FAK inhibitor defactinib in an intermittent dosing schedule with expansions in KRAS mutant cancers. Cancer Res 80:CT143, 2020 (suppl 16)
- 21. McNamara B, Demirkiran C, Hartwich TMP, et al: Preclinical efficacy of RAF/MEK clamp avutometinib in combination with FAK inhibition in low grade serous ovarian cancer. Gynecol Oncol 183: 133-140 2024
- 22. Banerjee S, Grochot R, Shinde R, et al: 725M0 Phase I study of the combination of the dual RAF/MEK inhibitor VS-6766 and the FAK inhibitor defactinib: Results of efficacy in low grade serous ovarian cancer. Ann Oncol 32:S728, 2021
- 23. Gershenson DM, Sun CC, Westin SN, et al: The genomic landscape of low-grade serous ovarian/peritoneal carcinoma and its impact on clinical outcomes. Gynecol Oncol 165:560-567, 2022 24. Guo C, Chénard-Poirier M, Roda D, et al: Intermittent schedules of the oral RAF-MEK inhibitor CH5126766/VS-6766 in patients with RAS/RAF-mutant solid tumours and multiple myeloma: A singlecentre, open-label, phase 1 dose-escalation and basket dose-expansion study. Lancet Oncol 21:1478-1488, 2020
- Francis JH, Habib LA, Abramson DH, et al: Clinical and morphologic characteristics of MEK inhibitor-associated retinopathy: Differences from central serous chorioretinopathy. Ophthalmology 124:1788-1798, 2017
- 26. Stjepanovic N, Velazquez-Martin JP, Bedard PL: Ocular toxicities of MEK inhibitors and other targeted therapies. Ann Oncol 27:998-1005, 2016
- 27. Grisham R, Monk BJ, Van Nieuwenhuysen E, et al: GOG-3097/ENGOT-ov81/GTG-UK/RAMP 301: A phase 3, randomized trial evaluating avutometinib plus defactinib compared with investigator's choice of treatment in patients with recurrent low grade serous ovarian cancer. Int J Gynecol Cancer 10.1136/ijqc-2024-005919 [epub ahead of print on April 18, 2025]

# **AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST**

Efficacy and Safety of Avutometinib ± Defactinib in Recurrent Low-Grade Serous Ovarian Cancer: Primary Analysis of ENGOT-0V60/GOG-3052/ RAMP 201

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to <a href="https://www.asco.org/rwc">www.asco.org/rwc</a> or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

## Susana N. Banerjee

Stock and Other Ownership Interests: Perci Health, Innovative Diagnostics

Honoraria: AstraZeneca, GlaxoSmithKline, Immunogen, MSD Oncology, AbbVie. Eisai. Pharma&. Verastem

Consulting or Advisory Role: GlaxoSmithKline, MSD Oncology, AstraZeneca, Seagen, Immunogen, Myriad Genetics, Verastem, Zymeworks, Abbvie, BioNTech SE, Eisai, Gilead Sciences, Gray Wolf Therapeutics, Incyte, ITM Oncologics, TORL Biotherapeutics, Genmab, Biogene, Lilly

Research Funding: GlaxoSmithKline (Inst), AstraZeneca (Inst)
Travel, Accommodations, Expenses: GlaxoSmithKline, AstraZeneca,
Verastem, Zymeworks

Uncompensated Relationships: Royal Society of Medicine President Oncology Section, International Cancer Foundation Board

#### Els Van Nieuwenhuysen

Consulting or Advisory Role: Regeneron (Inst), Oncoinvent,

AstraZeneca (Inst), Merck Serono (Inst)

Speakers' Bureau: GlaxoSmithKline (Inst), AstraZeneca (Inst), MSD Research Funding: AstraZeneca (Inst), Lilly (Inst), Merck (Inst), Seagen (Inst), Roche (Inst), Novartis (Inst), Regeneron (Inst), Oncoinvent (Inst) Travel, Accommodations, Expenses: Regeneron (Inst), GlaxoSmithKline (Inst)

