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A contributory citizen science project
reveals the impact of dietary keys to
microbiome health in Spain
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Low consumption of whole grains, fruits, and vegetables has been identified as dietary risks for non-
communicable diseases such as inflammatory bowel diseases (IBDs). We explore how individual and
lifestyle factors influence these risks by shaping gut microbiome composition. 1001 healthy
participants from all Spanish regions provided personal and dietary data at baseline, six, and twelve
months, yielding 2475 responses. Gut microbiome data were analyzed for 500 healthy participants
and 321 IBDpatients. Our findings reveal that adherence to national dietary guidelines—characterized
bydiets rich in nuts, seeds, fruits, andvegetables—wasassociatedwithgreatermicrobial diversity and
reduced IBD-related dysbiosis. Finally, we observed variations in dietary patterns and microbiome
diversity and composition across age groups, genders, regions, seasons, and transit time. This study
is among the first to uncover dietary intake associated with IBD-related dysbiosis and to propose an
interactive website for participants (https://manichanh.vhir.org/POP/en).

Habitual diet and geography have been suggested as among the strongest
explanatory factors for human gut microbiota variation. A specific habitual
diet may contribute to health or non-communicable diseases (NCDs), such
as obesity, metabolic syndrome, and inflammatory bowel disorders (IBD).
These conditions and associated mortality/morbidity have risen dramati-
cally over the past decades, with the gutmicrobiome implicated as one of the
potentially causal human-environment interactions1.

In2019, theGlobalBurdenofDisease (GBD)Studyassessed the impact
of dietary habits on NCDs globally2. Using a comparative risk assessment
approach, the researchers analyzed the consumption of major foods and
nutrients across 195 countries. The findings revealed that in 2017,
approximately 11 million deaths and 255 million disability-adjusted life-
years (DALYs)were attributable to suboptimal dietary habits. Low intake of
whole grains and low intake of fruits were identified as the leading dietary
risk factors for both deaths and DALYs worldwide. Overall, the research
emphasizes the urgent need for improving dietary patterns globally to
mitigate the burden of NCDs.

Previous studies have identified significant variations in the gut
microbial community among individuals, which has hindered the discovery
of microbial species as reliable disease biomarkers. Various factors,

including age, medication use, bowel habits, health status, anthropometric
characteristics, habitual diet, and lifestyle, have been identified as potential
contributors to this high microbiome variability3. Consequently, these
variations necessitate a large cohort size to effectively discover and validate
biomarkers.

Over the last decade, population studies have emerged to understand
the role of habitual diets on health and disease through the modulation of
the gutmicrobial community. These large-scale studies, involving hundreds
to thousands of participants, includedboth non-European countries such as
the USA4,5, Canada6, and China7, and European countries such as Belgium3,
and the UK8. These studies exemplify large-scale projects that facilitate
humanmicrobiomehypothesis generation and testingon anunprecedented
scale. They have uncovered associations between microbiome signatures
and specific genetic variants, geographic variation, medication, and dietary
habits.

Although the Spanish diet has been investigated in large-scale studies
as part of theMediterranean diet in relation to cardiovascular disease risk9,10,
no studies have yet comprehensively explored the association between the
Spanish diet and both the gut microbiome using shotgun metagenomics at
the population level.
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This study investigates the relationship between diet and the micro-
biome, with the goal of understanding how national nutritional recom-
mendations can influence the microbial ecosystem and, consequently,
humanhealth.We analyzed dietary andpersonal data froma large cohort of
healthy individuals, calculated eating quality indexes based on national
guidelines, and examined microbiome data for 500 participants. To further
contextualize these findings, we developed a disease similarity index based
on microbiome profiles from an IBD cohort of 321 patients. Our results
reveal that lifestyle and demographic factors play a significant role in
shaping dietary habits, which, in turn, influence microbiome profiles,
potentially increasing their resemblance to those associated with IBD.

