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Summary
Background Many determinants of kidney allograft failure are established at the time of allocation by organ 
distribution agencies. At this point, the main modifiable factor is the duration of cold ischemia (CIT). Currently, no 
practical tool exists to determine the maximum permissible cold ischemia time for a specific recipient at allocation.

Methods We analyzed two prospective cohorts of kidney transplant recipients from European centers: a derivation 
cohort of 7040 patients from 10 centers (Barcelona; Leuven; Oslo; Paris Necker, Lyon, Nantes, Nancy, Montpellier, 
Nice, Paris Saint Louis) with data collected between 2005 and 2020, and a validation cohort of 6131 patients from 
6 French centers (Paris Necker, Lyon, Nantes, Nancy, Montpellier, Nice) with data collected between 2008 and 2019. 
The main outcome was allograft failure (return to dialysis or pre-emptive retransplantation). We assessed 
26 determinants of allograft failure available at the time of allograft allocation including cold ischemia time as a 
modifiable factor. Prediction models were developed using a classical survival analysis and a competing risk 
framework.

Findings Allograft failure occurred in 16% (1113) of the derivation cohort and 14% (832) of the validation cohort. 
Independent determinants of allograft failure were donor age (HR 2.2 [1.9–2.6] for donors above 65 years old), 
previous allografts (HR 1.5 [1.3–1.6]), dialysis history (HR 1.7 [1.3–2] for Hemodialysis), diabetes (HR 1.4 [1.2–1.6]), 
vascular disease (HR 1.3 [1.1–1.5]), HLA-DR incompatibility (HR 1.2 [1.1–1.3]), donor serum creatinine (HR 1 [1–1]),
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and cold ischemia time (HR 1 [1–1]). Donor age was the strongest contributor, while cold ischemia was the only 
modifiable factor. These factors were combined into two predictive models of kidney allograft failure 
(Cox regression and Fine Gray) showing accurate calibration, and discrimination with a C-Index of 0.66 (95% CI: 
0.63–0.70 at year one) on the validation cohort for the Fine Gray model. The Fine–Gray model, which accounts 
for the competing risks between allograft failure and patient death, was used to develop a practical tool for 
predicting allograft failure based on cold ischemia.

Interpretation Prediction model at the time of allocation provides a simple and practical tool which may guide organ 
distribution agencies and medico-surgical teams by customizing cold ischemia time for a kidney allograft 
transplantation.

Funding Centaure Foundation (SIREN 499,947,398–http://www.fondation-centaure.org) none of the funding sources 
had any role in study.

Copyright © 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Organ distribution agencies face the complex task of 
allocating suitable allografts from deceased donors to 
the appropriate recipients on the waiting list. 1–4

The specific combination of donor and recipient 
characteristics determines allograft recovery and its 
long-term failure. Once the kidney allograft is removed 
from the donor and allocated to its recipient, many 
determinants of allograft failure become non-
modifiable, such as donor and recipient age, comor-
bidities, or HLA compatibility. 5,6

From this point, the primary pretransplant modifi-
able factor influencing long-term allograft failure is the 
duration of cold ischemia (CIT)–the period in which the 
allograft is maintained at a low temperature without 
receiving blood supply. 7

CIT significantly impacts both allograft and recip-
ient outcomes, and as such, should be kept as short as 
possible. 8,9

In the context of organ scarcity, equitable allograft 
allocation necessitates accounting for the waiting 
duration of candidates. Over recent decades, both in 
Europe and the USA, waiting lists witnessed a notable 
rise a rise in highly HLA-immunized patients. 10,11 This 
trend reduces the pool of compatible allografts and may 
justify extending CIT for geographically distant 
matches. Logistical constraints, including transport, 
operating room availability, and medical-surgical team 
schedules, further contribute to CIT extensions.

The effects of prolonged CIT on transplant out-
comes vary by donor and recipient characteristics, with 
older or comorbid donors being particularly 
vulnerable. 12–16

Currently, no practical tool exists to predict kidney 
allograft failure for a given donor-recipient pair based 
on cold ischemia time.

To address this gap, we developed a predictive model 
capable of estimating the risk of allograft failure for a

Research in context

Evidence before this study
Cold ischemia duration is a key modifiable factor influencing 
kidney allograft failure, but its impact depends on donor and 
recipient characteristics.
In clinical practice, ischemia time is often prolonged due to 
logistical, geographical, or immunological constraints.
No existing tool helps determine acceptable cold ischemia 
duration based on donor-recipient profiles at the time of 
allocation.

Added value of this study
We developed a predictive model for allograft failure at the 
time of kidney allocation, integrating cold ischemia as a 
modifiable factor.

The model was derived from a large European cohort and 
validated.
It accounts for competing risks and is implemented as a 
practical tool for individualized risk estimation.

Implications of all the available evidence
Efforts should focus on anticipating and minimizing cold 
ischemia duration during kidney allocation.
When ischemia is prolonged, our tool supports risk-based 
decision-making tailored to each donor-recipient pair. 
This may improve allocation strategies and long-term 

transplant outcomes.
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specific kidney allocated to an individual recipient at the 
time of organ offer, using data available to organ allo-
cation agencies. Cold ischemia time was incorporated 
into the model as a modifiable factor.

The ultimate aim of this study was to develop a 
practical, intuitive tool that could assist organ allocation 
agencies and transplant teams in guiding clinical 
decision-making and optimizing kidney allograft 
allocation.

Methods
Derivation and validation cohorts
The derivation cohort (EKITE, European Cohort for 
Kidney Transplantation Epidemiology) included 7040 
adult recipients of deceased-donor kidney transplants 
from 10 European centers (Spain: Barcelona, Belgium: 
Leuven, Norway: Oslo, and France: Paris Necker, Lyon, 
Nantes, Nancy, Montpellier, Nice, Paris Saint Louis) 
between January 1, 2005, and December 31, 2020. 

