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ABSTRACT

Introduction: Cholangiocarcinoma (CCA) is an uncommon yet aggressive malignancy often diagnosed
at advanced stages. Its management is challenged by significant molecular heterogeneity and limited
treatment options. Advances in next-generation sequencing (NGS) have identified actionable altera-
tions, such as FGFR2 fusions, thereby facilitating a precision oncology approach for CCA management.
Areas Covered: This review consolidates current evidence and expert insights on molecular profiling in
CCA. It examines the histopathological subtypes and addresses diagnostic challenges associated with
their diagnosis. Critical pre-analytical factors, including biopsy techniques, tissue handling, and tumor
heterogeneity, are discussed in relation to their impact on molecular testing. The review also evaluates
DNA-based versus RNA-based NGS methodologies, highlighting their strengths and limitations in
detecting complex genomic alterations. The role of liquid biopsy as a minimally invasive tool for
dynamic tumor monitoring is also explored.

Expert Opinion: The routine integration of molecular profiling for CCA requires the best histopathological
diagnosis and pre-analytical preparation practices. Diagnostic workflows should prioritize meticulous tissue
handling to ensure robust molecular analyses to avoid tissue exhaustion and preserve the integrity of
nucleic acids. Employing DNA plus RNA sequencing platforms, supported by molecular tumor boards, is
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recommended to enhance patient stratification and guide therapeutic decision-making in CCA.

1. Introduction

Cholangiocarcinoma (CCA), a malignancy originating from the
biliary epithelium, is a rare (incidence rate<2 cases per
100,000 individuals) yet highly aggressive cancer, accounting
for approximately 15% of primary liver cancers and 3% of all
gastrointestinal malignancies [1]. The global incidence of CCA
varies widely, with the highest rates reported in Southeast
Asia due to endemic liver fluke infections and hepatolithiasis
[2]. Several risk factors are implicated in the development of
CCA, including primary sclerosing cholangitis, hepatolithiasis,
parasitic infections, metabolic dysfunction-associated steato-
hepatitis (MASH), metabolic dysfunction-associated steatotic
liver disease (MASLD), obesity, and type 2 diabetes, alongside
genetic alterations [3]. Histopathologically, CCA is classified
into intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA)
subtypes based on the anatomical location of the tumor [4].
Although surgical resection is potentially curative,
approximately 70% of CCA cases are diagnosed at advanced,
unresectable or metastatic stages, which is partly attributed
to the insidious onset of symptoms [1]. Advanced CCA has
been associated with a severe prognosis, with a 5-year over-
all survival (OS) rate of < 10%, median survival of <11 months
in patients treated with chemotherapy, and approximately 4

months in those receiving the best supportive care [5-7]. The
integration of molecular testing, particularly with the advent
of next-generation sequencing (NGS), has significantly
improved the treatment landscape and prognosis of CCA by
identifying actionable genetic alterations with therapeutic
implications. Several genetic alterations were identified for
iCCA, including IDH1 and FGFR2, and extrahepatic CCA
(eCCA), including KRAS, TP53, and SMAD4, which impact
tumor prognosis [8,9]. Among the most clinically relevant
alterations are FGFR2 fusions and IDHT mutations, predomi-
nantly observed in iCCA. FGFR inhibitors, such as pemigatinib
and futibatinib, and the IDHT inhibitor, ivosidenib, are
approved for patients with previously treated unresectable
CCA and targeted alterations [10,11]. In addition, further
agents - including zanidatamab and trastuzumab-
deruxtecan (for HER2 overexpression and/or ERBB2 gene
amplification), dabrafenib-trametinib (for BRAF"°®t-mutated
tumors), pembrolizumab for microsatellite instability-high
(MSI-high) CCA, as well as tumor-agnostic approvals of
entrectinib/larotrectinib (targeting NTRK fusions), selpercati-
nib (targeting RET alterations), and PARP inhibitors (in
patients with BRCA1/2 and PALB2 mutations responding to
platinum-based therapy) - expanded the approved
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Article highlights

* Rigorous histopathological diagnosis is essential to prevent tissue
exhaustion and ensure sufficient material for molecular analysis.

o Optimal pre-analytical preparation — including careful biopsy techni-
que, proper tissue handling, and judicious use of immunohistochem-
istry — helps improve nucleic acid yield and integrity.

» Standardized protocols for sample processing are critical for accu-
rately detecting actionable genomic alterations in CCA.

e Combined DNA and RNA sequencing approaches are recommended
for comprehensive molecular profiling, enabling reliable detection of
point mutations, copy number alterations and gene fusion events.

o Targeted NGS panels should be selected and executed with an
understanding of the specific limitations of amplicon-based versus
hybrid capture methods to optimize the detection of actionable
alterations.

o RNA-based NGS is particularly recommended for FGFR2 fusion detec-
tion, given its superior sensitivity in identifying diverse fusion
partners.

e Liquid biopsy offers a minimally invasive alternative for molecular
profiling, although challenges related to sensitivity, specificity, and
clonal hematopoiesis must be carefully addressed.

¢ Integrating molecular tumor boards is essential for interpreting NGS
findings, enhancing patient stratification and guiding personalized
therapeutic strategies.

o These foundational practices and NGS recommendations are prere-
quisites for the routine integration of advanced molecular profiling
into clinical protocols for CCA management.

therapeutic options for CCA [12]. Several other targeted
therapies are being tested for advanced CCA patients [13].

Consequently, molecular profiling in CCA has grown substan-
tially in Europe. The European Society for Medical Oncology
(ESMO) has emphasized the importance of routine molecular
profiling in patients with advanced biliary tract cancer (BTC),
including CCA [12]. The ESMO guideline recommends targeted
multigene NGS panels covering level | actionable alterations in
CCA patients [14]. Nonetheless, implementing NGS-based mole-
cular profiling for CCA in routine clinical practice faces several
clinical, logistical, and economic challenges [15-17]. From
a pathological standpoint, the limited availability of high-
quality tumor samples with sufficient DNA and RNA quantity is
one of the key challenges in NGS profiling for CCA. Tissue
exhaustion, low number of neoplastic cells, DNA degradation,
or sample cross-contamination during handling and storage can
also increase the risk of sample failure [15]. The heterogeneity of
CCA also poses challenges, as small biopsies may not capture the
full genetic landscape of the tumor [18]. Pathological workflows
often lack integration with molecular diagnostics, leading to
delays and inefficiencies in testing and reporting [15].

This expert opinion review integrated real-world insights with
the latest evidence to outline the challenges and best practices for
sample management and molecular profiling of CCA. The present
review provides an overview of current NGS molecular profiling
techniques and their limitations, focusing on FGFR2 fusion detec-
tion. We also present our experience integrating the molecular
tumor board (MTB) into clinical practice for CCA management.

