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ARTICLE INFO ABSTRACT

Keywords: Immune checkpoint inhibitors (ICIs) have recently been approved in subsets of patients with breast cancer (BC).
Immunotherapy Currently, programmed death ligand 1 (PD-L1) immunohistochemistry is used as a biomarker of response for
Biofnarker metastatic triple negative breast cancer (TNBC). Other tumor-agnostic indications in metastatic BC include high
ﬁ;ﬁtance tumor mutational burden and mismatch repair deficiency. In early TNBC, the ICI pembrolizumab is routinely
TIL added to neoadjuvant chemotherapy, yet no biomarker is currently available to predict response or resistance.
MSI Further, while luminal BC is often thought to be immune-depleted, preliminary efficacy data in early-stage
HRD disease suggests that the addition of ICIs to neoadjuvant chemotherapy can significantly improve rates of

pathological complete response. However, not all patients will benefit from ICI treatment and it also comes with
significant treatment toxicities. This review will describe biomarkers of response and resistance to ICIs in BC.
These currently include tumor infiltrating lymphocytes, homologous recombination deficiency, CD274 gain or
amplification, estrogen receptor and/or progesterone receptor expression, more precise tumoral immune char-
acterization, gene expression analysis, and the T-cell receptor repertoire. Although still investigational, these
approaches hold the potential to advance personalized medicine by tailoring the use of ICIs to BC patients who
will benefit.

1. Introduction

Immune checkpoint inhibitors (ICIs) have revolutionized the treat-
ment landscape of numerous cancer types. They stimulate the anti-
tumor response by inhibiting immune checkpoints that are important
for tolerance, such as programmed cell death 1 (PD-1), programmed
death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte associated protein 4
(CTLA-4) [1,2]. Initially, breast cancer (BC) was considered less
responsive to ICIs due to its lower immune infiltration. However, sub-
stantial variability exists among subtypes of BC, with triple negative
breast cancer (TNBC) exhibiting the highest neoantigen load and

immune infiltration followed by human epidermal receptor 2 (HER2)--
positive BC and luminal BC [3,4]. Following positive phase III clinical
trials, ICIs in combination with chemotherapy have become the standard
of care for early and PD-L1 positive metastatic TNBC [5-7]. Additional
indications are high tumor mutational burden (TMB) and deficient
mismatch repair (AMMR), all with tumor agnostic approval [8].

The goal of identifying biomarkers of response and resistance to ICIs
is threefold. Firstly, ICIs have significant treatment toxicities and
financial costs and their use must be tailored to patients who will truly
benefit [9,10]. Secondly, there is a strong rationale for using ICIs beyond
TNBC in a subset of luminal and HER2+ BC and identifying reliable
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biomarkers could enable a greater proportion of patients to benefit [11,
12]. Finally, the discovery of a potential new druggable target could
enhance ICI efficacy and numerous modalities are currently being
investigated [13]. This article will start by reviewing the relevant trials
in BC that described PD-L1 immunohistochemistry (IHC) and
tumor-infiltrating lymphocytes (TILs) as biomarkers of response to ICI,
followed by other investigational approaches to identifying additional
biomarkers of response and resistance to ICIs.

2. PD-L1 IHC and TILs

The presence of TILs in the tumor microenvironment (TME) reflects
an ongoing anti-tumoral host immune response and is therefore utilized
as a predictive and prognostic biomarker in both early and advanced BC
[4]. TILs are categorized as either stromal (sTILs) or intratumoral
(iTILs), with sTIL evaluation demonstrated to be more easily reproduc-
ible between studies as it is calculated as the percentage of lymphocytes
and plasma cells in the intratumoral stromal area compared to the total
stromal area, based on analysis of a single hemoxylin and eosin stained
tumor section [14,15]. Higher TILs are observed in early TNBC and
HER2+ BC compared to luminal BC, and in the localized setting are
associated with improved outcomes in the former [15,16].

PD-1 is a transmembrane protein located on the surface of many cell
types, and its ligand PD-L1 is situated on certain immune cells. The
interaction between PD-1 on activated T-cells and PD-L1 leads to
immunosuppression, a mechanism to prevent autoimmunity [17,18].
This immune checkpoint is exploited by tumor cells to escape immune
targeting. Monoclonal antibodies against PD-1 (e.g. pembrolizumab,
nivolumab, dostarlimab) and PD-L1 (e.g. atezolizumab, avelumab,
durvalumab) have been developed to block this pathway, thereby
restoring the anti-tumoral immune response. However, the heteroge-
neity of PD-L1 positivity within the tumor itself as well as across met-
astatic tumor sites limits its use as a predictive biomarker of response in
metastatic BC, with the highest levels seen in the primary tumor and
lymph nodes, and the lowest levels seen in the liver [19-22].