The validation cohort (DIVAT, Données Informati-
sées et VAlidées en Transplantation) included 6131 
adult recipients of deceased-donor kidney transplants 
from 6 French centers (Paris Necker, Lyon, Nantes, 
Nancy, Montpellier, Nice) between January 1, 2008, and 
June 30, 2019.

Both datasets included only heart-beating donations 
(neurological death).

Data were anonymized and prospectively collected 
as part of routine clinical practice, entered in the cen-
tres’databases in compliance with local and national 
regulatory requirements.

Data for DIVAT were extracted from the French 
multicentric, observational, and prospective DIVAT 
cohort (www.divat.fr, CNIL no. 914184, ClinicalTrials. 
gov: NCT02900040).

EKITE had a larger sample size and broader 
geographic coverage, making it more suitable as the 
derivation cohort. Due to partial overlap in time and 
centers, matching entries were excluded from EKITE 
(see Supplementary Table S1).

European centers outside France followed the allo-
cation rules of Eurotransplant (Leuven), Scandiatrans-
plant (Oslo), and the National Transplant Organization 
(Barcelona). In France, kidney allocation adhered to the 
French National Agency for Organ Procurement 
(Agence de la Biomédecine).

Candidate predictors of kidney allograft failure and 
outcome
We considered the parameters known to organ distri-
bution agencies at the time of allograft allocation, thus 
focusing only on the pre-transplant period. CIT was 
included as the primary modifiable factor influencing 
allograft failure.

We considered 26 variables including demographic 
characteristics (recipients’ age, height, weight, gender,

comorbidities, donors’ age, gender, cause of death), 
transplant characteristics (time in waiting list, number 
of previous allografts, time and type of dialysis), bio-
logical parameters (such as HLA-A, -B, -DR matching, 
PRA class I and II antibodies, blood type, donors’serum 
creatinine) and cold ischemia time (Table 1).

Entries with missing CIT and missing donor age 
were excluded. Missing values for the other variables 
were imputed as described in the statistical analysis. 

The outcome of interest was allograft failure defined 
as a patient’s definitive return to dialysis or pre-emptive 
kidney retransplantation.

Statistics
We followed the TRIPOD (Transparent Reporting of a 
Multivariable Prediction Model for Individual Prog-
nosis or Diagnosis) statement for reporting the devel-
opment and validation of a multivariable prediction 
model.

All analyses were performed using R Statistical 
Software (v4.2.1); R Core Team. 17

Continuous variables were described using means, 
standard deviations/IQR (interquartile range) and 
categorical variables by frequencies and percentages. 

Missing data in the original dataset were handled 
using the Multivariate Imputation by Chained Equations 
(MICE) procedure in R, 18 employing the Classification 
and Regression Trees (CART) method. This approach is 
suitable for both continuous and categorical variables, as 
it builds decision trees to predict missing values based 
on observed data. We performed 10 multiple imputa-
tions (m = 10) with 5 iterations each (maxit = 5), 
separately for the derivation and validation cohorts. All 
variables from Table 1 were included in the imputation 
model, covering donor, recipient, and transplant char-
acteristics. We assumed that missing values are missing 
at random (MAR), as it was likely related to observed pre-
transplant characteristics and not to unobserved or post-
transplant outcomes. Entries with missing donor age or 
cold ischemia time were excluded prior to imputation. 
A summary of missing data is reported in Table 1.

To assess the associations between allograft failure 
and predictors, and subsequently build a prediction 
model, we used two different approaches: classical 
survival analysis using Cox regression and the Fine 
Gray model for competing risks (using survival and 
cmprsk packages 19,20 ). Competing risks models 
were chosen to account for the interplay between allo-
graft failure and death, as Cox regression alone may 
overestimate event rates, particularly in high-risk 
populations.

We used both Kaplan–Meier and Aalen-Johansen 
methods to estimate allograft failure. For the KM the 
duration of follow-up was from the patient’s transplant 
date to the date of kidney allograft failure or the end of 
the follow-up. Kidney allograft failure was censored at 
the time of death for patients who died with a
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functioning kidney allograft. Proportionality of pre-
dictors was tested graphically and statistically (cox.zph 
function from the failure package in R).

We performed an initial step of variable selection 
to arrive at a sparse predictive model. For the non-
competing risks Cox regression, we used a penal-
ized regression implementation (glmnet package 21 ). 
Survival penalized regression uses linear models 
with penalties to avoid extreme parameters that may 
cause overfitting, while simultaneously addressing 
the issue of multi-multicollinearity (correlation) and 
performing variable selection. The two most com-
mon forms of penalization are L1 (LASSO) or an L2 
(Ridge) penalty constraints, and we performed cross-
validation to optimize this penalization parameter. 
We could not find a stable implementation of 
penalized regression for the competing risks frame-
work and performed variable selection using the 
usual threshold of 0.05 p-value albeit on pooled 
estimators from 10 multiple imputations and 100 
bootstraps (poolr package 22 ).

We used the Cox penalized regression to identify the 
most important factors for prediction of kidney allograft 
failure in the derivation cohort. In the penalized 
regression setting we used a variable inclusion proba-
bility (VIP) threshold of 0.75 to select variables. The VIP 
is the percentage of times each variable was kept in the 
model out of the resampled models (100 bootstraps in 
10 multiple imputed datasets). The VIP can be inter-
preted as the posterior probability of including a vari-
able in the model, and is used as a measure of the 
stability of the association. 23

We have also implemented survival random forests 
as a comparative method for variable selection. This 
nonparametric approach for censored survival data 
combines results from multiple decision trees, effec-
tively handling complex, nonlinear relationships and 
multiple covariates without prior specification.