# Carol Aghajanian

Leadership: GOG Foundation, NRG Oncology

Consulting or Advisory Role: Merck, AstraZeneca, WCG Research Funding: Genentech/Roche (Inst), AbbVie (Inst), Clovis

Oncology (Inst), AstraZeneca (Inst), Artios (Inst)

# Véronique D'Hondt

Travel, Accommodations, Expenses: Lilly, Pfizer, MSD, Novartis

# Bradley J. Monk

Honoraria: AstraZeneca, BioNTech SE, Corcept Therapeutics, DSI, Eisai, Lilly, Genmab/Seagen, GOG Foundation, GlaxoSmithKline, Immunogen, AbbVie, Incyte, Karyopharm Therapeutics, Merck, Mersana, Mural, Myriad Genetics, Natera, Novartis, Novocure, Onco4, Panavance Therapeutics, Pharma&, ProfoundBio, Genmab, Regeneron, Roche/Genentech, Sutro Biopharma, Tubulis GmbH, Verastem, Zentalis, Zymeworks

Consulting or Advisory Role: AstraZeneca, Eisai, Genmab/Seattle Genetics, GOG Foundation, ImmunoGen, Merck, Mersana, Myriad Pharmaceuticals, Regeneron, Roche/Genentech, Karyopharm Therapeutics, Novocure, Gradalis, Novartis, OncoC4, Panavance Therapeutics, Verastem, Zentalis, Alkermes, BioNTech SE, Tubulis

GmbH, Corcept Therapeutics, DSI, Lilly, AbbVie, Incyte, Natera, Pharma&, ProfoundBio, Sutro Biopharma, Zymeworks

Speakers' Bureau: AstraZeneca, Eisai, TESARO/GSK, Merck, Lilly, Immunogen/AbbVie

Research Funding: Novartis (Inst), Amgen (Inst), Genentech (Inst), Lilly (Inst), Janssen (Inst), Array BioPharma (Inst), Tesaro (Inst), MORPHOTEK (Inst), Pfizer (Inst), Advaxis (Inst), AstraZeneca (Inst), Immunogen (Inst), Regeneron (Inst), NuCana (Inst)

#### **Andrew Clamp**

Consulting or Advisory Role: GlaxoSmithKline

Speakers' Bureau: GlaxoSmithKline

Research Funding: AstraZeneca (Inst), Clovis Oncology (Inst), Pfizer (Inst), Immunogen (Inst), Merck (Inst), Verastem (Inst), Eisai (Inst), Advenchen Laboratories (Inst), MorphoSys (Inst), Corcept Therapeutics (Inst), Alkermes (Inst)

#### **Emily Prendergast**

Consulting or Advisory Role: AstraZeneca

## Ana Oaknin

Consulting or Advisory Role: AstraZeneca, PharmaMar, Clovis Oncology, Immunogen, Genmab, Mersana, GSK, Deciphera, AGENUS, Corcept Therapeutics, Eisai, Roche, Merck Sharp & Dohme, Novocure, Shattuck Labs, Sutro Biopharma, ITeos Therapeutics, Regeneron, Exelixis, Zentalis, Myriad Genetics, Daiichi Sankyo, Debiopharm International, OncoXerna Therapeutics, Seagen/Pfizer, Zymeworks, TORL Therapeutics, AbbVie

Speakers' Bureau: AstraZeneca, GlaxoSmithKline, Roche, MSD, Immunogen

Research Funding: AbbVie (Inst), Advaxis (Inst), Aeterna Zentaris (Inst), Aprea Therapeutics (Inst), Clovis Oncology Inc (Inst), Eisai (Inst), Roche (Inst), Regeneron (Inst), Bristol Myers Squibb International Corporation (BMS) (Inst), Immunogen (Inst), Merck Sharp & Dohme (Inst), Tesaro (Inst), Amgen (Inst), Millennium Pharmaceuticals Inc (Inst), PharmaMar (Inst)

Travel, Accommodations, Expenses: AstraZeneca, PharmaMar, Roche

#### Nicoletta Colombo

Employment: Sarepta Therapeutics (I)