IHC is used to quantify PD-L1 protein membrane expression in the
TME and is approved as a biomarker of response for ICIs in metastatic
TNBC [23]. Multiple IHC scoring methods exist, but the most common is
the combined positive score (CPS) generated by the Dako pharmDx
assay utilizing the 22C3 monoclonal mouse anti-PD-L1 antibody, which
calculates all PD-L1 positive cells (immune and tumor) as a percentage
of the total tumor cells and is approved as a companion diagnostic for
pembrolizumab in metastatic TNBC. Alternatively, the immune cell (IC)
score is determined by the Ventana SP142 PD-L1 assay, which evaluates
the percentage of PD-L1 positive immune cells in the tumor area and is
approved in some countries to determine eligibility for atezolizumab in
metastatic TNBC [24]. The two commonly used cut-offs for PD-L1 pos-
itivity are 22C3 CPS >10 and SP142 IC > 1 %, however these scoring
systems cannot be used interchangeably given a significant discordance
rate [25,26]. Additionally, not all PD-L1 assays have the same sensitivity
— the SP142 assay being the least sensitive — and a tumor that is negative
for PD-L1 on SP142 could still be positive on an alternative assay [27]. It
is not practical, however, for pathology laboratories to implement
different assays for the same biomarker.

A combined approach to stratification of the TME based on PD-L1
status and presence or absence of TILs has previously been proposed,
with the more immune type I tumors (PD-L1 positive with TILs driving
adaptive immune resistance) conferring the best prognosis in a study
focused on melanoma [28-31]. Other studies examining this combina-
tion in breast cancer subtypes have also suggested that this improves
prognostication [32,33]. Further, while not all immune cells stain for
PD-L1, the moderate correlation between PD-L1 expression and TILs
means that it is possible for tumors to stain negative for PD-L1 despite
immune cells being present, thus explaining why PD-L1 negative tumors
can still respond to ICIs.
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2.1. TNBC

PD-(L)1 monotherapy has limited efficacy in metastatic TNBC;
however, patients with immune-enriched tumors demonstrate an
increased magnitude of benefit from the addition of targeting agents to
cytotoxic chemotherapy [34-38].

Several phase III trials have demonstrated the benefit of utilizing
anti-PD-(L)1 ICIs in combination with chemotherapy in patients with
metastatic TNBC who are PD-L1 positive (see Table 1). In IMpassion130,
the addition of atezolizumab to nab-paclitaxel in patients with untreated
TNBC resulted in improved clinical outcomes in the intention-to-treat
(ITT) population, with a more pronounced benefit in the PD-L1 posi-
tive (IC > 1 %) subgroup [39,40]. The presence of sTILs or a basal-like
immune activated (BLIA) subtype was also associated with improved
progression-free survival (PFS) and overall survival (OS), while patients
with both sTIL and PD-L1 positivity seemed to benefit the most [41].
These trial results were not replicated in the follow-up IMpassion131
study, which showed that substituting a paclitaxel backbone plus

Table 1

Analysis of clinical outcomes in key clinical trials that examine the addition of
ICIs to chemotherapy in metastatic TNBC, with focus on PD-L1 as a predictive
biomarker of response [40-43,73].

Trial Regime Population =~ Median PFS Median OS
(months) (months)

IMpassion130 Atezolizumab + ITT 7.2 vs 5.5, 21.0 vs 18.7,
nab-paclitaxel vs stratified HR  stratified HR
placebo + nab- 0.80 (95 % 0.87 (95 %
paclitaxel CI, CI,

0.69-0.92, P 0.75-1.02, P
=0.002) =0.077)
PD-L1 Not tested 19.7 vs 19.7,
negative stratified HR
(IC <1 %) 1.02 (95 %
CI,
0.84-1.24)*
PD-L1 7.5 vs 5.0, 25.4 vs 17.9,
positive stratified HR  stratified HR
(IC>1%) 0.62 (95 % 0.67 (95 %
CI, CI,
0.49-0.78, P 0.53-0.86)*
< 0.001)

IMpassion131 Atezolizumab + ITT 5.7 vs 5.6, 19.2 vs 22.8,
paclitaxel vs HR 0.86 (95 HR 1.12 (95
placebo + % CI, % CI,
paclitaxel 0.70-1.05)* 0.88-1.43)

PD-L1 Not tested Not tested
negative
(IC <1 %)
PD-L1 6.0 vs 5.7, 22.1 vs 28.3,
positive HR 0.82 (95 HR 1.11 (95
(IC>1%) % CI % CI,
0.60-1.12, P 0.76-1.64)*
= 0.20)
KEYNOTE- Pembrolizumab ITT 7.5 vs 5.6, 17.2 vs 15.5,
355 + TPC (nab- HR 0.82 (95 HR 0.89 (95
paclitaxel, % CI, % CI,
paclitaxel or 0.70-0.98) 0.76-1.05)
gemcitabine) vs PD-L1 7.6 vs 5.6, 17.6 vs 16.0,
placebo + TPC positive HR 0.75 (95 HR 0.86 (95
(CPS >1) % CI, % CI,
0.62-0.91) 0.72-1.04,
two-sided P
=0.1125)
PD-L1 9.7 vs 5.6, 23.1vs16.1,
positive HR 0.66 (95 HR 0.73 (95
(CPS >10) % CI, % CI,
0.50-0.88) 0.55-0.95,
two-sided P
= 0.0185)

Abbreviations: HR: hazard ratio; IC: immune cell score; TPC: treatment of
physician choice; CPS: combined positive score. *Significance not formally
tested.
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atezolizumab did not increase OS in a similar PD-L1-IC-positive popu-
lation [42]. This led to the retraction of the accelerated approval of
atezolizumab in countries such as the United States and Australia, but it
is still available in Europe. Based on biomarker data, it is possible that
IMpassion131 may have been positive if sTILs were integrated into pa-
tient selection. In contrast, pembrolizumab has been approved for use in
combination with chemotherapy in the first-line treatment of metastatic
TNBC with PD-L1 CPS >10 and is now standard-of-care based on the
results of KEYNOTE-355 [43]. A higher cut-off of CPS >20 was associ-
ated with even greater benefit but not statistically significant, which is
similar to what is observed with IC scores (>1 % vs > 5 %) in IMpas-
sion130 [41,43].