We evaluated the validity of the final model in the 
validation cohort DIVAT by computing calibration and 
discrimination metrics (rms and riskRegression pack-
ages 24,25 ). Calibration was assessed using calibration 
plots (rms package) and by computing the ratio of 
observed and expected outcomes (O/E ratio) that sum-
marises overall calibration. We evaluated discrimina-
tion by using Harrell’s concordance index (C-Index). 

We used the final sparse Cox and Fine Gray models 
to predict the risk of allograft failure for each individual 
in the DIVAT validation cohort, for a range of cold 
ischemia times (0–40 h, replacing the observed CIT) at 
different time points after transplant (one, three, five, 
and ten years). We present the results by 3 donor age 
categories: under 50 years-old, between 50 and 65 years-
old and above 65 years-old.

A Beta version of the online application is available 
at the following link: https://nephrology-nice.

Ekite Divat

N Overall, N = 7040 N Overall N = 6131

Recipient characteristics
Recipient age 7040 6131

54.43 (13.81) 53.28 (13.97)
<50 2528/7040 (36%) 2379/6131 (39%)
50–65 2830/7040 (40%) 2515/6131 (41%)
≥65 1682/7040 (24%) 1237/6131 (20%)

Recipient gender 7040 6131
Female 2597/7040 (37%) 2285/6131 (37%)
Male 4443/7040 (63%) 3846/6131 (63%)

Recipient height (cm) 6793 6103
169.93 (10.06) 168.32 (9.55)

Missing 247 28
Recipient weight (kg) 5726 6113

73.00 (15.73) 70.67 (14.86)
Missing 1314 18

Number of previous grafts 7040 6131
1.21 (0.50) 1.26 (0.54)

1 5829/7040 (83%) 4830/6131 (79%)
2 1008/7040 (14%) 1075/6131 (18%)
3 164/7040 (2.3%) 196/6131 (3.2%)
4 33/7040 (0.5%) 24/6131 (0.4%)
5 6/7040 (<0.1%) 4/6131 (<0.1%)
6 2/6131 (<0.1%)

Type of dialysis 7007 6115
No dialysis 999/7007 (14%) 611/6115 (10.0%)
Hemodialysis 5064/7007 (72%) 4952/6115 (81%)
Peritoneal dialysis 944/7007 (13%) 552/6115 (9.0%)

Missing 33 16
Initial disease type 7013 6131

Unknown 759/7013 (11%) 998/6131 (16%)
Glomerulonephritis 2117/7013 (30%) 1595/6131 (26%)
Tubulo interstitial disease 907/7013 (13%) 2302/6131 (38%)
Reno-vascular disease 1995/7013 (28%) 589/6131 (9.6%)
Diabetes 1235/7013 (18%) 647/6131 (11%)

Missing 27
Time in dialysis (days) 6820 6103

1236.44 (1556.72) 1230.61 (1306.85)
Missing 220 28

Time in waiting list (days) 6437 5889
801.88 (805.42) 844.74 (781.33)

Missing 603 242
Recipient blood ABO type 6982 6099

A 3086/6982 (44%) 2748/6099 (45%)
AB 355/6982 (5.1%) 280/6099 (4.6%)
B 753/6982 (11%) 658/6099 (11%)
O 2788/6982 (40%) 2413/6099 (40%)

Missing 58 32
History of vascular diseases 7017 6131

No 5769/7017 (82%) 4898/6131 (80%)
Yes 1248/7017 (18%) 1233/6131 (20%)

Missing 23
History of cardiac diseases 6959 6131

No 4784/6959 (69%) 4280/6131 (70%)
Yes 2175/6959 (31%) 1851/6131 (30%)

Missing 81

(Table 1 continues on next page)
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shinyapps.io/CIT-failure-predictor (Supplementary
Fig. S1).

Ethics
The research protocol was reviewed and approved by 
the relevant local institutional review boards (IRBs) in 
accordance with national and international ethical 
standards. All data were fully anonymized prior to 
analysis, and a secure coding system was used to 
ensure strict donor and recipient confidentiality. As the 
study involved only retrospective analysis of registry 
data, informed consent was not required, in accordance 
with applicable data protection regulations and IRB 
guidelines.

Role of funding source
The DIVAT cohort is supported by the CENTAURE 
Foundation (SIREN 499,947,398–http://www.fondation-
centaure.org) and receives funding from Roche 
Pharma, Novartis, Astellas, Chiesi, Sandoz, and Sanofi. 
None of these funding sources had any role in study 
design, data collection, data analyses, interpretation, or 
writing of report.

Results
Characteristics of derivation and validation 
cohorts
The derivation cohort (EKITE) included 7040 kidney 
transplant recipients (2005–2020), with a mean follow-
up of 5.4 years [IQR 1.1–8.9]. Recipients had a mean 
age of 54.4 years, 63% were male, and the average 
waiting time was 2.2 years. Vascular and cardiac disease 
histories were reported in 18% and 31% of patients, 
respectively. Donors had a mean age of 52.5 years and 
an average blood creatinine level of 80.6 μmol/mL at 
donation.

The validation cohort (DIVAT) comprised 6131 
recipients of kidney allografts between 2008 and 2019. 
Detailed comparisons of recipient, donor, and trans-
plant characteristics between the cohorts are presented 
in Table 1.

Description of the primary outcome: kidney 
allograft failure
Kidney allograft failure in the derivation and the validation 
cohort
Respectively 1113 (16%) and 832 (14%) patients expe-
rienced allograft failure in the derivation cohort EKITE 
and the validation cohort DIVAT.