Results
Cohort characteristics and collected metadata, and samples
Between 2020 and 2024, we enrolled 1001 participants from four regions in
Spain, covering all 17 autonomous communities (Fig. 1A, B). The cohort
consisted of 458 men and 542 women, all over 18 years old. None of the
participants had taken antibiotics for at least three months before the study
began, and none had any diagnosed chronic intestinal disorders. Further
details regarding the cohort’s characteristics can be found in Supplementary
Table S1. We employed an in-house11 online short Food Frequency Ques-
tionnaire (sFFQ) to gather demographics, biometrics, lifestyle, and dietary
data. Participants filled out the sFFQ at baseline (n = 1001), month six
(n = 822), and month 12 (n = 652), resulting in a total of 2475 completed
sFFQs. Additionally, stool samples were collected concurrently with the
sFFQ for comprehensive analysis. Due to budget constraints, a random
subset of 500 samples was selected from the total 1001 baseline samples for
microbiome analysis. These samples underwentmicrobiome compositional
and functional profiling through shotgun sequencing (Fig. 1C, D). An
additional cohort of 321 IBD patients was included, with fecal microbiome
compositiondataused exclusively to calculate thedisease similarity index, as
described below (also see the Methods section).

Personal traits, lifestyle decisions, and geography influence the
quality of dietary intake (n = 1001)
The collected 58 food items from 2475 sFFQs were categorized into 24
food groups and 32 macro- and micronutrient contents (refer to the
Methods section). We then investigated the relationship between
covariates such as lifestyle, biometrics, and demographic factors on
dietary intake using Permutational Multivariate Analysis of Variance
(PERMANOVA). These self-reported covariates included age, geo-
graphy, workplace (hospital or non-hospital), gender, body mass
index (BMI), season, dietary types, smoking status, sweetener con-
sumption, menstruation or menopause status (if applicable), and
bowel habits. All covariates, except for workplace, were significantly
associated with the composition of food items and food groups
(Fig. 2A). Furthermore, seven covariates—region, gender, season,
dietary types, smoking status, sweetener consumption, and bowel
habits—were linked to variations in macro- andmicronutrient intake
(PERMANOVA, P < 0.05, Fig. 2A). These findings highlight the
impact of personal traits and lifestyle choices on dietary patterns.

Taking advantage of the longitudinal setting of the study, we
analyzed the intra- and inter-variability of food intake using the Bray-
Curtis similarity index for food items, food groups, and nutrient data.
As expected, we found that intra-individual variability (with sFFQs
analyzed 6 months apart) was lower than inter-individual variability
across all three dietary classifications (P < 2·2 × 10−16, Supplementary
Fig. S1). This suggests a relatively stable intra-individual dietary
pattern across different seasons at all dietary levels.

Next, we examined how differences in population characteristics
may explain variances in several eating quality indexes (EQIs), which
were developed based on well-established national guidelines to
evaluate the nutritional quality of individuals’ diets and their
adherence to recommended dietary patterns (refer to the “Methods”
section for comprehensive explanations and abbreviations). To

achieve this, we initially utilized the collected food items, food groups,
and nutrients to calculate various EQIs (HEI-2015, IASE, HFD, hPDI,
uPDI, and the aMED). Subsequently, we employed linear regression
models, implemented in MaAsLin2, to assess the impact of different
population characteristics on these EQIs while controlling for
potential covariates mentioned above. Increasing age was found
positively associated with several food groups, such as whole bread,
nuts and seeds, fruits, and fruit products, which could explain its
positive association with a healthier diet as indicated by two EQIs
(q(IASE) = 0.03; q(hPDI) = 7·1 × 10−07) (Fig. 2B). However, it was also
found to be linked to a high intake of alcoholic beverages (Supple-
mentary Table S2).

Men exhibited lower values of IASE, hPDI, aMED, and HFD, and
higher values of uPDI compared towomen, indicating poorer dietary habits
compared to women (Fig. 2B).Men’s dietary patterns weremore associated
with the consumption of ready-to-eat meals (q = 0.038) and alcoholic
beverages (q = 0.00014), whereas women showed higher consumption of
whole bread (q = 0.013), vegetables (q = 5 × 10−09), nonalcoholic drinks
(q = 0.002), fruits and fruit products (q = 0.002), fish and shellfish
(q = 0.00024), but also higher intake of fats and oils (q = 2·7 × 10−07) (Sup-
plementary Table S2).