2.1.1. Early setting

Contrary to the findings in metastatic disease, neoadjuvant studies
investigating the role of ICIs in early TNBC do not demonstrate a strong
role for PD-L1 IHC as a predictive biomarker, though it is associated with
improved prognoses regardless of ICI use [44-53].

There is more established evidence for the use of sTILs as a prog-
nostic biomarker in early TNBC, with improved pathological complete
response (pCR) rates and long-term disease outcomes independent of
chemotherapy and ICIs [16,46,48,54-59]. A retrospective analysis of
the adjuvant phase III BIG 02-98 trial, which incorporated docetaxel
into anthracycline-based therapy and compared sequential vs concur-
rent administration of doxorubicin and docetaxel in patients with
node-positive BC, showed that sTILs were strongly prognostic for
improved disease-free survival (DFS) and OS in patients with TNBC
[60]. Analysis of two other large adjuvant phase III
anthracycline-containing chemotherapy trials (ECOG 2917 and ECOG
1199) showed that for every 10 % increase in sTILs, there was an 18 %
reduction of risk of recurrence (P = 0.02) and 19 % reduction of risk of
death (P = 0.01) [54]. Similarly, an increased interval of dynamic
change between pre-treatment and on-treatment sTILs with the addition
of ICIs to neoadjuvant chemotherapy has been shown to be associated
with increased pCR rates, such as in the phase II GeparNuevo study,
reflecting the extent of the underlying mechanism of action of ICIs [48,
61]. A cut-off of >30 % has often been used to identify patients that will
have improved clinical outcomes based on this biomarker [56,57].
Indeed, the integration of TILs into clinical prognostic staging using this
cut-off has been found to result in up- or down-staging of tumors in a
large pooled analysis of patients with early TNBC treated with
anthracycline-based chemotherapy in the adjuvant setting [62].

De-escalation strategies for patients with immune-enriched tumors
has been an area of ongoing research and presents a promising future
direction for biomarker-directed management. There is evidence for the
use of anthracycline-free neoadjuvant chemotherapy regimens for pa-
tients with early TNBC and high sTILs (>30 %) as demonstrated by the
phase II NeoPACT and Neo-N trials. In NeoPACT (pembrolizumab plus
carboplatin and docetaxel), increasing immune enrichment was associ-
ated with higher pCR rates, as correlated with sTILs (45 % for sTILS <30
% and 78 % for sTILs >30 %) and PD-L1 (40 % with CPS <10 and 74 %
with CPS >10) [63]. Similarly, in Neo-N (either concurrent or lead-in
nivolumab plus carboplatin and paclitaxel) there were higher pCR
rates in patients with high sTILs >30 % compared to <30 % (66.7 % vs
45.7 %) [64]. Treatment with ICIs alone may also be a future option for
this immune-enriched subgroup, as studied in the recent phase II
adaptive BELLINI trial which initially enrolled patients with Stage I-III
TNBC and high TILs (>5 %) to receive induction nivolumab (Cohort A)
or nivolumab plus ipilimumab (Cohort B) followed by standard-of-care
neoadjuvant chemotherapy. Immune activation was achieved in both
cohorts, as defined by at least a twofold increase in CD8™ cells on serial
biopsy, and clinical response was observed in 12 of 31 patients (38.7 %)
who were all found to have TILs >30 %. This informed the subsequent
opening of Cohort C for patients with node-negative disease and TILs
>50 % to receive 6 weeks of induction nivolumab plus ipilimumab
followed by surgery, with a third of patients achieving pCR with ICI
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alone that all opted to not undergo adjuvant chemotherapy [65]. In
residual disease post-neoadjuvant chemotherapy, higher levels of sTILs
are prognostic for improved recurrence-free survival (RFS) and OS, but
data is not yet available from a combination approach with ICIs to
determine if patients with lower residual cancer burden (RCB) can safely
avoid escalated adjuvant treatment [66]. Further de-escalation trials
using high TILs to stratify patients to receive different neoadjuvant and
adjuvant regimes — such as NeoTRACT (NCT05645380), SCARLET
(NCT05929768), ETNA (NCT06078384) and OPTIMAL (NCT06476119)
— are also ongoing.