Honoraria: Roche/Genentech, AstraZeneca, GlaxoSmithKline, MSD Oncology, Clovis Oncology, Immunogen, Mersana, Eisai, Nuvation Bio, OCXERNA, Pieris Pharmaceuticals, Novocure, BioNTech, Incyte, Gilead Sciences

Consulting or Advisory Role: Roche/Genentech, AstraZeneca, Clovis Oncology, MSD Oncology, GlaxoSmithKline, Immunogen, mersana, Eisai, Nuvation Bio, OCXERNA, Pieris Pharmaceuticals, Novocure Speakers' Bureau: AstraZeneca, Clovis Oncology, GlaxoSmithKline, MSD Oncology, Eisai

Research Funding: AstraZeneca (Inst), Roche (Inst), GlaxoSmithKline (Inst)

Travel, Accommodations, Expenses: GlaxoSmithKline, AstraZeneca, Corcept Therapeutics

#### Robert W. Holloway

Consulting or Advisory Role: Genelux, GlaxoSmithKline Speakers' Bureau: AstraZeneca, GlaxoSmithKline, Merck, Natera Uncompensated Relationships: Genelux

#### Manuel Rodrigues

Consulting or Advisory Role: AstraZeneca, GlaxoSmithKline, Immunocore, AbbVie

Speakers' Bureau: Immunocore, GlaxoSmithKline

Research Funding: MSD (Inst), Johnson & Johnson/Janssen (Inst),

Daiichi Sankyo/UCB Japan (Inst)

Travel, Accommodations, Expenses: Immunocore

# **Hye Sook Chon**

Honoraria: Curio Science, Envision Communications, MJH Healthcare Holdings, LLC, Guidepoint Global

Consulting or Advisory Role: Envision Communications, Eisai, Merck,

**Envive Biotech** 

Speakers' Bureau: Clinical Care Options Travel, Accommodations, Expenses: Agenus

# **Charlie Gourley**

Honoraria: AstraZeneca, GlaxoSmithKline, MSD Oncology, Cor2Ed, AbbVie, Pharma&

Consulting or Advisory Role: AstraZeneca, GlaxoSmithKline, MSD Oncology, Verastem, Immunogen, AbbVie

Research Funding: AstraZeneca (Inst), GlaxoSmithKline (Inst), MSD Oncology (Inst), Novartis (Inst), MedAnnex (Inst), Roche/Genentech (Inst), Verastem (Inst), Artios (Inst)

Patents, Royalties, Other Intellectual Property: One patent issued and four pending for a gene expression signature to predict cancer sensitivity to anti-angiogenic therapy (Inst)

Travel, Accommodations, Expenses: GlaxoSmithKline

Other Relationship: AstraZeneca, MSD Oncology, GlaxoSmithKline

#### Alessandro D. Santin

Consulting or Advisory Role: Merck, Tesaro, R-Pharm, Eisai, Daiichi Sankyo/Astra Zeneca

Research Funding: Tesaro (Inst), Merck (Inst), Boehringer Ingelheim (Inst), Gilead Sciences (Inst), Puma Biotechnology (Inst), Genentech/ Roche (Inst), R-Pharm (Inst), Immunomedics (Inst), Verastem (Inst)

## Premal H. Thaker

Stock and Other Ownership Interests: Immunon

Consulting or Advisory Role: Iovance Biotherapeutics, Novocure, GlaxoSmithKline, Eisai, Merck, AstraZeneca, Immunogen, Zentalis, Verastem/Pharmacyclics, Immunon, Corcept Therapeutics, BioNTech SE, Mural Oncology, Caris Life Sciences

Research Funding: Merck (Inst), GlaxoSmithKline (Inst)

#### **Christine Gennigens**

Honoraria: MSD Oncology, Ipsen, Pfizer, PharmaMar, AstraZeneca, GlaxoSmithKline, Bristol Myers Squibb/Celgene

Consulting or Advisory Role: MSD Oncology, Bristol Myers Squibb/ Celgene, Ipsen, AstraZeneca, GlaxoSmithKline, Eisai, Genmab, Pharma& GmBH