2. Methods

This expert opinion review was developed by integrating
insights from a multidisciplinary panel of experts and

a comprehensive bibliographic review of relevant literature.
The expert insights were obtained during a preceptorship held
in Barcelona on 7 November 2024. This in-person meeting
brought together leading oncology, pathology, and molecular
diagnostics experts with extensive experience in the manage-
ment of CCA. The preceptorship was attended by European
pathologists, and focused on sample management and mole-
cular profiling of CCA to provide practical recommendations.
To supplement expert insights, an online bibliographic search
was conducted across multiple databases, including Medline
via PubMed, Embase, Scopus, and Web of Science. The search
strategy employed a combination of keywords and Medical
Subject Headings (MeSH) terms such as ‘cholangiocarcinoma,’
‘molecular profiling,” ‘sample management,’ ‘biopsy techni-
ques,’ ‘diagnostic biomarkers,’ ‘tissue quality control,’ ‘next-
generation sequencing,’ ‘liquid biopsy,” and ‘precision oncol-
ogy.’ Boolean operators (AND, OR) were used to refine the
search, and truncation was applied to include variations of the
terms.

3. Precision medicine for cholangiocarcinoma:
clinical value and survival benefits

The emergence of actionable genetic alterations in CCA (Figure 1)
has provided the foundation for significant advancements in pre-
cision medicine. These alterations have led to multiple pivotal
clinical trials evaluating the efficacy of molecularly targeted agents
in patients with advanced CCA or BTCs [19], Table 1.

FGFR2 fusions are present in approximately 8-10% of
patients with iCCA [32,33]. These fusions disrupt normal
FGFR2 signaling, driving oncogenesis and tumor proliferation
[34,35]. This has led to developing of FGFR inhibitors based on
clinical trials demonstrating meaningful efficacy in patients
harboring these alterations. For instance, pemigatinib,
a FGFR1-3 inhibitor, was evaluated in the phase Il FIGHT-202
trial, involving patients with advanced or metastatic iCCA
harboring FGFR2 fusions or rearrangements. The trial reported
an overall response rate (ORR) of 35.5%, with a median pro-
gression-free survival (PFS) of 6.9 months and a median OS of
21.1 months [20]. Infigratinib, another FGFR1-3 inhibitor, has
also demonstrated significant efficacy in this population, with
an ORR of 23.1%, a median PFS of 7.8 months, and a median
OS of 23.1 months [36]. The phase Il FOENIX-CCA2 trial eval-
uated futibatinib, an irreversible FGFR1-4 inhibitor. Futibatinib
achieved an ORR of 42%, with a median PFS of 8.9 months and
a median OS of 21.7 months [21]. Derazantinib, a multi-kinase
inhibitor targeting FGFR1-3, is being investigated as an alter-
native FGFR2-targeted therapy, with an ORR of 21.4% and
a disease control rate (DCR) of 74.8% [37]. Erdafitinib, another
pan FGFR inhibitor, showed an ORR of 60% and a DCR of 100%
[38]. Currently, pemigatinib and futibatinib are approved by
the Food and Drug Administration (FDA) and the European
Medicines Agency (EMA) for patients with FGFR2 fusion-
positive CCA [39].

Although FGFR inhibitors have demonstrated significant
efficacy, acquired resistance remains a challenge. Secondary
mutations in the FGFR kinase domains, mainly N550 and V565
mutations, have been identified as a common resistance
mechanism, prompting the development of next-generation
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Actionable alterations % iCCA % eCCA
ERBB2/ HER2 amplification/overexpression 5.8% 1.3 -20%
FGFR2 fusion 10-16%
IDH1 mutations 13-30% 4.7%
NTRK fusion 3-9%
BRAFV00E mutations 1.5%
BAP1 mutations and deletions 15-20%
BRCA1/BRCA2 mutations 3.1% 4.7%
MSI-H/dMMR 4.7-18.2% 4%
PI3K mutations 5% 7%
KRAS mutations 8-54% 36.7-46%
TP53 18-27% 18-68%
MTAP Loss 3% 1.1%

Figure 1. Frequency of actionable alterations in cholangiocarcinoma. BAP1: BRCA1 associated protein 1, BRAF: v-raf murine sarcoma viral oncogene homolog B,
dCCA: distal cholangiocarcinoma, eCCA: extrahepatic cholangiocarcinoma, HER2 protein: erb-B2 receptor tyrosine kinase 2 (ERBB2 gene), FGFR2: fibroblast growth
factor receptor 2, iCCA: intrahepatic cholangiocarcinoma, IDH1: isocitrate dehydrogenase 1, KRAS: Kirsten Rat sarcoma viral oncogene homolog, MSI-H: microsatellite
instability-high, NTRK: neurotrophic tyrosine receptor kinase, pCCA: Perihilar cholangiocarcinoma, PI3K: phosphoinositide 3-kinase, TP53: tumor protein P53.

Table 1. An overview of clinical trials evaluating targeted therapies in CCA.

0S, months  PFS, months  TRAEs (Grade
Target (Gene) Drug Trials Phase No ORR, % (95 Cl%) (95% Cl) (95% Cl) >3), % References
FGFR2 fusion or Pemigatinib FIGHT-202 Il 107 35.5 (26.5, 45.4) 21.1 (14.8, 6.9 (62, 9.6) 64% [20]
rearrangements NE)
Futibatinib FOENIX-CCA2 I 103 42 (32, 52) 21.7 (145, 89 (6.9, 13.1) 48% [21]
NE)
IDH1 Ivosidenib ClarlDHy 11] 185 2 (0.5, 6.9) 108 (7.7to 2.7 (1.6 to 4.2) 6% [22]
17.6)
BRAFV6% Dabrafenib plus ROAR Il 43 5136, 67) 14 (10, 33) 9 (5, 10) NR [23]
trametinib
HER2 overexpression or Pertuzumab plus Javle et al,, Il 39 23 (11, 39) 10.9 (5.2, 4(1.8,5.7) 8% [24]
ERBB2 amplification trastuzumab 2021 15.6)
Zanidatamab HERIZON-BTC I 87 41 (NR) 15.5 (10.4, NR 21% [25]
-01 18.5)
Trastuzumab- DESTINY- Il 41 26.8 (14.2,429) 7 (4.6-10.2) 46 (3.1, 6) 39% [26]
deruxtecan PanTumor02
NTRK gene fusion Entrectinib Doebele et al., /1l 54 80 (67, 90) NR NE NR [27]
2020
Larotrectinib Drilon et al., 171 55 50 NR NR 7% [28]
2018
Repotrectinib TRIDENT-1 1] 88 Naive: 62 (38, 82) NR NR 51% [29]
Pre-treated: 42
(18, 71)
MSI-high/dMMR Pembrolizumab KEYNOTE-158 Il 351 30.8 (25.8, 36.2) 20.1 (14.1, 35(23,4.2) 64.7% [30]
27.1)
RET fusion Selpercatinib LIBRETTO-001  I/1I 45 439 (28.5,60.3). 18 (10.7, NE) 13.2(7.4,26.2) 22% [31]

CCA: Cholangiocarcinoma; iCCA: Intrahepatic cholangiocarcinoma; NE: Not estimable; NR: Not reported; OS: Overall survival; ORR: Objective response rate; PFS:

Progression-free survival; TREAs: Treatment-emergent adverse events.

inhibitors [40,41]. Combination strategies involving third-
generation irreversible FGFR inhibitors [42] and other thera-
pies, such as immunotherapy or chemotherapy, are being
investigated to enhance treatment durability and overcome
resistance [43]. For instance, RLY-4008, a highly selective oral
FGFR2 inhibitor, showed promising anti-tumor activity in
patients with prior FGFR2 inhibitors, with a duration of

response of 5.6 months [44]. Tinengotinib, a potent FGFR2
kinase domain inhibitor, was associated with an ORR and
DCR of 34% and 89.7%, respectively, in patients with prior
FGFR inhibitors [45].