Geographically, we divided Spain into four regional areas: the Medi-
terranean, the Interior, the North, and the Islands (Fig. 1B). This classifi-
cation considers traditional Mediterranean diet patterns and geographical
distribution all of which can influence dietary habits and patterns12. Com-
pared to theMediterranean region, the Interior exhibited a healthier dietary
pattern based on the three eating quality indices (aMED, uPDI, HEI_2015)
(Fig. 2B), characterized by a higher consumption of legumes (q = 0.013,
Supplementary Table S2).

Interesting positive associations were identified between population
behaviors and specific food groups (Supplementary Table S2). For instance,
the use of sweeteners was correlated with the consumption of sugar
(q = 0.044), ready-to-eat meals (q = 0.00002), sauces and condiments
(q = 0.0004), and sausages and other meat products (q = 0.018). Addition-
ally, smoking (q = 0.001) or past smoking (q = 0.003) habits were associated
with alcohol consumption.

Partial alignment with recommendations from the GBD-2017
To evaluate whether the dietary intake of our population aligned with the
recommendations of the Global Burden of Disease (GBD) Study 20172, we
categorizedour58 sFFQ items (n = 1001;2475 sFFQs) into12of the15GBD
dietary risk factors (refer to theMethods section, Supplementary Table S3).
Our cohort’s intake of fruits, vegetables, and fiber met the recommended
ranges set by the GBD study (Supplementary Table S4). However, we
observed suboptimal intake levels for legumes, polyunsaturated fatty acids
(PUFA), whole grains, nuts, milk, and calcium compared to GBD recom-
mendations. Additionally, the intake of red meat, processed meat, and
sugar-sweetened beverages exceeded the levels recommended by the GBD
guidelines.

Demographic, anthropometric, and dietary data correlate with
bacterial microbiome data
Next, to assess the effect size of population characteristics on the micro-
biome, we used Bray-Curtis distances with the adonis2 function from the R
vegan package. Specifically, gender, age, and BMI demonstrated significant
impacts on microbiome composition at the global level (Supplementary
Fig. S2). These covariateswere subsequently used as possible confounders in
downstream analysis. A global microbiome profile of Spain at different
taxonomic levels (phylum, genus, and species) can be found in Supple-
mentary Fig. S3, as well as the same profile at the genus level across the four
geographic areas.

Although there is no definitive evidence in the literature estab-
lishing a direct link between high gut microbial diversity and healthy
status, several disorders, including inflammatory bowel diseases13,14,
obesity15, and diabetes16, have consistently been associated with low

https://doi.org/10.1038/s41522-025-00769-9 Article

npj Biofilms and Microbiomes |          (2025) 11:131 2

www.nature.com/npjbiofilms


Fig. 1 | Study design. A 1001 participants reported their dietary intake and personal
data through an in-house online short Food Frequency Questionnaire (sFFQ) at
baseline, month six, and month 12 (n = 2475). Stool samples (n = 500) were pro-
cessed at baseline for microbiome analysis. B Recruitment of participants from
different autonomous regions of Spain and sampling fractions. The distribution of
participants recruited from the 17 autonomous regions of Spain and the four
regional areas is presented. The sampling fraction for each regional area was cal-
culated based on the proportion of the population in each region, as reported by the

Spanish government. C Information from the sFFQs was used to collect personal
data and to calculate different Eating Quality indexes (EQIs). Extracted genomic
DNA from stools was sequenced through a shotgun metagenomic approach, and
sequences were processed to analyze microbiome composition and function.
D Association analysis between microbiome and dietary data and diet prediction
models. The associationwas performed using either the Spearman correlation test or
the linear models implemented in the MaAsLin2 tool, and the predictions were
performed using the random forest classification and regression algorithms.
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microbial diversity. These associations suggest that a diverse gut
microbiome plays a role in maintaining health. Using the Spearman
test, we assessed the correlation between population characteristics,
dietary data, and microbiome diversity. The results showed that
diversity (based on Chao1 and Shannon indexes) was positively
associated with vegetable intake (rho = 0.118, P = 0.009), fruits
(rho = 0.160, P = 0.0003), and nuts and seeds (rho = 0.122, P = 0.007),
while white bread and white grains were negatively linked to
microbial diversity (rho =−0.152, P = 0.0007 and rho =−0.169,
P = 0.0002, respectively) (Fig. 3A). This is further supported by the
positive correlations between the Shannon index and dietary indexes
such as the HEI-2015 (rho = 0.119, P = 0.007), the hPDI (rho = 0.138,
P = 0.002), the aMED index (rho = 0.130, P = 0.004), which empha-
size fruit and vegetable consumption (Fig. 3A). These results suggest
that adherence to national dietary guidelines and recommendations
was associated with increased microbial diversity.