Fig. 1 shows cumulative incidence curves for 
allograft failure with death censored, using the Kaplan– 
Meier estimator (Panel A) in EKITE. At one year post-
transplant, 352 patients experienced failure, rising to 
983 at ten years.

Panel B shows the cumulative incidence with death 
as a competing risk, calculated using the Aalen-Johansen

Ekite Divat

N Overall, N = 7040 N Overall N = 6131

(Continued from previous page) 

History of neoplasy 7035 6131
No 6318/7035 (90%) 5306/6131 (87%)
Yes 717/7035 (10%) 825/6131 (13%)

Missing 5
History of diabetes 7032 6131

No 5025/7032 (71%) 4911/6131 (80%)
Yes 2007/7032 (29%) 1220/6131 (20%)

Missing 8
Detectable anticlass I PRA 5866 5558

No 4325/5866 (74%) 3056/5558 (55%)
Yes 1541/5866 (26%) 2502/5558 (45%)

Missing 1174 573
Detectable anticlass II PRA 4996 5520

No 3643/4996 (73%) 3129/5520 (57%)
Yes 1353/4996 (27%) 2391/5520 (43%)

Missing 2044 611
Donor characteristics
Donor gender 7016 6124

Female 2968/7016 (42%) 2628/6124 (43%)
Male 4048/7016 (58%) 3496/6124 (57%)

Missing 24 7
Donor age (years) 7003 6105

52.52 (16.71) 54.78 (16.87)
<50 2799/7003 (40%) 2194/6105 (36%)
50–65 2568/7003 (37%) 2162/6105 (35%)
≥65 1636/7003 (23%) 1749/6105 (29%)

Missing 37 26
Age gap (years) 7003 6105

10.00 (9.55) 7.50 (7.51)
Missing 37 26

Donor cause of death 7037 6131
Other 4028/7037 (57%) 2769/6131 (45%)
Cerebrovascular 3009/7037 (43%) 3362/6131 (55%)

Missing 3
Donor serum creatinine 
(μMol/L)

6513 6121

80.58 (47.15) 89.83 (60.06)
Missing 527 10

Donor blood ABO type 7016 6119
A 3123/7016 (45%) 2682/6119 (44%)
AB 269/7016 (3.8%) 229/6119 (3.7%)
B 643/7016 (9.2%) 579/6119 (9.5%)
O 2981/7016 (42%) 2629/6119 (43%)

Missing 24 12
Transplant characteristics
HLA incompatibility A 6444 6073

1.04 (0.69) 1.07 (0.68)
Missing 596 58

HLA incompatibility B 6443 6077
1.30 (0.68) 1.38 (0.66)

Missing 597 54
HLA incompatibility DR 6443 6074

0.78 (0.65) 0.76 (0.67)
Missing 597 57

Cold ischemia time (hours) 7040 6131
16.31 (6.53) 17.79 (6.66)

(Table 1 continues on next page)
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estimator. In the first five years post-transplant, the risk 
of allograft failure was higher than the risk of death with 
a functioning allograft. After five years, these risks 
reversed.

Kidney allograft failure according to donor age
In EKITE, kidney allografts from donors aged 65 or 
older had a 5-year cumulative failure incidence of 0.18 
(CI 0.16–0.21), higher than those from donors aged 
50–64 (0.13, CI 0.12–0.15) or under 50 (0.08, CI 
0.07–0.09; p < 0.0001). Panel C in Fig. 1 shows 
competing risks of failure and death with a functioning 
allograft by donor age. In the under-50 group, the risk 
of failure was similar to the risk of death with a func-
tioning allograft. For the 50–65-year-old donor group, 
the curves intersected after 5.5 years, while for donors 
over 65, the risk of death exceeded the risk of failure 
after three years.

Description of the modifiable parameter: Cold 
Ischemia time duration
Distribution of cold ischemia time in the derivation and 
validation cohorts
The mean cold ischemia time was 16.3 h (SD 6.53) in 
the derivation cohort EKITE and 17.8 h (SD 6.66) in the 
validation cohort DIVAT. The distribution of CIT in 
both cohorts is shown in Fig. 2, Panel A.

Kidney allograft failure according to cold ischemia time
In the derivation cohort, five-year allograft survival 
was similar for allografts with CIT above 30 h (0.84, 
CI 0.79–0.89) and those between 20 and 30 h (0.85, 
CI 0.83–0.88), but lower than for those with CIT 
between 10 and 20 h (0.89, CI 0.87–0.90) and under 
10 h (0.90, CI 0.88–0.92). In the validation cohort, 
survival trends overlapped except for those with CIT 
under 10 h, which showed a lower incidence of 
failure.

Fig. 2B and C illustrates kidney allograft survival 
stratified by CIT in both cohorts.

Identification of determinants of kidney allograft 
failure at the time of the transplantation
We considered 26 potential determinants of allograft 
failure, including recipient and donor characteristics, 
HLA compatibility, and CIT, the modifiable factor 
during allocation.

Table 2 shows the association of candidate pre-
dictors with kidney allograft failure in the EKITE deri-
vation cohort, using multivariate penalized Cox 
regression and Fine Gray competing risks models. 
Seven independent variables were identified with Cox 
penalized regression: number of previous allografts 
(VIP 1.0), type of dialysis (VIP 0.95), history of vascular 
disease (VIP 0.85), history of diabetes (VIP 0.95), donor 
age (VIP 1), HLA-DR incompatibility (VIP 0.76), and 
cold ischemia time (VIP 0.84).

In the Fine Gray competing risks regression, the 
predictors with a pooled p-value < 0.05 were number of 
previous allografts, type of dialysis, history of diabetes, 
donor age, and donor serum creatinine.