Isocitrate dehydrogenase 1 (IDH1) mutations, identified in
14.3% of iCCA and 4.7% of eCCA [22,46-48], represent another
actionable alteration. These mutations produce an
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oncometabolite, 2-hydroxyglutarate, which disrupts cellular
metabolism and promotes tumorigenesis [49]. The develop-
ment of IDH1 inhibitors, such as ivosidenib, was fueled by the
results of the ClarIDHy trial, which demonstrated improved
PFS in advanced CCA patients with IDHT mutations compared
to placebo (median PFS: 2.7 vs. 1.4 months, respectively;
hazard ratio (HR)=0.37, p<0.001) [22]. Ivosidenib was
approved by the FDA and EMA for patients with unresectable
locally advanced or metastatic IDH7-mutated CCA.

HER2 overexpression (protein) and ERBB2 amplification
(gene), both involving the ERBB2 gene that encodes the
HER2 receptor - a member of the epidermal growth factor
receptor (EGFR) family — are actionable molecular targets in
iCCA and eCCA, with a prevalence of 5.8% and 13-20%,
respectively [50,51]. ERBB2 amplifications and HER2 overex-
pression contribute to tumorigenesis by activating down-
stream signaling pathways, including MAPK and PI3K-AKT
[52]. Clinical trials evaluating HER2-directed therapies in CCA
have shown promising results. In a phase Il study, the combi-
nation of the HER2-directed monoclonal antibodies, trastuzu-
mab plus pertuzumab, was associated with an ORR of 23%
and a median PFS of 4 months in patients with HER2-positive
BTCs [24]. Zanidatamab, a bispecific HER2-directed antibody,
was recently approved by the FDA based on the results of the
open-label single-arm HERIZON-BTC-01 (NCT04466891) trial. In
patients with unresectable or metastatic HER2-positive BTC,
zanidatamab led to an ORR of 41% and a median duration
of response (DOR) of 14.9 months [53] and recently received
positive advice from the European CHMP. Similarly, HER2-
targeted antibody-drug conjugates (ADCs) such as trastuzu-
mab deruxtecan (T-DXd) are being investigated in this popula-
tion. Early-phase trials have demonstrated an ORR of 36.7% in
patients with HER2-positive BTCs [54].

BRAF mutations, a key component of the MAPK signaling
pathway, are in approximately 5% of iCCA, with 1.5% of the
cases showing BRAF'®°F mutation [55]. The combination of
BRAF inhibitors (dabrafenib) and MEK inhibitors (trametinib)
has shown promising efficacy in CCA patients with BRAF"6%%
mutations. In a pivotal phase Il study, this combination
achieved an ORR of 51% in patients with advanced BTCs
harboring BRAF“°°F. Median PFS and OS were 9 and 14
months, respectively [23]. Other emerging targeted therapies
include tyrosine kinase (TRK) inhibitors for patients with NTRK
fusions [27,28] and therapies targeting alterations in the mis-
match repair (MMR) pathway or high tumor mutational bur-
den (TMB) [56], RET rearrangements and mutations [57], novel
KRAS mutations (such as KRAS®'?C mutation) [58], murine
double minute 2 (MDM2) amplification [59], and MTAP
loss [60].

4. Pre-analytical preparation: best practices for
sample management

4.1. CCA histopathology: classification and challenges in
the histopathological diagnosis

CCA is histopathologically classified into iCCA, pCCA, and
dCCA subtypes based on the anatomical location of the
tumor within the biliary tract [4]. iCCA, accounting for

10-50% of the CCA cases [61], arises from intrahepatic bile
ducts and can be further subclassified into small-duct and
large-duct subtypes with distinct anatomical origins, histolo-
gical features, and molecular characteristics (Figure 2).

The small-duct subtype originates in the peripheral hepatic
parenchyma and involves bile ducts and ductules within this
region. Its growth pattern is typically mass-forming (MF) and is
not closely associated with chronic biliary inflammation.
Instead, its development is often linked to systemic or non-
biliary conditions such as chronic viral hepatitis or non-biliary
cirrhosis. The precursor lesions for small-duct iCCA remain
poorly defined, though it was proposed that the tumor arises
from the progenitor cells or mature hepatocytes of small
intrahepatic bile ducts [62,63]. The small-duct iCCA is charac-
terized by a tubular growth pattern with low-columnar or
cuboidal epithelial cells surrounded by a desmoplastic reac-
tion. Some components may also exhibit ductular or cord-like
arrangements with slit-like lumina. Unlike large-duct iCCA,
small-duct iCCA typically does not produce mucin, resulting
in non-mucin-secreting glands. Perineural and lymphovascular
invasion is less commonly observed, contributing to
a potentially better prognosis than large-duct iCCA [63].
Immunohistochemistry (IHC) markers, such as epithelial mem-
brane antigen (EMA/MUCT), CK7, and CK19, are typically
expressed. Additionally, characteristic features such as CD56,
NCAM, and C-reactive protein (CRP) are observed [64]. Small
duct iCCAs are more commonly associated with FGFR2 fusions,
IDH1 mutations, and BAPT loss [65].

In contrast, large-duct iCCA arises from the proximal
intrahepatic bile ducts located near the hepatic hilum. Its
growth pattern can be periductal infiltrating (PI) or com-
bined Pl and MF patterns. This subtype is strongly asso-
ciated with chronic biliary inflammation and related
conditions. Precursors to large-duct iCCA include biliary
intraepithelial neoplasia (BiN) and intraductal papillary neo-
plasms, contributing to the tumor's progression [65].
Histologically, large-duct iCCA exhibits a ductal or tubular
pattern with columnar to cuboidal epithelium embedded
within a prominent desmoplastic stroma. Mucin production
is a hallmark feature, with mucin-secreting glands observed
in most cases. Perineural and lymphovascular invasion are
more frequent in large-duct iCCA, contributing to its aggres-
sive clinical behavior and worse prognosis compared to
small-duct iCCA [66]. IHC markers such as EMA/MUC1, CK7,
and CK19 are also expressed in this subtype, along with
additional markers such as $S100, TFF1, and AGR2, highlight-
ing its distinct molecular profile [67]. Large duct iCCAs
exhibit molecular alterations similar to eCCA, such as KRAS,
TP53, and SMAD4 mutations [65].