The landmark phase III KEYNOTE-522 trial established the current
standard of care for neoadjuvant management of Stage II-IIl TNBC, with
an updated analysis finding that the addition of pembrolizumab versus
placebo to anthracycline-based chemotherapy improved 5-year event-
free survival (EFS) by 9 % (81.2 % vs 72.2 %) and 5-year OS by 4.9 %
(86.6 % vs 81.7 %) with a weight average hazard ratio (HR) for death of
0.66 (95 % CI, 0.50-0.87, P = 0.00150) [64]. While it was initially
published that there was an absolute benefit of 13.6 % to pCR rates with
pembrolizumab, this was based on an analysis of the first 602 patients,
and the final smaller difference of 7.4 % in the overall population is
more consistent with the reported OS [67]. PD-L1 IHC did not predict for
increased magnitude of benefit, and improved pCR rates with addition
of pembrolizumab was seen in patients with both PD-L1 positive tumors
(68.9 % vs 54.9 %) and PD-L1 negative tumors (45.3 % and 30.3 %)
[52]. Durable improvement in outcomes with pembrolizumab were
observed in not only those who achieved pCR, but also in high-risk pa-
tients with residual disease, although it is noted that outcomes were still
poorer in patients with Stage III disease regardless of pCR, and PD-L1
status remained prognostic in this dataset. Recent exploratory
biomarker analysis showed that several biomarkers, including the T-cell
inflamed gene expression profile, were not predictive but were posi-
tively prognostic for the benefit of pembrolizumab on pCR and/or EFS,
but further analysis for sTILs is awaited to help identify a population
with very high pCR rates and excellent clinical outcomes to determine
which patients may be able to avoid the unnecessary toxicities of the
1-year treatment duration of pembrolizumab. In contrast, it is hypoth-
esized that those with low PD-L1 IHC and low sTILs will likely need
additional therapeutic strategies. Other neoadjuvant trials — Gepar-
Nuevo, NeoTRIP and IMpassion031 — have also reported improved
outcomes with the addition of ICIs to chemotherapy independent of
PD-L1 status, though there was a greater numerical benefit in those with
PD-L1 positive tumors [48-50]. This guidance in personalizing treat-
ment is much needed given the challenges of limited biomarker data
from registrational trials and difficult access to tissue from
pharmaceutical-sponsored trials thus far [68].

2.2. Luminal BC

2.2.1. Metastatic setting
ICIs have limited benefit in metastatic luminal BC, with no clear role
for TILs as a predictive biomarker of response in the setting [69,70].

2.2.2. Early setting

Early data from two phase III studies — KEYNOTE-756 and Check-
Mate 7FL — suggests that adding anti-PD-(L)1 ICIs (pembrolizumab or
nivolumab respectively) to standard neoadjuvant chemotherapy in-
creases pCR and RCB 0-1 rates in early-stage, high-risk luminal BC and
this benefit is particularly seen in tumors with positive PD-L1 IHC or
immune enrichment with sTIL >1 % (highest benefit in sTIL >5 %) [26,
71]. These rates are comparable to those seen in TNBC and reinforce the
strong immunogenicity of some luminal BCs. Further efficacy data is
ultimately awaited to determine if these changes in pCR and RCB are
associated with improved long-term outcomes as previously described in
pooled analysis data, but results may be difficult to clinically integrate in
this subtype given that adjuvant CDK4/6 inhibitor inhibition is now
standard-of-care [72]. In CheckMate 7FL, greater response with
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nivolumab was consistent across both the SP142 (IC > 1 %) and 22C3
(CPS >1) assays, though CPS >3 was determined as the optimal cut-off
for the prediction of benefit given this had the highest overall percent-
age agreement with IC > 1 % (79.1 %). In the absence of a standardized
approach, either sTIL or PD-L1 IHC can be used to select patients with
early luminal BC who will benefit most from the addition of ICIs and this
can be further validated in future clinical trials. Table 2 compares the
PCR in these trials based on the different PD-L1 assays and cut-offs.

2.3. HER2+ BC

2.3.1. Metastatic setting

There is currently limited evidence to support the use of ICIs in
metastatic HER2+ BC, though the significant immune infiltration pre-
sent in this subtype likely mediates signals of improved clinical out-
comes when utilizing ICIs to enhance the efficacy of anti-HER2
antibodies and the anti-tumor immune response [4,12]. This was
demonstrated in the PD-L1 positive cohorts of the phase Ib PANACEA
trial, which treated trastuzumab-resistant patients with pembrolizumab
and trastuzumab, and the phase II KATE-2 trial, which randomized pa-
tients to TDM-1 plus placebo or TDM-1 plus atezolizumab, with further
evaluation planned for a less heavily-pre-treated population in the phase
III KATE-3 trial (NCT04740918) [83,84]. Similarly, the retrospective
analysis of tumor samples from the phase III CLEOPATRA study high-
lighted the prognostic value of immune enrichment with sTILs [85].
However, given the association between TILs and PD-L1 IHC positivity,
there is doubt as to whether TILs alone add predictive information.

2.3.2. Early setting

There is also insufficient data for ICIs in early HER2+ BC, including
in the PD-L1-IC positive population [86]. While several studies have
shown that TILs are predictive for pCR after neoadjuvant therapy in
HER2+ BC, none have utilized ICIs, and the selection of patients with
immune-enriched tumors may provide an additional strategy for future
studies in this setting as well as may reduce the use of cytotoxic
chemotherapy [87-90]. Patients with residual disease following stan-
dard neoadjuvant treatment for HER2+ BC are at high risk for recur-
rence, and the benefit of adding atezolizumab to adjuvant trastuzumab
emtansine will be evaluated in the randomized phase III ASTEFANIA
trial (NCT04873362).