Research Funding: AstraZeneca, Lilly (Inst), Bristol Myers Squibb/ Celgene (Inst), MSD (Inst), Novartis (Inst), Gilead/Forty Seven (Inst), AstraZeneca (Inst), GlaxoSmithKline (Inst), Pfizer (Inst)

Travel, Accommodations, Expenses: Ipsen, PharmaMar, Pfizer, MSD Oncology, AstraZeneca, GlaxoSmithKline

#### Hagop Youssoufian

Employment: Deciphera (I), Pfizer (I)

Stock and Other Ownership Interests: Verastem, Treos Bio, OnCusp

Therapeutics

Consulting or Advisory Role: Treos Bio, Verastem, Beam Therapeutics, Cothera

#### Kathleen N. Moore

Leadership: GOG Partners, NRG Oncology (Inst)

Honoraria: Astellas Medivation, Clinical Education Alliance, The Clearity Foundation, Haymarket Medical Education, IDEOlogy Health, Medscape

Consulting or Advisory Role: Genentech/Roche, Immunogen,

AstraZeneca, Merck, Eisai, Mersana (Inst), Blueprint Medicines (Inst), GlaxoSmithKline/Tesaro (Inst), Verastem/Pharmacyclics, AADi, Caris Life Sciences, Iovance Biotherapeutics, Duality Biologics (Inst), Janssen Oncology, Regeneron, Zentalis, Daiichi Sankyo Europe GmbH, Novocure, BioNTech SE, Immunocore, Sanofi/Aventis, Seagen, Takeda Science Foundation, Zymeworks, ProfoundBio, Schrodinger (Inst), ADC Therapeutics, Corcept Therapeutics, Third Arc, Loxo/Lilly, Bristol Myers Squibb Foundation, Tango Therapeutics, AbbVie, T knife, Roche, Exelixis, Xencor, Elucida Oncology, Tubulis GmbH, Clovis Oncology Research Funding: Merck (Inst), Regeneron (Inst), Verastem (Inst), AstraZeneca (Inst), Immunogen (Inst), Artios (Inst), Amgen (Inst),

Daiichi Sankyo/Lilly (Inst), Immunocore (Inst) Other Relationship: GOG Partners (Inst)

# Stephanie Lustgarten

Employment: Verastem

Stock and Other Ownership Interests: Verastem

# David M. O'Malley

Consulting or Advisory Role: AstraZeneca, Novocure, GOG Foundation, GlaxoSmithKline, Regeneron, Sutro Biopharma, Corcept Therapeutics, Merck, Verastem, DualityBio, Pfizer, AbbVie, Zentalis

Research Funding: Amgen (Inst), AstraZeneca (Inst), Genentech/Roche (Inst), Regeneron (Inst), Immunogen (Inst), Clovis Oncology (Inst), EMD Serono (Inst), Ergomed (Inst), Immunogen (Inst), Cerulean Pharma (Inst), PharmaMar (Inst), Array BioPharma (Inst), Bristol Myers Squibb (Inst), Tesaro (Inst), Genmab (Inst), Seagen (Inst), Iovance Biotherapeutics (Inst), Leap Therapeutics (Inst), Merck (Inst), Abbvie/ Stemcentrx (Inst), AbbVie (Inst), Mersana (Inst), Eisai (Inst), BBI Healthcare (Inst), Sumitomo Dainippon Pharma Oncology, Inc (Inst), Acerta Pharma (Inst), Advaxis (Inst), Ajinomoto (Inst), Arcus Biosciences (Inst), Deciphera (Inst), EMD Serono (Inst), Exelixis (Inst), Roche (Inst), Incyte (Inst), Karyopharm Therapeutics (Inst), Ludwig Institute for Cancer Research (Inst), Novartis (Inst), NovoCure (Inst), OncoQuest (Inst), BeiGene (Inst), Pfizer (Inst), Precision Therapeutics (Inst), Sanofi (Inst), Seagen (Inst), Sutro Biopharma (Inst), GlaxoSmithKline (Inst), Verastem (Inst), Zentalis (Inst), Pfizer (Inst)