On the other hand, pCCA arises at the bifurcation of the
right and left hepatic ducts. It accounts for 50-60% of all
CCA cases [4]. Histologically, pCCA typically displays a dense
desmoplastic reaction and well-formed glands infiltrating the
periductal tissue [68]. dCCA arises from the bile ducts below
the cystic duct and often presents with symptoms of obstruc-
tive jaundice due to its anatomical location. It accounts for
20-30% of CCA cases and shares histological features with
pCCA, including glandular architecture and mucin produc-
tion [69].
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Figure 2. Intra-tumor heterogeneity in different subtypes of cholangiocarcinoma (CCA). Panel a depicts intrahepatic cholangiocarcinoma (iCCA), showing a well-
circumscribed mass within the liver parenchyma with areas of necrosis and fibrosis. The histopathology slide highlights regions of cellular variation (red boxes),
demonstrating tumor architectural diversity. Panel B represents hilar cholangiocarcinoma (hilar CCA), characterized by an infiltrative growth pattern with bile duct
involvement. The corresponding histological section reveals stromal desmoplasia and tumor heterogeneity, as marked by red boxes. Panel C presents extrahepatic
bile duct cholangiocarcinoma (EHBD CCA), exhibiting a more complex and fibrotic pattern with luminal obstruction. The histopathological image highlights distinct
tumor subpopulations, emphasizing the variability in morphology within the same tumor.

The diagnosis of CCA from biopsy samples presents signifi-
cant challenges. A primary challenge lies in distinguishing CCA
from conditions such as primary sclerosing cholangitis (PSC),
which shares overlapping clinical and radiological features.
Histologically, PSC is characterized by inflammation and fibro-
sis, which can mimic the desmoplastic reaction observed in
CCA [70]. Another diagnostic challenge arises in differentiating
CCA from IgG4-related cholangitis. Both conditions may exhi-
bit elevated serum IgG4 levels, adding complexity to the
differentiation [71]. Distinguishing primary iCCA from meta-
static adenocarcinoma remains a significant challenge. Both
iCCA and metastatic pancreatic ductal adenocarcinoma exhibit
immunopositivity for CK7 and CK19, limiting their diagnostic
specificity. However, combining these markers with others,
such as CRP, N-cadherin, BerEP4, and polyclonal CEA, has
shown promise in distinguishing iCCA from metastatic lesions
[72,73].

iCCA and hepatocellular carcinoma (HCC) are also challen-
ging to tell apart since they have overlapping risk factors and
imaging characteristics [74]. Combined hepatocellular-
cholangiocellular carcinoma (cHCC-CC) is a rare and highly
heterogeneous malignancy that exhibits features of both
HCC and CCA [75]. The diagnosis of cHCC-CC poses significant
challenges due to overlapping clinical, radiological, and histo-
pathological characteristics with both primary liver malignan-
cies. Histologically, ¢cHCC-CC contains hepatocellular and
biliary differentiation components within the same tumor.
These tumors may exhibit a broad spectrum of morphologies,
ranging from distinct hepatocytic and cholangiocytic areas to
poorly demarcated regions where the two components are

intermixed. The dual phenotype of cHCC-CC often requires an
IHC panel to identify specific markers for each lineage.
Emerging imaging techniques such as radiomics models
using dynamic contrast-enhanced MRI (DCE-MRI) have shown
promise in differentiating cHCC-CC from HCC and iCCA [75].
Additionally, cHCC-CCA exhibits a complex molecular land-
scape, often showing overlap with both HCC- and CCA-
associated mutations, reflecting its biphenotypic nature [65].

Diagnosing CCA often requires multiple diagnostic tests,
which can lead to tissue exhaustion in small biopsy samples.
Tissue exhaustion and insufficient tissue may limit the ability
to conduct comprehensive molecular analyses, potentially
depriving patients of access to precision medicine approaches.

4.2. Sample biopsy and pre-analytical
preparation-related Challenges:

Several pre-analytical challenges can increase the risk of sam-
ple failure for genomic profiling. The inherently low content of
nucleated cells in CCA samples can lead to insufficient DNA or
RNA yields and sample failure [76], particularly when dealing
with small biopsy specimens. Surgical resection is not feasible
for many patients with CCA, and biopsy specimens are the
primary diagnostic and molecular testing source. Collecting
adequate biopsy material from the biliary tree, especially for
pCCA and dCCA subtypes, is technically challenging. These
tumors are located in anatomically complex regions, and sam-
pling is further complicated by the small caliber of bile ducts
and the dense desmoplastic stroma characteristic of these
malignancies. Percutaneous core needle biopsy (CNB) is
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generally preferred over fine needle aspiration (FNA) or endo-
scopic brush cytology due to its higher tumor content and
ability to provide tissue architecture [77]. However, CNB has
limitations, such as small biopsy sizes, low tumor cellularity,
and significant desmoplastic fibrosis, frequently resulting in
insufficient material for molecular profiling [76]. Re-biopsy is
often impractical for patients with advanced CCA or poor
performance status and may entail some risks [78]. Tissue
biopsy carries inherent risks, particularly in anatomically chal-
lenging or surgically inaccessible tumors. Complications such
as bleeding, infection, and tumor seeding, although rare, can
occur and may limit repeated sampling, especially in patients
with comorbidities or fragile liver function [79]. While FNA or
brush cytology can be considered, they are also limited by
insufficient materials for NGS and low sensitivity for detecting
BTCs [80,81].

Intratumoral heterogeneity is a prominent feature in CCA,
whereby many tumor subclones coexist (Figure 2). These sub-
clones may be intermixed within the tumor mass or spatially
segregated across different primary tumor regions [18,82].
Metastases derived from the primary tumor also frequently
exhibit additional heterogeneity, referred to as intrametastatic
heterogeneity [82]. Intratumoral heterogeneity can lead to
sampling bias during the biopsy, as small specimens may
not fully represent the genetic diversity of the tumor. This
may affect especially subclonal driver alterations, such as
acquired resistance mutations in FGFR2-gene fusion car-
riers [83].

Low tumor cell content is one of the most common causes
of sample failure during NGS profiling for CCA [76]. The des-
moplastic stroma and fibrotic tissues in CCA samples dilute
the tumor cell population, reducing the quantity and quality
of tumor-derived DNA and RNA available for molecular testing
and inducing false-negative results [15,81]. Many NGS-based
platforms require a minimum tumor cell content threshold of
10-20% to identify variants and correctly remove sequencing
artifacts [84]. In a previous analysis of 149 advanced BTC
samples, the sample failure rate was 27% for tissue and 15%
for liquid biopsy; the most frequent cause for sample failure
was low tumor content < 20% [76]. Other reports have demon-
strated low tumor cellularity in 21% of the BTC tissue samples
[84,85].

Tumor ischemia and necrotic changes are common in CCA
samples (Supplementary Figure S1), which may lead to
degraded nucleic acids and compromised DNA quality [15].
Formalin fixation can introduce cross-links between proteins
and nucleic acids, DNA fragmentation, and oxidative damage.
These effects may lead to false-positive variant calls, most
commonly involving thymine artifacts resulting from cytosine
deamination [86]. Over-fixation may also reduce the efficiency
of NGS sequencing, particularly for RNA-based analyses, due
to nucleic acid damage [87].