Table 2
Subgroup analysis of pathological complete response (pCR) rates in KEYNOTE
756 and CheckMate 7FL [26,71,74].

Trial pCR
Population Assay score Anti-PD1 + Placebo +
chemotherapy chemotherapy
KEYNOTE ITT - 24.3 % 15.6 %
756 PD-L1 CpPs <1 7.2% 2.6 %
negative
PD-L1 CpPs >1 29.7 % 19.6 %
positive 1-9 15.7 % 9.1 %
>10 423 % 29.0 %
>20 53.6 % 36.4 %
CheckMate ITT - 24.5 % 13.8 %
7FL PD-L1 IC <1 14.0 % 8.2%
negative %
cps <1 14.2 % 10.7 %
PD-L1 1C >1 44.3 % 20.2 %
positive %
Ccps  >1 40.4 % 23.8%
>3 53.0 % 25.8 %
>5 56.6 % 27.1%
>10 657 % 33.3%
>20 789% 26.7 %

Abbreviations: pCR: pathological complete response, PD1: programmed cell
death 1, ITT: intention to treat, CPS: combined positive score, IC: immune cell
score.
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3. Tumor mutational burden (TMB)

TMB is measured by the number of somatic mutations identified per
coding region in a tumor genome (mut/Mb). Clinically available assays
use next-generation sequencing (NGS) and estimate the TMB based on
the genes included in their panel, though the discordance across
different diagnostic assays due to factors such as panel size, gene content
and the ability to filter out germline variants has led one group to pro-
pose statistical calibration of assays through the use of a publicly
available software tool to standardize the use of TMB as a biomarker
[91-93]. Based on results from two cohorts of the KEYNOTE-158 trial,
pembrolizumab has tumor-agnostic approval for tumors considered high
TMB (TMB-H) with >10 mut/Mb on the FoundationOne CDx™ assay,
though notably the subtype was unknown for the five patients with
breast cancer that were included [94,95]. Tumors that are TMB-H
display a high degree of immune infiltration due to increased neo-
antigen production and are predictive of patients with improved sur-
vival outcomes independent of tumor stage, subtype, treatment and
patient age [96,97]. BC has traditionally been traditionally character-
ized as immune “cold”, with a median TMB of 2.63 mut/Mb in one large
study of 3969 breast cancer patients, and TMB-H is found in approxi-
mately 3.5-5 % cases with higher frequency in TNBC versus luminal
tumors and metastatic versus primary tumors [98-100]. The most
common mutational signature implicated in genomic instability and
TMB-H tumors is apolipoprotein B mRNA editing catalytic
polypeptide-like (APOBEC), followed closely by mismatch repair defi-
ciency (dAMMR) [101]. While APOBEC mutagenesis is associated with
lower immunogenicity in certain tumor types, it has been linked to
immune activation in breast cancer due to increased activation of CD8™
T cells [102-105].

The efficacy of single-agent pembrolizumab in patients with heavily
pre-treated metastatic TMB-H BC was examined in TAPUR, a phase II
basket trial which included an arm for 28 patients with metastatic BC
that were TMB-H (defined as >9 mut/Mb), and KEYNOTE-119, a phase
III trial that randomized TNBC patients to pembrolizumab or chemo-
therapy with an exploratory analysis of 26 patients that were TMB-H
(defined as >10 mut/Mb). The relatively low overall response rate
(ORR) to pembrolizumab in these small patient populations — 21 % in
TAPUR and 14.3 % in the TMB-H subgroup of KEYNOTE-119 - suggests
a limited role for application of single-agent ICI in TMB-H BC and em-
phasizes the need for better biomarkers of response or possibly a com-
bination approach with other therapies [106-108]. The latter is
supported by exploratory biomarker analysis of KEYNOTE-522, which
found a positive association between TMB and pCR in the chemotherapy
plus pembrolizumab cohort [109]. Doublet ICI therapy with ipilimumab
plus nivolumab in TMB-H patients (defined as >9 mut/Mb) was studied
in the single-arm NIMBUS trial, with highest benefit seen in in patients
with TMB >14 mut/Mb (ORR 60 %) compared with TMB >9 and < 14
mut/Mb (ORR 4 %), suggesting that a more optimal cut-off could be
used to predict benefit [110]. Interestingly, a large retrospective anal-
ysis of data from over 10,000 patients by McGrail et al. suggested that
TMB-H tumors only derived greater benefit from ICIs in tumor sites
where CD8™" T-cell levels correlated with neoantigen load [108].

4. Mismatch repair deficiency

Tumors that are AMMR display high microsatellite instability (MSI-
H) and are typically associated with high TMB [99]. dMMR is a pre-
dictive biomarker of response to treatment with ICIs, and pem-
brolizumab has tumor agnostic approval in this setting. However, MSI-H
is uncommon in breast cancer and there is minimal data on its predictive
value in this tumor type [111].