Relative contribution of the determinants of 
kidney allograft failure: major impact of donor age
Among the determinants identified in the penalized 
regression analysis, the random forest algorithm identi-
fied donor age as the most important factor for allograft 
survival in the EKITE derivation cohort (Fig. 3). Other 
determinants from the penalized regression were also 
considered important by the random forest algorithm, but 
never negatively impactful for predicting allograft survival. 

Regarding cold ischemia time, the key modifiable 
factor, its relative contribution was limited at the pop-
ulation level.

Kidney allograft failure prediction models
Table 2 includes the results of a sparse predictive 
multivariable Cox regression using the seven variables 
highlighted by the Cox penalized regression. The esti-
mates are pooled results from 1000 models (10 MI, 100 
bootstraps). All variables were statistically significant at 
the 5% level: number of previous allografts Pooled HR 
of 1.5 [1.3–1.6] p < 0.0001; type of dialysis: hemodialysis 
(Pooled HR of 1.7 [1.3–2] p < 0.0001), peritoneal dialysis 
(Pooled HR of 1.3 [1.0–1.7] p = 0.03); history of vascular 
diseases (Pooled HR 1.3 [1.1–1.5] p = 0.006); history of 
diabetes (Pooled HR of 1.4 [1.2–1.6] p < 0.0001); donor 
age: 50–65 (Pooled HR 1.5 [1.3–1.8] p < 0.0001), ≥65 
(Pooled HR 2.2 [1.9–2.6] p < 0.0001); HLA in-
compatibility DR (Pooled HR of 1.2 [1–1.3 p < 0.0001), 
and cold ischemia time (Pooled HR of 1 [1–1] 
p = 0.004).

The Fine Gray competing risks regression estimates 
for variables with a pooled p-value < 0.05: number of 
previous allografts (Pooled HR of 1.3 [1.2–1.5] 
p = 0.001); hemodialysis (Pooled HR of 1.6 [1.3–1.9] 
p = 0.018); history of diabetes (Pooled HR of 1.5

Ekite Divat

N Overall, N = 7040 N Overall N = 6131

(Continued from previous page) 

Outcome
Time to allograft failure or to 
last follow up (days)

7040 6131

1975.64 (1685.11) 1404.50 (1117.05)
Allograft failure 1113 (15.81) 832 (13.57)
Death with functioning graft 1257 (17.86) 606 (9.88)
Censored 4670 (66.34) 4693 (76.55)

Continuous variables are described using means and standard deviations, categorical variables using frequency 
and percentages.

Table 1: Patients’ characteristics in the derivation cohort (EKITE) and the validation cohort 
(DIVAT).
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[1.2–1.7] p = 0.003); donor age: 50–65 (Pooled HR 1.5 
[1.3–1.8] p < 0.0001), ≥65 (Pooled HR 1.9 [1.6–2.3] 
p < 0.0001); and donor serum creatinine (Pooled HR of 
1.0 [1.0–1.0] p = 0.021).

Models prediction performance in the validation cohort
Table 3 shows the calibration (O/E) and discrimination 
(C-index) metrics at one, three, five, and ten years post-
transplantation, for the Cox and Fine Gray models in 
the validation cohort. The total O:E ratio indicates 
overall model calibration across predicted risks. At 
years one, three, and five post-transplant, the Fine Gray 
model had better calibration (O/E 1.06 [0.94; 1.20], 1.13 
[1.02, 1.24], and 1.19 [1.09, 1.29]) than the Cox model 
(1.22 [1.10, 1.36], 1.24 [1.13, 1.35], and 1.26 [1.17, 1.37]) 
(ratio >1 indicates underprediction). Discrimination of 
the Fine Gray model is higher in the first year but 
decreases from 0.66 to 0.60 at 10 years, while the Cox 
model’s discrimination remains constant at 0.64 across 
time horizons.

Supplementary Fig. S2 shows the calibration plots 
for the Cox (A) and Fine Gray models (B). Given these 
parameters, the Fine Gray prediction model was 
favored in the following analysis.

Kidney allograft failure prediction
Fig. 4 shows the prediction of allograft failure using the 
Fine Gray predictive model aggregated by donor 
age group and based on CIT (Supplementary Fig. S3 
shows Cox regression model using the same visual 
presentation).

Young donors: impact of CIT from 10 years 
post-transplantation
For recipients of kidney allografts from donors under 50 
years, CIT had a negligible effect on allograft failure at 
one, three, and five years post-transplantation. However, 
at ten years, the effects of CIT became noticeable: the 
proportion of allografts failing after 8, 16, 24, and 32 h of 
CIT were 12%, 25%, 31%, and 36%, respectively.

Donors aged 50–65: significant impact of CIT from three 
years post-transplantation
For donors aged 50–65, the impact of CIT became 
noticeable after three years post-transplant. At five 
years, the failure rates for CIT of 8, 16, 24, and 32 h 
were 4%, 6%, 8%, and 12%. At ten years, the failure rate 
increased substantially, with a projected failure rate 
above 50% for CIT over 11 h.

Older donors: major impact of CIT on allograft failure
The older allografts exhibited slightly lower risk of 
failure for extreme CIT at year one.

Three years after transplantation, the impact of 
prolonged CIT was significant with a risk of failure of 
3% with a CIT of 8 h; and 11% with a CIT of 32 h.

Fig. 1: Cumulative incidence curves for allograft failure in the derivation cohort EKITE. A. 
Kaplan–Meier estimates of time to kidney allograft failure with censoring for death. B. 
Aalen-Johansen estimates of time to kidney allograft failure or death with functioning 
allograft as a competing event. C. Aalen-Johansen estimates of time to kidney allograft failure 
or death with functioning allograft as a competing event according to the donor group of age 
(<50 years old; 50–64 years old; ≥65 years old).
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At year five, risk of allograft failure was respectively 
of 11%; 21%; 37%; and 47% for CIT of 8; 16; 24; and 
32 h.