4.3. Best practices for sample management

Accurate molecular profiling of CCA depends on effective
sample management to preserve tissue integrity and ensure
successful downstream analyses. Interventional radiologists

and gastroenterologists should consider collecting adequate
tissue material during biopsy procedures [81]. Where feasible,
multiple biopsies from the same lesion may be considered to
increase the likelihood of obtaining sufficient material for
molecular testing [13]. Pathologists need to balance the
requirements of histopathological diagnosis with the need to
reserve sufficient tissue for NGS and other molecular tests.
When tissue is insufficient or inaccessible, complementary
diagnostic methods such as liquid biopsy may provide non-
invasive alternatives for ctDNA molecular testing [15].

The clinical and radiological context should guide the diag-
nostic process to mitigate unnecessary tissue use, minimizing
reliance on exhaustive tissue manipulation. Tissue can be
divided into multiple paraffin blocks to ensure that material
remains available for molecular testing even if one block is
exhausted. Pathologists should consider minimizing the num-
ber of rounds of tissue sectioning and prioritizing the rational
use of IHC to select the most relevant markers based on
clinical and radiological findings [15]. When multiple tissue
blocks are available, selecting the most suitable block for
molecular profiling is critical. Blocks that have not been dec-
alcified need to be prioritized since nucleic acids are critically
damaged during this step. The ideal block should maximize
the proportion of neoplastic cells relative to stromal or inflam-
matory components to improve nucleic acid yield and
increase the likelihood of detecting genomic alterations [15].

Macrodissection can be a valuable tool for maximizing the
neoplastic cell content of samples. Pathologists can identify
and mark regions of high neoplastic cell content, ensuring
that only tumor-rich areas are used for molecular testing. Non-
neoplastic regions can be removed to preserve the quality and
accuracy of the analysis. This approach is particularly useful
when tumor cell content is low, but specific regions exhibit
higher cellularity [88,89]. However, macrodissection should be
performed carefully to avoid excessive complexity or overly
small regions hindering analysis.

5. NGS-based molecular profiling for CCA
5.1. NGS techniques: advantages and limitations

In the clinical arena, targeted sequencing approaches play dis-
tinct roles in advancing precision medicine for CCA. Compared
to genome-wide applications, such as whole-genome sequen-
cing (WGS), whole-exome sequencing (WES), and whole-
transcriptome sequencing (WTS), targeted NGS is associated
with lower cost, shorter turnaround time, fewer infrastructure
requirements, and greater throughput [81]. In this section, we
focus on the design and execution of targeted NGS panels,
which are recommended in clinical practice and adopted widely
for CCA molecular biomarker determination [14]. This includes
the selection of source materials (DNA vs RNA) and targeted
NGS chemistry (hybrid capture vs amplicon-based).

Biomarker profiling needs to be considered first in the
context of the nucleic acid type -DNA or RNA. DNA is char-
acterized by its stability and suitability for detecting a broad
spectrum of genomic alterations and can be extracted from
a variety of sample types, including fresh tissue, formalin-fixed
paraffin-embedded (FFPE) blocks, and even plasma in liquid



biopsy applications [90]. DNA-based NGS enables reliable
identification of single-nucleotide variants (SNVs), insertions
and deletions (indels), MSI status and copy number alterations
(CNAs) [91]. In CCA, it is used to profile mutations of action-
able genes such as IDH1, BRAF, or ERBB2. As such, gene panels
can enable highly accurate detection of MSI status by sequen-
cing mononucleotide microsatellite loci that lie within gene
panels. For each microsatellite locus, the number of differ-
ently-sized repeats in experimental samples is compared to
a population of normal controls [92]. Several hotspot micro-
satellite loci have been described in endometrial, colon, and
stomach cancers [93]. This might become a challenge for MSI
profiling in other tumor types, such as CCA. However, DNA-
based gene-panel NGS approaches are limited in their ability
to profile structural rearrangements, leading to gene fusions.
To this end, RNA is particularly valuable for identifying fusions
that may not be detected at the DNA level, such as FGFR2 in
CCA (discussed later). RNA sequencing also provides an under-
standing of alternative splicing events and differential gene
expression [94]. However, RNA is less stable than DNA and is
more susceptible to degradation, particularly in FFPE samples.
Acceptable-quality RNA extraction is critical, which can be
challenging in routine clinical workflows [95,96].

The two main chemistries for targeted NGS are hybrid
capture and multiplex PCR/amplicon-based approaches
(Figure 3). Amplicon-based approaches imply generating mul-
tiple polymerase chain reaction (PCR) products around specific
genomic regions of interest. This option offers several advan-
tages, including low cost, rapid turnover, and minimal input
material, making it well-suited for small biopsy specimens [91].
The approach is highly sensitive to identifying SNVs and
indels.

Despite its advantages, the amplicon-based enrichment
chemistry also has some limitations. Generally speaking, the
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scalability of amplicon-based enrichment is typically limited to
a few thousand products [97] and primer interactions, parti-
cularly in complex panels, can compromise sequencing uni-
formity [98]. Concerning point mutations and indel detection,
allelic dropout, caused by mutations within primer-binding
regions, can reduce amplification efficiency and inaccurate
variant quantification [90]. In addition, end-point PCR amplifi-
cation limits the ability of the amplicon-based approach to
identify CNAs, such as ERBB2 [98]. The accuracy of amplicon-
based enrichment can be influenced by the bioinformatic
thresholds for defining CNAs gain. High-level amplifications
are generally more reliably detected than low-level gains,
which may be prone to misclassification [99].

Furthermore, the amplicon-based approach is restricted to
predefined genomic regions, requiring oligonucleotide pri-
mers that precisely define the target regions at their 5'and 3'
ends. This limits the ability to detect events without conserved
5'and 3’ genomic locations, such as genomic rearrangements.
For RNA-based approaches, anchored multiplex PCR (AMP) is
available, using an innovative approach that is only limited by
one of its ends. Compared to other amplicon-based assays,
AMP is highly sensitive to identifying gene fusions, particularly
the multiple FGFR2 fusion partners in CCA [100].

Hybrid capture-based enrichment uses hybridization of
probes to complementary sequences to selectively capture
genomic regions. Unlike amplicon-based methods, which rely
on predefined primers, hybrid capture offers greater flexibility
and breadth, making it particularly suited for comprehensive
molecular profiling. The homogeneity of target region cover-
age achieved in libraries based on hybrid capture is much
higher than in amplicon-based chemistries [101]. Another sig-
nificant advantage of hybrid capture is its ability to accommo-
date large and scalable sequencing panels [90], hence being
highly effective in detecting a large number of genomic loci.
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Figure 3. Approaches for targeted-enrichment DNA sequencing for next-generation sequencing (NGS) testing. Panel A represents hybridization-based capture

techniques. Panel B depicts the amplicon-based enrichment method.



486 (=) F.CASTET ET AL.