5. Homologous recombination deficiency (HRD)

A specific mutational landscape characterizes tumors with
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homologous recombination deficiency (HRD) due to deficient double-
strand DNA. Germline defects in BRCA1/BRCA2 are the most studied
aberration causing HRD and these tumors usually have a two-fold higher
TMB than their wild-type counterpart [112,113]. Each responsible gene
involved in HRD likely predicts a different sensitivity to ICI therapy.
According to one report, BRCAZ2 deficient tumors in mouse models have
different immune infiltrates and better ICI response than BRCA1 defi-
cient tumors [114]. A retrospective analysis of patients with metastatic
cancers treated with ICIs showed that tumoral BRCA2 mutation — but not
BRCA1 — was associated with improved OS [114]. However, in IMpas-
sion130, somatic BRCA1/BRCA2 mutations in metastatic TNBC did not
affect PD-L1 IC positivity or outcomes with atezolizumab compared to
the overall population [115]. More data about the potential use of HRD
as a biomarker for ICI efficacy in BC is needed, particularly in germline
and somatic mutations other than BRCA1/BRCA2.

6. CD274 gain or amplification

Amplification of CD274 (the gene encoding PD-L1) is rare in solid
tumors but could be an independent predictor of response to anti-PD-(L)
1 blockade, given it does not always correlate with PD-L1 expression by
IHC [116]. In a Chinese study that identified CD274 amplification in
1.09 % of a pan-cancer cohort, there was a demonstrated association
between CD274 amplification and other proven biomarkers of response
to anti-PD-(L1) ICIs such as TMB, MSI and PD-L1 IHC [117]. In
SAFIR02-BREAST IMMUNO, CD274 gain or amplification was associ-
ated with an increased OS with durvalumab in all patients, even with
controlling for PD-L1 IC IHC (p < 0.001) [37]. The role of this possible
biomarker of response to ICI needs to be validated in further studies.

7. Estrogen receptor (ER) and/or progesterone receptor (PR)
expression

Tumors with ER <50 % have a similar inflamed immune TME to
tumors characterized as ER-negative, with higher sTILs, CD8" cells and
expression of immune-related gene sets which are predictive of response
to neoadjuvant ICIs. This is reflected in the I-SPY2 trial, where patients
with MammaPrint “high” tumors (most likely of luminal B phenotype)
had higher rates of pCR with the addition of pembrolizumab to neo-
adjuvant chemotherapy [118-120]. It is unknown to what extent TILs
assessment in [-SPY could have complemented genomics in finding pa-
tients with luminal BC that would respond to ICIs. This was studied in
the neoadjuvant phase II GIADA trial where patients received three
cycles of epirubicin plus cyclophosphamide followed by eight cycles of
nivolumab, which found that a combined score of basal subtype and TILs
was significantly associated with pCR [121].

Data from exploratory biomarker analysis of CheckMate 7FL also
demonstrated the potential role of ER and PR expression by IHC in
predicting response when adding nivolumab to neoadjuvant therapy in
high-risk, high-grade luminal BC. Higher pCR and RCB 0-1 rates were
seen in patients in tumors with low ER (<50 %) and/or PR (<10 % in ER
> 10 %) [19]. There has been a well-described negative association
between ER-positivity and immune infiltrate in BC, with an inverse
correlation between the transcriptomic expression of ESR1 (which en-
codes ERa) and TILs density, PD-L1 expression and macrophages [70].
Furthermore, increased ESR1 expression is associated with reduced pCR
with use of neoadjuvant ICI in luminal BC [111]. Additional investiga-
tion is required in luminal BC to understand the relationship between
hormone receptor expression, immune tumoral infiltration, and ICI
response.

8. Tumoral immune characterization
Beyond TILs, more precise ways to characterize tumoral immune

infiltration have been developed. These include flow cytometry and
imaging mass cytometry (IMC), the latter of which enables the
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simultaneous detection of multiple cell types and proteins via labeled
antibodies to reliably assess the spatial interactions with the TME [122].
In NEOTRIP, a study of neoadjuvant chemotherapy with atezolizumab
or placebo in early TNBC, analysis of biopsy samples at baseline, after
one cycle of neoadjuvant treatment and at surgery was performed using
IMC with 43 labeled antibodies. An increase in the density of CD8
T-cell expressing Granzyme B, a protease released by cytotoxic lym-
phocytes, during treatment between biopsy samples was predictive of
ICI response [123]. While promising, this technique remains investiga-
tional and is not routinely available in clinical practice.

9. Gene expression analysis

It is possible to characterize the TME via RNA sequencing (RNA-seq),
which utilizes NGS to identify the transcriptome of a tumor cell. Gene
expression analysis has played a crucial role in enhancing the under-
standing of tumor heterogenicity in BC and some groups have developed
gene expression profiles (GEPs) to predict response to ICIs [114-116].

In early TNBC, gene expression analysis was conducted as part of the
GeparNuevo trial, which studied the addition of durvalumab to neo-
adjuvant chemotherapy. Several sets of immune genes were evaluated,
including the GeparSixto signature (G6-Sig) which was previously
demonstrated to be predictive of response to neoadjuvant chemotherapy
in TNBC and HER2+ BC, and the IFN signature (IFN-Sig) which was
previously shown to be predictive for response to durvalumab in lung
and urothelial cancer [55,117]. These two signatures were biomarkers
of response to neoadjuvant chemotherapy, but could not discriminate
for the benefit of adding durvalumab. By analyzing single genes, they
found seven that were involved with interferon (IFN) signaling and
cellular antigen processing and presentation, which were significantly
associated with pCR in the durvalumab arm but not with placebo
(HLA-A, HLA-B, TAP1, GBP1, CXCL10, STAT1, and CD38) [118].