To achieve a risk of failure below 15% at 5 years 
post-transplant in this category of donor age, CIT 
should be under than 11 h.

The risk of kidney allograft failure from older donors 
was high at 10 years, independently of CIT.

Practical application of the model
Fig. 5 illustrates the application of the allograft failure 
prediction model to six individual cases. The model 
predicts the expected risk of failure at one, three, five, 
and ten years based on cold ischemia time. The pa-
tients’ parameters at the time of allograft allocation and

their predicted allograft failure at five years post-
transplant are detailed in the figure legend.

Patients 1 and 4 have low predicted allograft failure 
risk profiles, with long-term failure risk below 10% for 
cold ischemia times (CIT) under 40 h. These patients 
have similar profiles, though patient 4 had an older 
donor with better creatinine levels and no history of 
dialysis.

Similarly, patients 2 and 3, despite differing at allo-
cation, are predicted to have a high risk of allograft 
failure, with a failure risk close to 10% at 1 year for CITs 
exceeding 24 h.

Patients 5 and 6 have intermediate, comparable 
failure risk profiles, despite different presentations at 
allocation. Patient 6 received a younger allograft with

Fig. 2: Cold ischemia in the derivation and the validation cohorts. A. Distribution of cold ischemia time in the derivation cohort EKITE and on 
the validation cohort DIVAT. B. Kaplan–Meier estimates of time to kidney allograft failure in the derivation cohort EKITE stratified by cold 
ischemia time (hours). C. Kaplan–Meier estimates of time to kidney allograft failure in the validation cohort DIVAT stratified by cold ischemia 
time (hours).
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EKITE Cox Penalized regression EKITE Cox regression on subset of variables EKITE fine gray model 
competing risks

Median Hazard ratio [95% CI] VIP Pooled Hazard ratio [95% CI] Pooled p-value p-value

Recipient age 
<50 1.052 [1.027, 1.083] 0.007
50–65 0.962 [0.901, 0.997] 0.306 0.79 [0.676, 0.911] 1.000
≥65 1.043 [1.002, 1.196] 0.205 0.76 [0.621, 0.925] 1.000

Recipient gender 
Female 1.051 [1.001, 1.153] 0.171
Male 1 [0.998, 1] 0.092 0.94 [0.795, 1.102] 1.000

Recipient height (cm) 0.998 [0.992, 1] 0.498 0.99 [0.985, 1.002] 1.000
Recipient weight (kg) 0.999 [0.997, 1.003] 0.055 1.00 [0.996, 1.005] 1.000
Number of previous allografts 1.212 [1.061, 1.36] 0.996 1.476 [1.329, 1.632] 0.000 1.33 [1.182, 1.502] 0.001
Type of dialysis
Hemodialysis 1.162 [1.042, 1.411] 0.951 1.655 [1.349, 2.049] 0.000 1.56 [1.262, 1.919] 0.018
No dialysis 0.913 [0.749, 0.993] 0.495
Peritoneal dialysis 0.996 [0.99, 0.997] 0.003 1.319 [1.023, 1.746] 0.030 1.35 [1.043, 1.751] 1.000

Initial disease type
Unknown 0.936 [0.829, 1.011] 0.033
Glomerulonephritis 1.046 [1.001, 1.144] 0.058 1.15 [0.861, 1.524] 1.000
Tubulo interstitial disease 0.937 [0.895, 0.994] 0.023 1.50 [1.149, 1.953] 1.000
Reno-vascular disease 0.955 [0.822, 0.997] 0.401 1.24 [0.955, 1.611] 1.000
Diabetes 1.071 [1.003, 1.209] 0.33 1.42 [1.101, 1.832] 1.000

Time in dialysis (days) 1 [1, 1] 0.311 1.00 [1, 1] 1.000
Time in waiting list (days) 1 [1, 1] 0.095 1.00 [1, 1] 1.000
Recipient blood ABO type
A 1.039 [1.001, 1.12] 0.044
AB 1.078 [1.004, 1.173] 0.064 0.92 [0.545, 1.542] 1.000
B 0.968 [0.825, 0.998] 0.087 0.80 [0.377, 1.716] 1.000
O 0.994 [0.978, 1] 0.005 1.09 [0.603, 1.978] 1.000

History of vascular diseases
No 0.887 [0.78, 0.99] 0.852
Yes 1 [1, 1.003] 0.682 1.280 [1.088, 1.478] 0.006 1.20 [1.036, 1.399] 1.000

History of cardiac diseases
No 0.918 [0.833, 0.992] 0.75
Yes 1 [1, 1.001] 0.534 1.11 [0.974, 1.268] 1.000

History of neoplasy
No 0.944 [0.865, 0.997] 0.219
Yes 1 [1, 1] 0.18 1.11 [0.908, 1.346] 1.000

History of diabetes
No 0.858 [0.72, 0.98] 0.949
Yes 1 [1, 1] 0.609 1.421 [1.232, 1.629] 0.000 1.46 [1.237, 1.717] 0.003

Detectable anticlass I PRA
No 0.916 [0.804, 0.997] 0.682
Yes 1 [1, 1.001] 0.417 1.11 [0.94, 1.301] 1.000

Detectable anticlass II PRA
No 0.919 [0.775, 0.996] 0.585
Yes 1 [1, 1] 0.406 1.12 [0.938, 1.332] 1.000

Donor gender
Female 1.057 [1.003, 1.151] 0.395
Male 1 [1, 1] 0.277 0.88 [0.776, 0.995] 1.000

Donor age (years)
<50 0.74 [0.64, 0.84] 1
50–65 0 1.549 [1.346, 1.783] 0.000 1.52 [1.307, 1.764] 0.000
≥65 1.277 [1.07, 1.485] 0.991 2.222 [1.909, 2.615] 0.000 1.94 [1.613, 2.341] 0.000

Age gap (years) 1 [0.998, 1.004] 0.055
Donor cause of death
Other 1.048 [1.002, 1.154] 0.333 0.93 [0.812, 1.054] 1.000
Cerebrovascular 1 [1, 1] 0.277

(Table 2 continues on next page)
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poorer function, in the context of a second kidney 
transplant. For these patients, the predicted failure risk 
at 3 years remains below 10% for CITs under 24 h. 