Additionally, diversity (Shannon index, rho = 0.128, P = 0.004) and
richness (Chao1 index, rho = 0.162, P = 0.0003) positively correlated with
age, reinforcing the connection between older age and healthier eating

habits (Fig. 3A). On the contrary, BMI (rho = –0.117, P = 0.009), and uPDI
(rho =−0.142, P = 0.001) index were found negatively correlated with both
richness and diversity. Given that age was also associated with BMI
(rho = 0.31,P < 0.05), thesefindings suggest that higher diversity is linked to
older age and lower BMI. We did not observe a seasonal effect on dietary
intake and microbiome diversity (Fig. 3B).

Association analysis between metabolic pathways and dietary data
revealed significant correlations between the L-arginine biosynthesis II and
sucrose biosynthesis II pathways and the consumption of fruits, nuts, and
seeds. At the nutrient level, significant associations were also found with
fiber intake (Supplementary Table S5). These findings suggest that diet can
influence not only the composition of the gut microbiome but also its
functional capabilities.

The extent to which transit time (bowel movement) influences
the microbiome is still not well understood. To address the question
related to the impact of transit time on the microbiome community,
we examined the association between defecation frequencies
obtained from the sFFQs (categorized as 1.5 times/week, >3 times/
week, 1 time/day, 2 times/day, and >2 times/day) on microbiome

Fig. 2 | Relationship between population characteristics and dietary data. AEffect
size of the population characteristics on dietary intake. The magnitude of the
influence of specific characteristics on dietary intake was calculated using permu-
tational analysis of variance (PERMANOVA), as implemented in the adonis2
function of the vegan R using the Bray-Curtis method. B Relationship between

Eating Quality Indexes (EQIs) and population characteristics (age, gender, and
region areas) was calculated using the MaAsLin2 tool. Data were plotted only when
comparisons were significant. Correlation plots are shown for continuous data
variables such as age and dietary indices, while boxplots are shown for categorical
data variables such as gender.
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diversity and composition using the ANOVA or Kruskal-Wallis test
and general linear models (MaAsLin2), respectively. Our results
indicated that longer transit times were associated with higher
diversity (P < 0.05, Fig. 3B). Additionally, we observed that micro-
biome diversity appeared to stabilize at a defecation frequency of

more than 3 times per week, as indicated by non-significant differ-
ences in the Chao1 and Shannon indexes between defecating more
than 3 times per week and 1.5 times per week. At the compositional
level, using one defecation per day as a reference, 20 bacterial species
(including Akkermansia muciniphila) were positively associated,

Fig. 3 | Population characteristics-microbiome alpha diversity association ana-
lysis. A Correlation between Eating Quality Indexes (EQIs), food groups, and per-
sonal data with alpha diversity (Chao1 and Shannon) using the Spearman
correlation test (n = 500). Symbols + and − indicate significant correlations
(P < 0.05). Only correlations with P < 0.05 and absolute rho > 0.11 are shown.

B Differences in categorical population characteristics in relation to bacterial alpha
diversity (Chao and Shannon indices), analyzed using the ANOVA test for normal
data and Kruskal-Wallis test for non-parametric data, with the corresponding post-
hoc tests (n = 500).
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while three species (including Lacrimispora amygdalina and Blautia
wexlerae) were negatively associated with longer transit times (more
than three times and only 1·5 times per week). Conversely, three
species (Ruthenibacterium lactatiformans, Eubacterium siraeum, and
Alistipes putredinis) were negatively associated with short transit
times (>2 times per day) (Supplementary Table S6).