# **Toon Van Gorp**

Consulting or Advisory Role: Immunogen (Inst), Eisai Europe (Inst), OncXerna Therapeutics (Inst), GlaxoSmithKline (Inst), MSD/Merck (Inst), Seagen (Inst), Tubulis GmbH (Inst), Incyte (Inst), Zentalis (Inst), Karyopharm Therapeutics (Inst), BioNTech SE (Inst), AbbVie (Inst), BeiGene (Inst), AstraZeneca (Inst), Pharma& (Inst), Daiichi Sankyo (Inst), Genmab (Inst), Lilly (Inst), TORL Biotherapeutics (Inst), Verastem (Inst)

Speakers' Bureau: AbbVie (Inst), AstraZeneca (Inst), Eisai (Inst), GlaxoSmithKline (Inst), MSD (Inst)

Research Funding: Amgen (Inst), Roche (Inst), AstraZeneca (Inst) Travel, Accommodations, Expenses: MSD/Merck (Inst), Immunogen (Inst), GlaxoSmithKline (Inst), PharmaMar (Inst), AstraZeneca (Inst)

# Rachel N. Grisham

Employment: Memorial Sloan-Kettering Cancer Center Consulting or Advisory Role: GlaxoSmithKline, AstraZeneca, Signatera, Corcept Therapeutics, Intellisphere, SpringWorks Therapeutics, Verastem

Research Funding: Context Therapeutics (Inst), Verastem (Inst), SpringWorks Therapeutics (Inst), Bayer (Inst), Novartis (Inst)

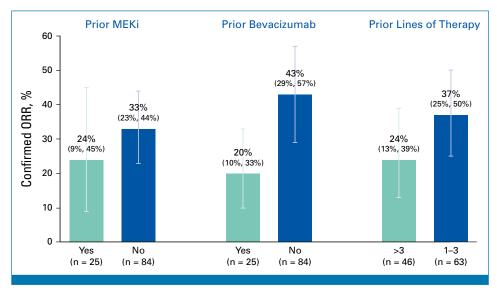
Travel, Accommodations, Expenses: EMD Serono

Other Relationship: Prime Oncology, MCM Education, OncLive, Aptitude

Health, Cardinal Health

Uncompensated Relationships: Verastem

No other potential conflicts of interest were reported.


# APPENDIX 1. SUPPLEMENTAL RESULTS FOR PART D: AVUTOMETINIB 1.6 MG TWICE WEEKLY + DEFACTINIB 200 MG TWICE DAILY

# Lower Starting Dose of Avutometinib + Defactinib (Part D)

Of the 27 patients enrolled in Part D and treated with avutometinib 1.6 mg twice weekly + defactinib 200 mg twice daily, 23 were evaluable for efficacy (nine KRAS mt and 14 KRAS wt). The percentage with specific prior therapies was similar to patients enrolled in Parts A, B, and C (41% received prior bevacizumab, and 37% received prior mitogen-activated extracellular signal-regulated kinase inhibitor treatment).

The rate of disease progression within 4 months was 83% greater with avutometinib 1.6 mg twice weekly + defactinib 200 mg twice daily compared with avutometinib 3.2 mg twice weekly + defactinib 200 mg twice daily (22% v 12%). On the basis of these data, the lower starting dose was determined to be suboptimal.

The most common treatment-related AEs in Part D were nausea (56%), fatigue (44%), and increased CPK (33%). Five patients had grade ≥3 treatment-related AEs, most commonly increased CPK in two patients. AEs leading to discontinuation occurred in 15% of natients



**FIG A1.** Confirmed ORR in subgroups by prior therapies: Parts A, B, and C. Error bars represent 95% CI. MEKi, mitogen-activated extracellular signal-regulated kinase inhibitor; ORR, objective response rate.