A clear advantage of hybrid capture is that flanking sequences
to the targeted regions are not limited to the hybrid capture
event, allowing the capture of regions close to rearrangement
points [90]. Altogether, this allows profiling a wide range of
genomic alterations, including SNVs, indels, CNAs, and rear-
rangements, as well as complex biomarkers such as MSI status
and tumor mutational burden (TMB) quantification [46,81].

Despite its strengths, hybrid capture has limitations that
must be considered. For FFPE-derived applications, hybrid
capture typically requires higher input DNA or RNA amounts
than amplicon-based methods (10ng vs > 100ng). The process
is also more time-consuming and complex, resulting in longer
turnaround times and higher costs [102]. Tolerance of hybrid
capture to mismatches is limited to around 5, impacting the
performance of capturing indels, especially when these fall in
the central region of the probe. Another limitation lies in
detecting rearrangement points in large DNA intronic regions.
These regions can be highly repetitive and have reduced
efficiency of probe binding. Repetitive sequences within
introns may also increase the likelihood of off-target hybridi-
zation. This issue is particularly relevant in detecting specific
FGFR2 fusions or other structural variants with complex geno-
mic architectures [81].

Thus, ideally, initial molecular profiling in CCA should be
designed as a combined approach (DNA + RNA sequencing) to
profile all relevant biomarkers to date. Table 2 shows the
advantages and limitations of targeted NGS techniques.

5.2. NGS testing of FGFR2 fusions

Detecting FGFR2 fusions in CCA presents unique challenges,
requiring careful consideration of the sequencing approach.
The architecture of FGFR2 pathogenic fusions consists of a 5’
FGFR2 exon1-17 portion (losing the most C-terminal part of
the FGFR2 protein) fused to a 3’ partner (in general,

contributing a dimerization domain) [103]. Although some
are recurrent, the 3’ fusion partners are diverse and variable
[13]. While DNA- and RNA-based NGS tests can be used for
detection, RNA-based sequencing is often preferred [77]. DNA
sequencing identifies gene fusions by detecting chromosomal
breakpoints; chemistries that allow capturing these genomic
fragments have been discussed in the previous section.
However, this approach has notable limitations. RNA-based
NGS, by contrast, sequences the fusion transcript product,
allowing for direct identification of functional in-frame fusions
and their partner genes. This approach also enables the detec-
tion of alternative splicing events, which cannot be identified
by DNA-based methods [103]. RNA-based enrichment techni-
ques such as hybrid capture and AMP are preferred to address
these challenges. These methods are recommended by the
ESMO for profiling FGFR2 and NTRK fusions at the transcrip-
tomic level, ensuring comprehensive and accurate fusion
detection [12, 14]. However, RNA-based methods are not with-
out challenges. RNA is inherently less stable than DNA and is
prone to degradation, particularly in FFPE samples [15]. If RNA-
based NGS is unavailable, optimized DNA-based panels with
advanced bioinformatic pipelines can also be used to investi-
gate gene fusions.

5.3. NGS testing of ERBB2 amplification and the “HER2
overexpression

NGS-based detection of ERBB2 amplification can be performed
through either low-pass WGS (LP-WGS) or targeted hybrid
capture panels. Each approach has its specific strengths and
limitations. LP-WGS is suitable for identifying broad copy
number changes across the genome; however, its sensitivity
depends heavily on the tumor fraction (typically requiring >
3%) and may struggle to detect focal amplifications smaller
than 1 Mb due to binning resolution limits [104]. In contrast,

Table 2. Advantages and disadvantages of NGS enrichment technologies. Table developed based on references [81,90].

Enrichment

Method Advantages Disadvantages

Amplicon- - Low input requirement; suitable for small biopsy or degraded samples. - Limited to predefined genomic regions (1000-2000 PCR
Based - Cost-effective and fast turnaround time. products).
Enrichment - Customizable for focused panels targeting specific genes. — The DNA-based technique is not suitable to detect structural

- Works well for SNVs and indels

Hybrid Capture -

Enrichment - Effective for detecting complex structural variants, including gene fusions. —
— Fusion partner agnostic.
- Concurrent analysis of distinct gene variants.
- Provides uniform sequencing coverage across target regions.
Anchored - Effective for detecting fusions with 5'OR 3’ unknown partners. One of the -
Multiplex exons involved in the gene fusion has to be predefined.
PCR - Lower probability of primer — primer interactions.

Broader and scalable, supports large panels for comprehensive profiling. -

variants and CNAs.
- RNA-based approaches require prior knowledge of both exon
partners in gene fusions of interest for primer development.
- Cannot detect novel fusion partners.
— Prone to primer — primer interactions.
- Allelic dropout can reduce efficiency.
- Amplification biases in regions with high GC content.

Requires higher input material (DNA/RNA).

More expensive compared to amplicon-based methods.

- Longer processing time due to hybridization and washing
steps.

- Intronic regions may be included as enriched regions but may
not be captured with the desired efficiency.

- Capture probes allow mismatches but may have lower effi-

ciency when > 5 mismatches are present between target and

probe.

RNA-based; prone to degradation and fragmentation.
- Reliance on precise primer design is limited by the performance
of primers in the PCR reaction.

CNV, copy number variation; NGS, next-generation sequencing; PCR, polymerase chain reaction; SNV, single nucleotide variation.



targeted gene panels, such as those using hybrid capture
methods, benefit from flexible and higher-resolution binning,
allowing for more reliable detection of small, high-level focal
amplifications - such as those commonly seen in ERBB2—even
at lower tumor fractions [105]. However, it is important to note
that NGS-based quantification of amplification is semi-
quantitative and can be influenced by factors such as cover-
age depth, normalization algorithms, and tumor purity. For
instance, low coverage may obscure true gains, especially in
samples with low-level amplifications, while normalization
algorithms used to infer relative copy number can vary
between platforms and pipelines, impacting the consistency
and accuracy of CNA calls. Additionally, low tumor purity may
dilute the amplification signal, making it more difficult to
distinguish from background noise [105]. As such, NGS results
for ERBB2 amplification are often complemented by protein-
level confirmation via IHC and/or FISH. Orthogonal validation
by IHC and/or FISH remains essential for confirming HER2
status and guiding HER2-targeted therapy decisions.

6. Liquid biopsy: potential and pitfalls

Liquid biopsy is a minimally invasive technique that enables
the detection of molecular biomarkers in bodily fluids, pro-
viding valuable insights into tumor dynamics and genetic
alterations. Liquid biopsy offers the advantages of reduced
procedural risks, ease of performance, and frequent sam-
pling, allowing for longitudinal monitoring of tumor evolu-
tion, tumor burden metastasis, and treatment response
[106,107]. In cancer clinical applications, this approach pri-
marily focuses on profiling circulating tumor DNA (ctDNA)
released by tumor cells through apoptosis, necrosis, or
active secretion [108]. ctDNA carries tumor-specific genomic
alterations, including point mutations, structural rearrange-
ments, methylation changes, and copy number variations,
differentiating it from cfDNA derived from normal cells.
Plasma ctDNA is a part of the total circulating cell-free
DNA pool (cfDNA), mainly derived from white blood cells
[109]. ctDNA also exhibits unique characteristics, such as
specific fragmentation patterns [110].