At the functional level, longer transit times were associated with more
pathways than shorter transit times. These pathways include fermentation,
glycan, amine degradation, amino acids degradation and biosynthesis, and
lipid biosynthesis, while shorter transit times were more linked to carbo-
hydrate degradation (Fig. 4, Supplementary Table S7, S8). Other correla-

tions were found between microbiome diversity and demographic and
biometric data including age, BMI, gender, season, and smoking (Fig. 3A,
Supplementary Table S9). Interestingly, BMI, which correlated with three
bacterial species, also correlated with 39 pathways (26 positive and 13
negative correlations).

Relationship between diet and IBD-related dysbiosis
To explore the link between diet and dysbiosis, we analyzed the micro-
biomes of 321 patients with IBD, comprising 208 with Crohn’s disease and
113 with ulcerative colitis—two extensively studied non-communicable
diseases associated with microbiome alterations. This shotgun metage-

Fig. 4 | Differentially abundant metabolic pathways. Differentially abundant
pathways in the microbiome of healthy individuals using to Maaslin2 depending on
several conditions. Pathwayswere grouped according to their level 1MetaCyc classes
(broader functionality) and colored by their level 2 MetaCyc classes (more specific).
Level 2 pathways assigned to more than one broader level parent were assigned to
each of their level 1 functionality for plotting and interpretation purposes.

Differentially abundant pathwayswere compared between low transit time (>3 times
per week, 1 or 2 times per week) and the reference (once a day). A Positive coeffi-
cients reflected pathways enriched in low transit time, whereas negative coefficients
represented their depletion.BDifferentially abundant pathways were also associated
with BMI, with positive coefficients indicating a positive correlation between
pathway abundance and BMI.
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nomic dataset was available from our previous projects17. To quantify
microbial community disruption, we developed the IBD-similarity index, a
metric measuring divergence from the microbiomes of 500 healthy indivi-
duals (see Methods section for detailed explanations). Higher index scores
indicate a greater resemblance to IBD-associated microbial profiles. This
approach effectively stratified the cohort by the degree of dysbiosis (Fig. 5A),
explaining 36.3% and 15.3% of the variance inmicrobial composition along
thefirst axis usingweightedandunweightedUniFracdistances, respectively.

Spearman’s correlation analysis revealed that higher alpha
diversity in our cohort was associated with lower similarity to IBD
microbiome profiles (Fig. 5B). Moreover, reduced consumption of
vegetables, nuts, seeds, and fruits, combined with a higher intake of
soft drinks, was linked to greater microbiome disruption (Fig. 5C).
Personal traits such as age and BMI exhibited contrasting associa-
tions, with higher BMI correlating with increased dysbiosis.

Correlation analysis between specific bacterial species, alpha diver-
sity, and the disease-similarity index revealed that Flavonifractor
plautii and Ruminococcus gnavus exhibited the strongest positive
correlations with microbiome alterations. In contrast, the strongest
negative correlations were associated with unidentified Clostridia
and Bacilli species, as well asMethanobrevibacter smithii. Notably, all
species that positively correlated with the disease-similarity index
were inversely associated with alpha diversity metrics and vice versa.

Prediction of dietary intake by the gut microbiome
The “GBD 2017 Diet Collaborators” reported in 2019 that high intake
of sodium and low intake of whole grains and fruits were the leading
dietary risk factors for deaths and years of life adjusted for disability2.
In our study, sodiumwas not properly evaluated in the questionnaire,
as we did not add any specific question related to the added sodium