Supplementary Fig. S4 shows allograft failure 
prediction model to the same six individual cases.

Discussion
We assessed long-term kidney allograft failure using an 
epidemiological approach that integrated data from the 
recipient, donor, and transplant conditions. We focused 
on CIT as a modifiable factor influencing allograft 
failure at the time of organ allocation.

We developed two predictive models: a traditional 
Cox model and a Fine–Gray model, which accounts for 
the competing risks of allograft failure and patient 
death with a functioning allograft. This approach 
revealed that the risk of death with a functioning 
allograft surpasses the risk of allograft failure after five 
years, with the intersection occurring earlier in 
allografts from older donors.

Donor age was identified as the main determinant of 
allograft failure, and CIT had a limited impact at the 
population level, becoming significant for allografts 
from older donors or recipients with comorbidities. 

The final model predicts the risk of failure at one, 
three, five, and ten years post-transplantation at the time 
of allocation.

We confirmed the replicability of our predictor tool by 
showing its validity in a large European validation cohort. 

At the time of kidney allograft allocation, balancing 
efficiency and equity is often challenged by logistical 
constraints, such as transportation distance and cross-
match results. Our predictive model can guide organ

distribution agencies and medical teams in determining 
the maximum CIT, balancing failure risk with prolonged 
kidney disease or dialysis. For younger donors, extended 
CIT is acceptable but should be minimized, while for 
older donors, the CIT should ideally be under 10 h to 
achieve a risk of failure under 15% at five years. The 
model emphasizes the need for personalized evaluation 
of CIT based on donor and recipient characteristics.

A Beta version of the online application is available 
at the following link: https://nephrology-nice.shiny 
apps.io/CIT-failure-predictor.

We used established statistical methodologies to 
develop two predictive models, avoiding reliance solely 
on statistical significance for variable selection. Both 
models identified the same major determinants of 
allograft failure, reinforcing the robustness of our 
findings.

Given the high frequency of death as a competing 
event in kidney transplant recipients, we selected the 
Fine–Gray model, which estimates the cumulative 
incidence of allograft failure while accounting for death 
with a functional allograft as a competing risks. This 
approach provides clinically interpretable risk esti-
mates, directly aligned with the objective of guiding 
allocation and acceptance decisions at the time of organ 
allocation.

Although Fine–Gray may slightly underestimate the 
effect of variables moderately associated with death, 
such as CIT, previous studies have shown minimal 
differences in predictive performance compared to Cox 
or cause-specific models. 26 Other studies strongly sup-
port the use of competing risk approaches: in a large-
scale analysis of over 300,000 transplant recipients,

EKITE Cox Penalized regression EKITE Cox regression on subset of variables EKITE fine gray model 
competing risks

Median Hazard ratio [95% CI] VIP Pooled Hazard ratio [95% CI] Pooled p-value p-value

(Continued from previous page) 

Donor serum creatinine (μMol/L) 1.001 [1, 1.002] 0.482 1.00 [1.001, 1.003] 0.021
Donor blood ABO type
A 1.043 [1.003, 1.115] 0.052
AB 1.063 [0.992, 1.225] 0.055 1.15 [0.642, 2.076] 1.000
B 1.005 [0.941, 1.154] 0.013 1.10 [0.501, 2.392] 1.000
O 0.971 [0.916, 0.999] 0.07 0.86 [0.474, 1.551] 1.000

HLA incompatibility A 0.996 [0.967, 1.024] 0.033 0.99 [0.909, 1.089] 1.000
HLA incompatibility B 1.032 [1.001, 1.095] 0.184 1.04 [0.949, 1.14] 1.000
HLA incompatibility DR 1.063 [1.005, 1.168] 0.76 1.160 [1.057, 1.267] 0.000 1.17 [1.068, 1.287] 0.120
Cold ischemia time (hours) 1 [1, 1] 0.838 1.000 [1, 1] 0.004 1.00 [1, 1] 1.000

Multivariate Cox regression (middle panel) integrates the determinants identified by penalized regression with a VIP > 0.75. Pooled parameter estimates were derived from 1000 models (100 bootstraps 
in 10 multiple imputed datasets). For classical Cox regression (middle panel) and Fine–Gray regression (right panel), categorical variables are modeled relative to a reference category, which is omitted 
from the table and implicitly has a hazard ratio of 1. In contrast, in penalized regression (left panel), categorical variables are treated using one-hot encoding, meaning that all levels are included as 
separate variables rather than being compared to a single reference category. The values in bold correspond to statistically significant results (p < 0.05).

Table 2: Independent determinants of kidney allograft failure in the derivation cohort EKiTE assessed using Cox penalized regression (left panel) and Fine–Gray model (right 
panel).
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Coemans et al. demonstrated that failure to account for 
death as a competing event led to significant over-
estimation of allograft failure risk, particularly in older

donor-recipient pairs. 27 In our context, Fine Gray 
offered the best balance between predictive perfor-
mance, interpretability, and practical application.