TABLE A1. Summary of RAMP-201 Patients Treated With 3.2 mg Avutometinib Twice Weekly in Combination With 200 mg Defactinib Twice Daily for Whom KRAS Mutation Status Differed Between Local and Central Tumor Tissue-Based Testing

| Local Test           |          | Central Test                                  |                      |          |                                                                                                                       |                                                                                            |
|----------------------|----------|-----------------------------------------------|----------------------|----------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| KRAS Mutation Status | KRAS VAF | Assay                                         | KRAS Mutation Status | KRAS VAF | Tempus Result                                                                                                         | Comparison                                                                                 |
| WT                   | NA       | CARIS                                         | G13C                 | 4.5%     | KRAS detected but a very low VAF<br>(4.5%)                                                                            | 4.5% VAF is at or below the limit of detection of most assays                              |
| G12D                 | 15%      | Roche Diagnostics (KAPA<br>HyperPlus Library) | WT                   | NA       | No mutations detected                                                                                                 | KRAS G12D detected by local test, but not Tempus test                                      |
| G12V                 | 36%      | Roche Diagnostics (KAPA<br>HyperPlus Library) | WT                   | NA       | KRAS G12V (VAF 5.5%) filtered<br>because of high TMB but MSI<br>not called                                            | KRAS G12V detected by both lo-<br>cal and Tempus tests                                     |
| G12V                 | ND       | Foundation One CDx                            | G12D                 | 15%      | KRAS filtered because of germ-<br>line contamination (G12D with<br>VAF 15% in tumor and VAF<br>3.6% in normal tissue) | KRAS mutation detected by both<br>local and Tempus tests; how-<br>ever, different variants |

Abbreviations: KRAS, Kirsten rat sarcoma virus; MSI, microsatellite instability; NA, not applicable; ND, not determined; TMB, mutational burden; VAF, variant allele frequency; WT, wild-type.

**TABLE A2.** Summary of Concordance (RECIST v1.1) Between BICR Committee and Investigator Efficacy Evaluations in the Avutometinib (3.2 mg two times per week) + Defactinib (200 mg two times per day) Group

|                                                         | Best Overall Response by Investigator (n = 115) |                              |                |                     |       |
|---------------------------------------------------------|-------------------------------------------------|------------------------------|----------------|---------------------|-------|
| Best Overall Response by BICR                           | Complete Response (confirmed)                   | Partial Response (confirmed) | Stable Disease | Progressive Disease | NE    |
| Complete response (confirmed <sup>a</sup> ),<br>No. (%) | 1 (1)                                           | 1 (1)                        | 0              | 0                   | 0     |
| Partial response (confirmed <sup>a</sup> ),<br>No. (%)  | 1 (1)                                           | 17 (15)                      | 14 (12)        | 0                   | 0     |
| Stable disease <sup>b</sup> , No. (%)                   | 0                                               | 11 (10)                      | 47 (41)        | 4 (4)               | 0     |
| Progressive disease, No. (%)                            | 0                                               | 1 (1)                        | 6 (5)          | 2 (2)               | 0     |
| NE, No. (%)                                             | 0                                               | 0                            | 0              | 1 (1)               | 3 (3) |

Abbreviations: BICR, blinded independent central review; NE, not evaluable or unknown. <sup>a</sup>By BICR.

TABLE A3. DOR by BICR and PFS in the Avutometinib (4.0 mg two times per week) Monotherapy Group: Parts A and B

| Clinical Outcome             | All Patients, n = 69 | KRAS mt, $n = 30$   | <i>KRAS</i> wt, n = 39 |
|------------------------------|----------------------|---------------------|------------------------|
| DOR, median (95% CI), months | NE                   | NE                  | NE                     |
| PFS, median (95% CI), months | 14.8 (9.1 to 27.5)   | 24.5 (11.0 to 29.3) | 11.0 (9.0 to NE)       |

NOTE. NE = Could not be estimated on the basis of number of patients with loss of response.

Abbreviations: BICR, blinded independent central review; DOR, duration of response; mt, mutant; KRAS, Kirsten rat sarcoma virus; NE, not evaluable or unknown; PFS, progression-free survival; wt, wild-type.

blincludes unconfirmed partial response; stable disease (or unconfirmed partial response) must occur ≥53 days after first dose date.