Fig. 5 | Disease similarity index and population characteristics. AWeighted (W.)
and unweighted (Unw.) UniFrac distances of our cohort of healthy individuals
(n = 500) colored by IBD-similarity score. IBD-similarity score was calculated as 1-
median of a healthy sample to all samples in IBDplane (n = 208CDand 113UC) and
can be a measure of how microbiome from a healthy individual resembles to the
dysbiotic microbiome of IBD patients, which is widely accepted as an example of
non-communicable disease. B Spearman correlation considering IBD similarity

index and two different measures of alpha diversity. C Integrated heatmap repre-
senting food groups, items, EQIs, and personal traits that significantly impact the
IBD similarity index. The more positive the IBD similarity value, the greater the
resemblance to the IBD microbiome. FDR < 0.05. Item 2: Cooked leafy vegetables;
Item 3: Tomato; Item 17: Nuts and seeds; Item 51: Soft drinks (see Supplementary
Table S10 for more detailed diet information).
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during the cooking process therefore, we cannot assess the impact of
salt on the microbiome. Using a machine learning approach on
microbiome features and the reported dietary data, as proposed by
Manghi et al.18, we showed that the consumption of several food items
can be robustly predicted by the microbiome composition. These
food items included coffee with and without caffeine (rho=0.41,
AUC = 0.82), nuts and seeds (rho = 0.25, AUC = 0.76), vegetables
(rho = 0.19, AUC = 0.67), fruits (rho = 0.19, AUC = 0.66), fermented
dairy (rho = 0.18, AUC = 0.74), and dark chocolate (rho = 0.18,
AUC = 0.66) (Fig. 6A). The analysis using food groups validated the
findings with nuts and seeds (rho = 0.24, AUC = 0.75), fruits (rho =

0.20, AUC = 0.68), milk and dairy (rho = 0.20, AUC = 0.65), vege-
tables (rho = 0.19, AUC = 0.67), yogurt (rho = 0.17, AUC = 0.73), and
chocolates (rho = 0.16, AUC = 0.66) (Fig. 6B). Furthermore, the
composition of themicrobiome was found to predict adherence to the
Mediterranean diet (aMED score) as well as the intake of healthy
vegetable proteins (hPDI index) (Fig. 6C).

Using Spearman correlation test, aMED and hPDI were the EQIs that
correlated with the highest number of bacterial species, including Rumino-
coccus torques (aMED: rho =−0.22, q = 0.005; hPDI: rho =−0.20, q = 0.007),
Blautia massiliensis (aMED: rho =−0.18, q= 0.030; hPDI: rho =−0.20,
q= 0.010), and Flavonifractor plautii (aMED: rho =−0.19, q = 0.020).

Fig. 6 | Prediction using machine learning technique. Prediction of different food
items (A), food groups (B), and EQIs (C) using species-level genome bin (SGB)-level
features information estimated byMetaPhlAn4. Y axis represents, for each variable,
the median Spearman’s correlation between observed values and predicted values

from the random forest regression model. X axis represents, for each variable, the
median receiver operating characteristic area under the curve (ROCAUC) from the
random forest classifier. Further details on both random forest models can be found
in the Methods section.
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Website for the Citizen science project
This project was also designed to engage the public in data collection and
raise awareness about scientific research. Participants contributed by pro-
viding their dietary data and stool samples. Through the website created for
this project (https://manichanh.vhir.org/POP/en), participants were able to
collect their dietary information using the sFFQ and ship their stool samples
to the microbiome lab. Participants were provided with an overview of the
study findings and received access to their personalized dietary and
microbiome profiles at no cost. The website also offers resources to help
participants understand the significance of their contributions and the
impact of the research. The webpage is organized into two sections: “Study
Results” and “Your Personal Traits,” available in Catalan, Spanish, and
English. Accessible to all, the “Study Results” section provides general
information about the microbiome, diet, and their relationship. It outlines
the study’s objectives and methods, emphasizing the significant impact of
participant involvement. In the “YourPersonal Traits” section, personalized
dietary information from the sFFQ is shared, helping participants track
dietary changes over time and evaluate adherence to Spanish dietary
recommendations. When shotgun sequencing results were available, par-
ticipants could access them under the “Microbiome” section, which inclu-
ded: (1) Bacterial composition of prevalent species in the stool sample, from
kingdom to species level, and (2) Population medians and α-diversity
metrics (Chao1 and Shannon indices). Examples of how this data is pre-
sented in the webpage can be found in the Supplementary Fig. S4.

Discussion
This study provided new insights into the intricate relationships between
Eating Quality Indexes, personal traits, geography, and diet, and their col-
lective impact on the gut microbial community. It also highlighted how
national dietary recommendations can shape this community. Notably, the
study introduced a comprehensive web tool designed to help participants
understand the influence of diet on their gut microbiome.