GEPs remain investigational and there has been limited assessment
of their clinical utility in comparison to, or in combination with, more
simple biomarkers such as TILs and PD-L1, though a recent analysis of
305 patients from the CALGB 40601 and PAMELA studies showed that
several B-cell-related signatures were more associated with pCR and EFS
than TILs [124].

It is important to acknowledge that different subsets of B- and T-cell
immune infiltration have been associated with ICI response, such as
CD8" Tgy, high intratumoral CD8" T-cells or exhausted CD8" T-cells
[113,119-121]. Pathways associated with response or resistance to ICI
from gene expression data are summarized in Fig. 1.

An overview of GEPs that have been utilized in clinical trials has
been provided in Table 3. Overall, these seem to be highly correlated
and this suggests that the signals or pathways being identified are likely
to be similar. There is strong potential for many of these to be used in the
future, perhaps akin to the current prognostic gene assays used in early
stage luminal BC.

9.1. T cell-inflamed GEP (Tcelly,yGEP)

This signature was developed as a pan-cancer biomarker of response
to ICIs and contains 18 IFN-y-responsive genes [125]. A strong corre-
lation between the Tcell;,GEP and PD-L1 IHC CPS >10 was demon-
strated in KEYNOTE-086 and, more recently, exploratory biomarker
analysis from KEYNOTE-522 found that the Tcell;,sGEP was predictive
for higher pCR rates and prognostic for improved EFS, independent of
ICI administration [109,81]. Further studies are required to demonstrate
the value of this GEP as an independent biomarker of response.

9.2. IO score
The IO score, also known as DetermalO, includes 27 genes related to

the immunomodulatory (immune “hot”) and mesenchymal (immune
“cold”) subtypes of TNBC based on a previously established 101-gene
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Fig. 1. Schematic representation of different pathways or genes identified via gene expression analysis associated with resistance or sensibility to immune checkpoint
inhibitors. Abbreviations: TGF f: Transforming growth factor-f, MAPK: Mitogen-activated protein kinase, IFN: interferon.

classification model and has been shown to predict response to ICI in
both early and metastatic disease [126]. Initial studies showed the IO
score’s superiority to PD-L1 IHC in its ability to predict pCR in early
TNBC being treated with neoadjuvant therapy [127]. The IO score has
shown promising efficacy in predicting ICI benefits in other tumors and
overall, larger scale studies are needed [128-130].

9.3. ImPrint

The ImPrint score was developed by Agendia and the I-SPY2 con-
sortium by analyzing RNA-seq of pre-treatment early BCs to identify
genes associated with pCR to ICIs. This scoring system, comprised of 53
genes predominantly related to immune function, was tested on five
arms of the I-SPY2 trial containing ICIs. However, different ICIs and
combination therapy with drugs under investigation could have intro-
duced biases, and ImPrint needs to be reproduced in patients treated
with the now standard KEYNOTE-522 protocol.

9.4. TNBC-ICI

By analyzing publicly available gene expression data, Ensenyat-
Mendez et al. used machine learning to develop a GEP comprising 37
genes mainly related to immune function to predict the benefit of neo-
adjuvant therapy with ICI in TNBC, named TNBC-ICI. A non-statistically

significant improved efficacy of TNBC-ICI over the aforementioned 10
score in predicting pCR was observed [79].

9.5. intratumoral CD8" T-cell signatures

In TNBC, the presence of high intratumoral CD8" T-cells is associated
with improved outcomes compared to tumors with mainly peripheral or
low amounts of CD8" T-cells (immune “hot” and immune “cold” tumors
respectively). Classification of spatial immunophenotypes by these gene
signatures can be predictive of benefit from anti-PD1 ICIs in pre-treated
metastatic TNBC, independent of PD-L1 expression [82]. High intra-
tumoral CD8" Tgry, which only reside in healthy peripheral tissues and
constitute the first line of defense against pathogens, are specifically
associated with improved outcomes in BC and offer better prognosti-
cation than CD8" T-cells [131].

10. T-cell receptor (TCR) repertoire

T-cells play a crucial role as effectors of the anti-tumor effects of ICIs
and activation is triggered by the binding of the T-cell receptor (TCR) to
specific epitopes on major histocompatibility complex (MHC) mole-
cules. During T-cell development, the TCR undergoes multiple somatic
recombinations, leading to diverse encoded sequences that determine
the epitopes it can recognize. The TCR repertoire, compiled by
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Table 3
Gene expression signatures (GEP) tested as a biomarker of response to ICI in
breast cancer.