# TABLE A4. RAMP 201 Investigators and Institutions

| Investigator                 | Research Group | Institution                                                           |
|------------------------------|----------------|-----------------------------------------------------------------------|
| Susana Banerjee              | GTG-UK         | Royal Marsden NHS Foundation Trust                                    |
| Charlie Gourley              | GTG-UK         | Western General Hospital - Edinburgh Cancer Centre                    |
| Andrew Clamp                 | GTG-UK         | The Christie NHS Foundation Trust                                     |
| Rowan Miller                 | GTG-UK         | University College London Cancer Institute                            |
| Diane Provencher             | ENGOT          | Centre de recherche du Centre Hospitalier de l'Universite de Montreal |
| Valentina Guarneri           | MaNGO          | U.O.C. Oncologia 21stituto Oncologico Veneto I.R.C.C.S.               |
| Nicoletta Colombo            | MaNGO          | Divisone Ginecologia Oncologica Medica                                |
| Ana Oaknin                   | GEICO          | Hospital Universitario Vall d'Hebron                                  |
| Maria Jesus Rubio            | GEICO          | Hospital Universitario Reina Sofia                                    |
| Alfonso Cortes Salgado       | GEICO          | Hospital Universitario Ramon y Cajal                                  |
| Jose Alejandro Perez Fidalgo | GEICO          | Hospital Clinico Universitario de Valencia                            |
| Véronique D'Hondt            | GEICO          | ICM Val d Aurelle                                                     |
| Isabelle Ray-Coquard         | GEICO          | Centre Leon Berard                                                    |
| Laura Mansi                  | GEICO          | Hospital Jean Minjoz                                                  |
| Manuel Rodrigues             | GEICO          | Institut Curie                                                        |
| Toon Van Gorp                | BGOG           | UZ Leuven Campus Gasthuisberg                                         |
| Christine Gennigens          | BGOG           | CHU de Liège                                                          |
| Rachel Grisham               | GOG            | Memorial Sloan Kettering Cancer Center                                |
| Charles Anderson             | GOG            | Oncology Associates of Oregon, P.C., USO                              |
| Christine Lee                | GOG            | Texas Oncology, P.A., USO                                             |
| Bradley Monk                 | GOG            | Arizona Oncology Associates, PC-HAL, USO                              |
| Emily Prendergast            | GOG            | Minnesota Oncology Hematology, P.A., USO                              |
| Anna Priebe                  | GOG            | Texas Oncology, P.A., USO                                             |
| Lynne Knowles                | GOG            | Texas Oncology, P.A., USO                                             |
| Kari Ring                    | GOG            | University of Virginia Health System                                  |
| Robert Holloway              | GOG            | Advent Cancer Institute                                               |
| Hye Sook Chon                | GOG            | H. Lee Moffitt Cancer Center & Research Institute, Inc                |
| Alessandro D. Santin         | GOG            | Yale University School of Medicine                                    |
| Premal Thaker                | GOG            | Washington University School of Medicine                              |
| John Moroney                 | GOG            | The University of Chicago Medical Center                              |
| Carolyn Muller               | GOG            | University of New Mexico Comprehensive Cancer Center                  |
| Peter Rose                   | GOG            | Cleveland Clinic                                                      |
| David M. O'Malley            | GOG            | Ohio State University                                                 |
| David Miller                 | GOG            | UT Southwestern Medical Center                                        |
| Erika Hamilton               | GOG            | Tennessee Oncology PLLC                                               |
| Kathleen Moore               | GOG            | Stephenson Cancer Center                                              |
| Mitul Gandhi                 | GOG            | Virgina Cancer Specialists, USO                                       |
| Antonio Santillan-Gomez      | GOG            | Texas Oncology, USO                                                   |
| Gregg Newman                 | GOG            | Sansum Clinic, USO                                                    |
| Anu Thummala                 | GOG            | Comprehensive Cancer Centers Of Nevada, USO                           |
| Erin Salinas                 | GOG            | Northwest Cancer Specialists, P.C., USO                               |
| Carol Tweed                  | GOG            | Maryland Oncology Hematology, PA, USO                                 |
| Kristi Mcintyre              | GOG            | Texas Oncology Presbyterian, USO                                      |
| Tallow Montey to             |                | . shad driddidgy i reddyterian, ddd                                   |