Recent advancements in sequencing applications have
enhanced the sensitivity and specificity of liquid biopsy.
Assays have been developed to detect a wide range of
tumor-derived biomarkers, including SNVs, structural chro-
mosomal alterations, and methylation changes, such as tar-
geted sequencing, WGS, and whole-genome bisulfite
sequencing (WGBS) [111]. These biomarkers have demon-
strated utility in identifying actionable alterations, monitor-
ing minimal residual disease, and predicting therapeutic
response [111]. The ESMO Precision Medicine Working
Group recommended ctDNA as an alternative when obtain-
ing adequate tissue biopsy is not feasible [112]. Although
plasma is the most widely utilized sample for liquid biopsy,
ctDNA can be detected in various biological fluids, depend-
ing on the tumor’'s anatomical site. In CCA, bile-derived
ctDNA/cfDNA was found to have a higher concordance
rate with tissue biopsy than plasma ctDNA/cfDNA
[113,114] and, upon additional validation, could become
an alternative liquid biopsy source [81].
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Despite all its undeniable advantages, liquid biopsy faces
its own challenges. Limitations include false positive and
negative results, affecting concordance rates between liquid
biopsy and tissue analysis.

Detectable ctDNA levels in plasma depend on several bio-
logical and pathological factors, including tumor type, tumor
size, vascularization, proliferative activity, and stage [115].
Within CCA, iCCA demonstrates higher ctDNA levels in plasma
than eCCA, with studies reporting concordance rates of 92%
between ctDNA and tissue-based mutational profiles in iCCA
[116]. False-negative results in liquid biopsy are associated
with low ctDNA levels that lead to, on many occasions, very
low mutant allele fractions [117].

Sequencing depth plays a pivotal role in the sensitivity and
accuracy of ctDNA analysis and in detecting low variant allele
frequencies (VAF). In a study comparing ctDNA and tumor tissue
samples, the mean sequencing depth for ctDNA was significantly
higher than for tumor tissue samples [116]. However, increasing
sequencing depth also presents challenges. Higher depths can
amplify sequencing errors, necessitating robust error correction
methods to distinguish true mutations from artifacts. The limit of
detection (LoD) in NGS has been optimized for liquid biopsy
management by the use of unique molecular identifiers (UMI)-
based approaches and improved bioinformatic analysis, reaching
the 0.01% VAF [118,119].

Similar to the situation in tissue, another challenge is
encountered in gene fusion detection. In an NGS analysis
of 1,671 BTCs, the concordance between ctDNA and tissue
sample DNA was overall good for biomarkers such as IDH1
mutations (87%) or BRAF V600E (100%), but was low for
FGFR2 fusions; however, it is worth noting that the ctDNA
was compared to tissue DNA in only a small subset of cases
[120]. The latter is most likely due to the poor testing
performance of hybrid capture in intronic regions, rich in
repetitive and homopolymeric regions, in addition to the
frequent low tumor fraction [121]. In a recent report from
our center, liquid biopsy detected 88.9% of the FGFR2
fusion in patients with iCCA and known FGFR2 fusion
upon careful design and tiling in the FGFR2 intron 17 region
[121]. As previously discussed, RNA-based assays are often
preferred for identifying active fusion transcripts, but
plasma samples lack sufficient circulating RNA for wide-
spread clinical testing.

Clonal hematopoiesis (CH) describes the presence of
somatic mutations in the bone marrow or peripheral blood
resulting from clonal hematopoietic stem and progenitor cell
(HSPC) expansion [122]. CH or clonal hematopoiesis of inde-
terminate potential (CHIP) related variants are frequently
detected in liquid biopsy [123], complicating the differentia-
tion between tumor-derived mutations and other hemato-
poietic-borne genomic alterations. Studies have shown that
up to 15% of TP53 mutations identified in plasma correspond
to CH rather than tumor-derived origins [123]. Additionally,
ctDNA fragments harboring cancer-associated mutations may
be shed from predisposing nonmalignant conditions such as
PSC and cirrhosis, increasing the risk of false-positive results
[124]. This reinforces the necessity for further well-designed
prospective studies to validate specificity and predictive value
across diverse clinical scenarios.
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Figure 4. A practical workflow for molecular profiling of cholangiocarcinoma. The decision-making process is based on tissue availability. If sufficient tissue is
available, hybrid capture next-generation sequencing (NGS) is performed using both DNA and RNA sequencing. In cases of insufficient tissue, a plasma-based liquid
biopsy is conducted for DNA-based testing. Upon disease progression, ctDNA analysis may guide further therapeutic decisions.

In our opinion, liquid biopsy has promising applications in
CCA despite its limitations (Figure 4). CtDNA analysis is gen-
erally a good alternative to tissue analysis when a short turn-
around time is needed. Additionally, the quantification of
ctDNA tumor fraction (TF) has emerged as a robust prognostic
marker, positively correlated with OS in all common cancers
[109]. In BTC patients, cfDNA VAF was associated with worse
OS and shorter response to treatment [120]. A recent report
also indicated that higher ctDNA levels correlated with worse
OS in patients with FGFR2 fusion-positive CCA [121]. Liquid
biopsy offers dynamic monitoring of therapeutic efficacy by
assessing changes in specific biomarkers during treatment. For
instance, alterations in fusion allele fraction (FAF) levels were
shown to correlate with treatment responses to FGFR inhibi-
tors. A reduction in FAF indicates partial or complete tumor
response, while a lack of clearance signals potential resistance
or progression [121].

A notable advantage of ctDNA is its ability to capture
a broader genomic landscape of the disease by reflecting
alterations from multiple tumor lesions, thereby potentially
overcoming the spatial heterogeneity limitation of single-site
biopsies [125]. This characteristic may be particularly valuable
in CCA, where multifocality and intertumoral heterogeneity
are common. Lastly, liquid biopsy may allow the identification
of FGFR2-related genetic alterations in ctDNA, including muta-
tions and fusions that are associated with acquired resistance
[120]. These alterations are detected in plasma even when not
found in tumor tissue biopsies, demonstrating the sensitivity
of liquid biopsy for molecular profiling [83,120].

7. Value of molecular tumor boards

MTBs have emerged as a pivotal component in integrating
precision oncology into clinical practice, particularly in

complex malignancies such as CCA. These boards typically con-
sist of clinical oncologists, treating physicians, pathologists,
molecular biologists, and geneticists who collaborate to interpret
molecular profiling results and develop individualized treatment
strategies. This collaborative framework ensures that complex
genomic data are not viewed in isolation but are contextualized
within the patient’s overall clinical picture, thereby enhancing
the ability to assign personalized therapies [126].