GEP Trial Patients Outcomes
DetermalO™ NCT02489448 single N=55 e Improved OR for
arm phase I/II NAT + pCR (4.13,p =
durvalumab in early 0.012) with
TNBC [75] positive IO score
NEOTRIP phase III N =242 e Increased pCR with
randomized trial NAT positive IO score,
+ atezolizumab in early only with those
TNBC [76] treated with NAT-
ICI (HR: 3.64, p =
0.001) and not NAT
alone (HR: 1.31, p
= 0.46)
NEOPACT single arm N =115 e Increased pCR with
phase II trial NAT + positive compared
pembrolizumab in early to negative IO score
TNBC [63] (72 % vs 42 %, p =
0.002)
NCT02734290 phase Ib N=29 e Improved ORR (43

trial NAT +
pembrolizumab in
metastatic TNBC [77]

% vs 29 %) with
positive compared
to negative IO score
Improved PFS (162
vs. 83 days) and OS
(687 vs 305 days)
with positive
compared to
negative IO score
Weak correlation
between PD-L1 CPS
and IO score
Cohorts of the I-SPY2 N =200 e In HR+: increased
trial with ICI for high (HR+) + PCR with ImPrint
risk HER2- early BC 142 positive (76 %, 44/
[78] (TNBC) 58) vs negative (16
%, 26/142)

In TNBC: increased

PCR with ImPrint-

positive (75 %, 54/

72) vs negative (37

%, 26/70)

Higher efficiency

for predicting pCR

in TNBC treated
with NAT-ICI
compared to NAT
alone (AUC 0.86 vs

0.53)

N =162 e Excellent outcomes
from ICI-NAT
compared to NAT
alone for DDFS (p
= 0.0051) and OS
(p = 0.0052)

N =132 e Improved ORR with

higher median

expression (19.4 %
vs 4.3 %, AUROC:

0.771, p = 0.011)

Higher median

expression also

associated with
improved PFS (p =

0.002) and OS (p =

0.001)

Improved OS with

CD8" inflamed

signature compared

to excluded or

ignored (P = 0.05)

ImPrint

TNBC-ICI Cohorts of the I-SPY2
trial treated with NAT

=+ ICI [79]

N =50
(ICI-NAT)
+ 56 (NAT
alone)

CD8" Trm GeparNuevo phase II
randomized trial NAT

=+ durvalumab [80]

T-cell inflamed =~ KEYNOTE 086 phase II
GEP trial SA pembrolizumab
in metastatic TNBC [81]

=2
|
u1
)
.

High TONIC adaptive phase I
intratumoral trial of nivolumab after
CD8" T-cells  induction treatment in

metastatic TNBC [82]

Abbreviations: CD8" Tgy:: CD8™ T-cell with tissue-resident memory phenotype,
DDFS: distant disease-free survival, GEP: gene expression signature, HR+:
Hormone receptor-positive, ICI: immune checkpoint inhibitor, N: number of
patients, NAT: neoadjuvant chemotherapy, OR: odds ratio, ORR: objective
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response rate, OS: overall survival, pCR: pathologic complete response, SA:
single agent, TNBC: triple negative breast cancer.

sequencing the TCR of peripheral immune cells, is a powerful tool to
characterize immune activation and is typically analyzed at multiple
timepoints, often from peripheral blood mononuclear cells (PBMCs)
[132,133]. The diversity of the TCR repertoire has been suggested as a
biomarker of response to ICIs in other types of cancer, such as renal cell
carcinoma and melanoma [134,135]. In breast cancer, there has been a
correlation between the diversity of TCR repertoire and pCR in patients
receiving neoadjuvant therapy without an ICI, with serial RNA-seq at
baseline and after two cycles of treatment occurred showing a greater
decrease in patients with pCR than those with residual disease [136].
While no study has specifically evaluated the role of TCR repertoire in
predicting response to ICIs in BC, this remains a promising area of
research, particularly as these could be inferred from peripheral blood
draws.

11. Conclusion

The use of ICIs in combination with chemotherapy is approved in
TNBC and there is potential to broaden their use to other subtypes,
including early luminal and HER2+ BC. The most widely used
biomarker — PD-L1 IHC - has a limited role outside of metastatic TNBC
and issues arise from the availability of multiple commercial assays with
variable levels of concordance. A combined approach of PD-L1 with
other biomarkers, including morphological variables such as TILs and
other genomic technologies, has previously been proposed but has
practical limitations. Recently, the identification of immune-enriched
tumors using TILs is emerging as a key strategy across all subtypes to
select future trial or real-world populations that may be able to safely de-
escalate therapy (such as in early TNBC) or would benefit from the
addition of other therapeutic strategies (such as residual disease in early
HER2+ BC). High TILs can also select patients that may benefit from the
addition of ICIs to neoadjuvant therapy in early luminal BC, alongside
low hormone receptor expression which is already routinely evaluated
in this setting. While pembrolizumab has tumor-agnostic approval for
the TMB-H population, there is low clinical benefit in a BC cohort with
single agent ICI and this biomarker may be better applied with a more
optimal cut-off to select those who might benefit from doublet ICIs or a
combination with chemotherapy. Further, GEPs have shown potential as
an important biomarker of response to ICIs, though the use of these is
still investigational and therefore less accessible than the more estab-
lished biomarkers of PD-L1 and TILs. Finally, other novel strategies —
such as dMMR, HRD, CD274 gain and amplification, the T-cell reper-
toire and other methods of tumoral immune characterization — are still
under investigation and require further evidence before being integrated
into clinical practice.
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