EQIs have been developed to serve as comprehensive tools for evalu-
ating diet quality and guiding dietary recommendations. Researchers use
EQIs to facilitate research on how diet affects the risk of chronic diseases,
such as obesity, diabetes, cardiovascular diseases, and certain cancers19. In
the present study, the assessment of the impact of the population char-
acteristics on the nutritional quality revealed crucial insights into how age,
gender, geographical location, and lifestyle shape eating habits. Our find-
ings, reporting healthier dietary habits as we age, are validating previous
works that showed that older adults have a more “prudent” dietary pattern
characterized by higher intakes of vegetables, fruits, whole grains, nuts, and
seeds20,21. In our study, we excluded individuals older than 75 years to avoid
potential confounding factors, such as age-related undiagnosed diseases like
frailty or early-stage neurodisorders.

Using amachine learning approach, the study identifiedkey food items
and food groups strongly associated with microbiome composition. Coffee,
nuts and seeds, vegetables, fruits, fermented dairy, and dark chocolate
emerge as significant predictors of microbial composition. As a Medi-
terranean country, Spain’s traditional diet is rich in fruits, legumes, whole
grain cereals, vegetables, nuts, and healthy unsaturated fats primarily from
olive oil. It also includes frequent fish intake, moderate consumption of
dairy products and fermentedbeverages, and a low intake ofmeat andmeat-
derived products22. Despite its benefits, adherence to theMediterranean diet
(MD) in Spain has decreased over time, shifting towards a more Western
dietary pattern23–25.

The influence of regional dietary habits, particularly within Medi-
terranean countries, is well-known. Our study’s division of Spain into the
Mediterranean, Interior,North, and Islands, and its identificationofhealthier
dietary patterns in the Interior region, aligns partially with prior research
showing geographical variability in adherence to theMediterranean diet and
other dietary patterns26. Moreover, our study showed that individuals from
the Interior region were characterized by higher consumption of legumes,
which offer a range of health benefits due to their rich nutrient content and
bioactive compounds, including protein, fiber, vitamins, and minerals.

Among the dietary variables proposed by the Global Burden of
Disease study, our Spanish cohort complied with only 3 out of the 12
food groups analyzed: vegetables (321·48 g/day), fruits (225·6 g/day),
and fiber (27·32 g/day). These groups were related to higher alpha
diversity and lower IBD related dysbiosis, and correlated with bac-
terial species with potential health implications. For instance, vege-
tables were negatively correlated with Flavonifractor plautii, a
flavonoid-degrading bacterium associated with less healthy diets,
lower scores in EQIs, and related to disease outcomes such as IBD.

The association analysis of food group consumption reveals gender-
specific dietary behaviors. It is recognized that women generally exhibit
healthier dietary patterns thanmen, consumingmore fruits, vegetables, and
whole grains, while men consume more meat and alcohol27,28. These find-
ings are validated by our study, which shows that men have a higher con-
sumption of ready-to-eat meals and alcoholic beverages.

Low microbial diversity and alterations in the microbiome composi-
tion have been linked to various disorders, suggesting a connection between
health status and high microbial diversity13,14. This study highlights that
adherence tonational dietary guidelines—especially increased consumption
of fruits, vegetables, fiber, nuts, and seeds—is positively associated with
greater microbial diversity and lower levels of dysbiosis. In contrast, fol-
lowing an unhealthy diet, characterized by high intake of white bread,
negatively impacts microbial richness and diversity, while excessive con-
sumption of soft drinks adversely affects microbial composition. These
findings align with previous reports indicating that a high-fiber diet
enhances alpha diversity, while a low-fiber diet, such as one high in white
bread, reduces it29. Additionally, they suggest that a high-fiber dietmay help
prevent IBD-related dysbiosis.

A key component of this project was the development of a website,
which allowed participants to efficiently collect and submit their dietary
information using a structured Food Frequency Questionnaire (sFFQ). As
part of the growing trend in citizen science projects, the website also pro-
vides participants with private access to both the overall study findings and
their personalized dietary and microbiome profiles, enhancing their
understanding of their contributions. Additionally, we ensured that the
website offers comprehensive resources to help participants appreciate the
significance of their involvement in a citizen science project and the broader
impact of the research. This integrated approach not only facilitated data
collection but also strengthened the connection between the participants
and the scientific community.