100 x vimp (TpsEvt)

0 1 2 3

Time in dialysis

Donor Age

Recipient Age

Time in waiting list

Number of previous grafts

Recipient height

Recipient gender

Donor Gender

Donor serum creatinine

Recipient weight

History of Neoplasy

HLA incompatibility B

HLA incompatibility A

Cold ischemia time

Initial disease type

History of diabetes

History of cardiac diseases

Donor Blood ABO type

Recipient Blood ABO type

HLA incompatibility DR

History of vascular diseases

Type of dialysis

Age gap

Donor cause of death

Anticlass I PRA

Anticlass II PRA

Fig. 3: Out of bag (OOB) variable importance (VIMP) results from the prediction of kidney allograft failure using survival random forests on 
the derivation cohort EKITE.
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One of the major strengths of our study lies in the 
diversity and representativeness of the cohorts 
included. The dataset encompasses 10 transplant cen-
ters across Europe, ensuring broad applicability. 
Moreover, the demographics of our population (age, 
sex, dialysis exposure, comorbidities) are consistent 
with recent registry reports from the Agence de la 
Biomédecine, 28 EuroTransplant, 29 and OPTN, 30 sup-
porting the generalizability of our findings.

Although direct comparison with other predictive 
models is not possible, our model demonstrated good

discriminative performance, with a C-index comparable 
to those used in validated oncology prognostic systems. 31 

However, some limitations should be acknowl-
edged. First, our model excludes perioperative and post-
transplant variables (e.g., rejection episodes, infections, 
drug toxicity), as well as post-transplant events. While 
these factors are known to influence long-term graft 
outcomes, their inclusion was not compatible with the 
goal of our model–namely, to support decision-making 
at the time of allograft allocation using only pre-
allocation data.

Cox regression Fine gray competing risks

Year 1 Year 3 Year 5 Year 10 Year 1 Year 3 Year 5 Year 10

OE 1.22 [1.10–1.36] 1.24 [1.13–1.35] 1.26 [1.17.1.37] 1.28 [1.18–1.39] 1.06 [0.94–1.120] 1.13 [1.02–1.24] 1.19 [1.09–1.29] 1.35 [1.23–1.47]

C_index 0.64 [0.64–0.64] 0.64 [0.64–0.64] 0.64 [0.64–0.64] 0.64 [0.64–0.64] 0.66 [0.66–0.66] 0.63 [0.63–0.63] 0.62 [0.62–0.62] 0.60 [0.60–0.60]

Table 3: Calibration (O/E) and discrimination (C-index) metrics at 1, 3, 5 and 10 years post-transplantation, for the Cox and Fine Gray predictive models in the validation cohort.

Fig. 4: Proportion of individuals with a risk of failure under 0.2 predicted using the Fine Gray model. Predictions were computed for cold 
ischemia time ranging from 0 to 40 h at 1, 3, 5 and 10 years post-transplant in each panel. Presenting individual risk of failure for the 
different CIT and time points would result in saturated plots, hence, we decided to present the proportion of individuals in the dataset with a 
predicted risk of failure smaller than 0.2.
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Second, our model does not incorporate machine 
perfusion, another modifiable factor. Its use varies 
significantly between centers and countries, and was 
not consistently recorded across datasets. Although 
incorporating machine perfusion could potentially 
improve predictive performance, our approach inten-
tionally focuses on cold ischemia time–a widely avail-
able and actionable parameter–to provide a simple and 
effective tool for improving allocation decisions. 

Several models predict kidney allograft failure, with 
those considering post-transplantation determinants 
offering better performance 32 but not addressing our 
goal of guiding CIT.

Our model has the particular feature of accounting 
for the competing risk between patient death and allo-
graft failure, which is not the case for most pre-
transplant models. 27,33,34

Moreover, some predictive models for kidney 
allograft failure at the time of allocation are already in 
use, particularly the KDRI in the United States. 6 These 
models mainly focus on donor characteristics, whereas 
our model enables the prediction of allograft failure by 
considering data from a specific allograft allocated to a 
specific recipient.

For a given donor, the recipient’s characteristics at 
the time of transplantation will influence the risk of 
allograft failure, and the impact of cold ischemia time 
will vary accordingly.

Our approach provides a flexible tool for estimating 
the risk of allograft failure across different CIT for a 
given donor-recipient pair.

As a result, organ allocation agencies can easily issue 
recommendations regarding the maximum acceptable 
CIT for a specific match. For transplant teams, our tool

Fig. 5: Practical application of Fine Gray model: Individual prediction of kidney allograft risk of failure at time points post-transplant: one, 
three, five, and ten years based on cold ischemia time. Patient 1: 36-year-old donor, creatinin 77 μmol/L, Transplant #1, Diabetes: No, 
Hemodialysis: Yes. Patient 2: 54-year-old donor, creatinin 104 μmol/L, Transplant #2, Diabetes: Yes, Hemodialysis: Yes. Patient 3: 77-year-old 
donor, creatinin 64 μmol/L, Transplant #1, Diabetes: Yes, Hemodialysis: Yes. Patient 4: 59-year-old donor, creatinin 68 μmol/L, Transplant #1, 
Diabetes: No, Hemodialysis: No. Patient 5: 68-year-old donor, creatinin 57 μmol/L, Transplant #1, Diabetes: No, Peritoneal Dialysis: Yes. Patient 
6: 48-year-old donor, creatinin 144 μmol/L, Transplant #2, Diabetes: No, Hemodialysis: Yes.
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offers valuable support in deciding whether to accept a 
given allograft for a particular recipient, based on real-
world logistical considerations such as operating room 
availability or estimated transport time.

In summary, we developed and validated a predic-
tive model for kidney allograft failure at the time of 
organ allocation. The model offers a simple and 
practical tool for organ distribution agencies and med-
ical teams to select recipients and plan logistical orga-
nization based on permissible cold ischemia time.
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