One of the primary roles of MTBs is to provide a structured
platform for discussing challenging cases. In CCA, where
histopathological heterogeneity and complex molecular
alterations often complicate treatment decisions, MTBs facil-
itate the integration of genomic insights into clinical deci-
sion-making [127]. By convening experts from various
disciplines, MTBs can critically assess the quality and rele-
vance of molecular profiling data. This process not only sup-
ports the identification of actionable alterations but also
helps in matching patients with appropriate targeted thera-
pies, clinical trials, or off-label treatment options (Figure 5)
[128]. Studies have demonstrated that patients whose cases
are reviewed by MTBs often experience improved outcomes,
attributable to more informed therapeutic choices and timely
intervention [129].

The efficacy of MTBs depends heavily on robust collaboration
between pathology and genomics laboratories and clinical
teams. Close cooperation is essential to ensure that tissue sam-
ples are processed optimally to avoid issues such as tissue
exhaustion and maintain nucleic acid integrity for downstream
NGS analyses [130]. As discussed in earlier sections, standardized
pre-analytical protocols facilitate the generation of reliable mole-
cular data, which forms the backbone of MTB deliberations. This
collaborative environment streamlines the process of identifying
patients eligible for targeted therapies, thereby optimizing the
use of genomic testing in treatment planning [131].
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Figure 5. Workflow of molecular prescreening coordination for precision oncology. The diagram illustrates the interaction between molecular pathology, cancer
Genomics, and oncologists through a centralized molecular prescreening coordination process. Test requests are initiated based on internal guidelines, and
molecular data is integrated with clinical queries. Findings are discussed at the molecular tumor board to guide patient-specific treatment decisions. The generated
reports support oncologists in selecting targeted therapies, ensuring a streamlined approach to precision oncology.

From an operational standpoint, MTBs can potentially
improve the overall efficiency of cancer care. The structured
discussion format of MTBs helps bridge the gap between
rapidly evolving genomic technologies and their practical
application in clinical settings, thus fostering a learning envir-
onment where successes and challenges are openly discussed
and addressed [132].

Despite these advantages, several challenges still face the
widespread adoption of MTBs. Variability in institutional
resources, differences in the availability of genomic technolo-
gies, and a lack of standardized protocols across centers can
limit the uniformity of MTB practices [132].

Looking forward, the future of MTBs lies in developing
efficient network systems that harmonize patient selection
criteria, molecular profiling technologies, and therapeutic
recommendations across various institutions. In parallel,
robust training programs and accreditation processes for
laboratories performing NGS-based assays will be essential to
ensure the quality and consistency of molecular data. As the
number of actionable biomarkers continues to grow, MTBs will
be instrumental in facilitating the transition from traditional
histologic classification to a more genomically driven
approach.

8. Expert opinion

The integration of advanced molecular profiling into the man-
agement of CCA holds transformative potential for real-world
outcomes. Recent advances in NGS technology - particularly
combining DNA and RNA-based approaches - can significantly
enhance diagnostic accuracy and inform treatment guidelines.
In clinical practice, a more precise understanding of the
genetic landscape of CCA can lead to earlier and more accu-
rate diagnoses, thereby enabling the selection of targeted
therapies such as FGFR2 and IDHT1 inhibitors. Furthermore,

incorporating liquid biopsy platforms offers a minimally inva-
sive means of longitudinal tumor monitoring, which is critical
for assessing therapeutic response and detecting emergent
resistance mechanisms. Despite these promising advances,
adopting molecular profiling for CCA in clinical practice faces
several challenges, including tissue exhaustion during histo-
pathological evaluation, variability in pre-analytical processing
protocols, and limitations of some NGS techniques.
Improving the integration of molecular profiling into rou-
tine care necessitates a focus on best practices in both histo-
pathological diagnosis and pre-analytical preparation.
Ensuring optimal tissue handling begins at the biopsy stage,
where techniques must be refined to maximize tumor cellu-
larity and minimize sample degradation. Standardizing tissue
processing protocols and judiciously selecting IHC markers are
essential to prevent tissue exhaustion and preserve nucleic
acid integrity. Additionally, a tailored approach incorporating
DNA and RNA sequencing is recommended to capture the full
spectrum of genomic alterations. While DNA-based methods
are robust for detecting point mutations and copy number
variations, RNA-based NGS is superior for identifying gene
fusions, especially FGFR2 fusions, which are known to have
various fusion partners and complex rearrangements. In cases
of tissue limitation, one should consider and decide upon
a sequential approach: DNA testing (including liquid biopsy
as an option); if positive, RNA testing is unnecessary.
Additionally, due to certain NGS chemistry-specific technical
limitations and/or tissue constraints for NGS, one might con-
sider conducting further IHC for MMR and HER2 status.
Tumoral heterogeneity and the tumor microenvironment
further complicate the genetic characterization of CCA.
Intratumoral clonal heterogeneity often challenges genetic
profiling - particularly in cases of mixed iCCA - and inter-
metastatic diversity [82]. In addition, developing a reactive
microenvironment in response to tumor growth s
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a functional hallmark of CCA. The complex interactions
between malignant cholangiocytes and the surrounding stro-
mal and immune cells influence tumor behavior and represent
key targets for novel therapeutic interventions. These dynamic
spatial and temporal changes in tumor subclonal composition
may lead to an underestimation or bias in the identified
mutational landscape if genetic characterization is performed
on a single tumor biopsy [133-135]. Recognizing these com-
plexities is critical. Therefore, a thorough understanding of the
histological characteristics and microenvironmental context of
each CCA subtype is essential for optimal sampling, handling,
and subsequent interpretation of molecular profiling results.

The current research landscape in CCA molecular profiling
is rich with opportunities for further advancement. Although
significant progress has been made, there remains no defini-
tive endpoint in achieving comprehensive tumor characteriza-
tion. Continued refinement of NGS methodologies, including
improved hybrid capture techniques and advanced bioinfor-
matics pipelines, is critical to overcoming the inherent chal-
lenges of low tumor content, sample heterogeneity, and the
detection of complex structural rearrangements. In parallel,
further validation of liquid biopsy platforms is warranted.
Although liquid biopsies have some challenges, such as low
ctDNA levels, clonal hematopoiesis, and limited sensitivity and
specificity in certain settings, their minimally invasive nature
and ability for dynamic monitoring emphasize their potential
as a complementary diagnostic tool. Future research should
also explore integrating multi-omic data, including proteomics
and epigenomics, to provide a more holistic view of tumor
biology, thereby enhancing patient stratification and inform-
ing personalized therapeutic strategies.

Looking toward the future, the field of CCA molecular
profiling is poised for significant evolution. In the next ten
years, we anticipate standard procedures incorporating more
automated and standardized protocols for tissue processing
and genomic analysis. Advances in sequencing technologies
are likely to reduce costs further while increasing sensitivity
and specificity, thereby enabling more widespread adoption
of these techniques in both academic and community set-
tings. Moreover, as our understanding of tumor heterogeneity
and resistance mechanisms deepens, integrating serial liquid
biopsy monitoring into routine practice may become stan-
dard, allowing for real-time adaptation of therapeutic strate-
gies. While immuno-oncology and other emerging fields also
hold promise, the precision provided by molecular profiling
will remain a cornerstone of personalized cancer care, particu-
larly for malignancies such as CCA that have historically been
challenging to treat.
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