While ourfindings provide valuable insights, certain limitations should
be acknowledged to contextualize the results. First, sFFQ relies primarily on
self-reported and subjective data based on participants’memory, which can
lead to over- or underestimation of dietary intake. Consequently, some of
the results, particularly those related to nutrient intake, should be inter-
preted with caution, as they may reflect misreporting. This limitation is
consistent with findings from our previous study11. Second, the nutritional
tables used for dietary assessmentmay be considered limited, as they do not
include information on certain components such as additives, cooking
methods, andpreservatives, whichmay influencemicrobiome composition.
Third, using an IBDcohort to calculate a dysbiosis score for each participant
may represent another limitation of this study, as it does not account for
microbial alterations associated with other chronic disorders. While our
method offers valuable insights into the links between diet and IBD-related
microbiome alterations, further investigation is necessary to determine
whether similar associations exist in other chronic conditions and to clarify
how thesemicrobial patternsmaydiffer fromoroverlapwith those observed
in IBD. Fourth, although several of our findings revealed noteworthy cor-
relations between dietary patterns and microbiome, some of which align
with results from previous observational studies, it is essential to stress that
correlation does not imply causation. Establishing causality requires
experimental validation. Finally, due to budgetary constraints, we were
unable to sequence all collected samples. However, we intend to complete
the sequencing of the remaining samples as soon as additional funding
becomes available. This will enable us to explore more specific research
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questions, including those related to particular dietary patterns (e.g., vege-
tarian and vegan diets) or ethnic backgrounds.

Despite these limitations, our study represents one of the most com-
prehensive investigations of gut microbiome composition and function in
relation todietary patterns and lifestyle factors in the Spanishpopulation. By
integrating metagenomic sequencing with dietary, clinical, and socio-
demographic data in a large citizen science framework, we provide a robust
foundation for future studies aiming to unravel diet–microbiome–health
relationships. The depth and diversity of the dataset offer valuable oppor-
tunities for further hypothesis-driven and translational research, particu-
larly as we continue to expand the cohort and validate key findings
experimentally.

Methods
Participant’s recruitment
We conducted a prospective longitudinal study in accordance with the
Declaration of Helsinki, approved by the local Ethics Committee of Vall
d’Hebron University Hospital, Barcelona (PR(AG)84/2020). Participants
were enrolled in the study between December 2020 and March 2024
through announcements on social platforms such as Facebook, LinkedIn,
and Instagram, as well as the Hospital Vall d’Hebron website.We recruited
1001 participants from different regions of Spain, aged 18–75, who had not
taken antibiotics for at least three months and had no diagnosed chronic
intestinal disorders, including inflammatory bowel diseases, type 2 diabetes,
and autoimmune diseases, before entering the study. All participants signed
a consent form.

To calculate the sampling fraction for each region area, we first
downloaded the data from the Instituto Nacional de Estadística (INE)
(https://www.ine.es/jaxiT3/Tabla.htm?t=2853&L=0) regarding the number
of males and females between 18 and 75 years old in each autonomous
community. We then calculated the population size for the selected region
areas (Interior,North of Spain,Mediterranean, and Islands) by summingup
the individuals from the corresponding autonomous communities. Using
these values, we estimated the theoretical percentage for a sample size of
1000 individuals as follows: Theoretical percentage = (1000 x Population in
each region area)/Total population in Spain. To evaluate how accurately we
achieved our recruitment goal, we divided the actual number of individuals
recruited in each region area by the theoretical values. This resulted in a ratio
ranging from 0 to 1, where a ratio closer to 1 indicates more accurate
recruitment.

Metadata and sample collection
Participants filled out an in-house validated short food frequency ques-
tionnaire (sFFQ)11, which provided demographic, lifestyle, clinical, and
dietary data, and shipped their stool samples to themicrobiome laboratory
at baseline, month six, andmonth 12. The questionnaire was administered
online (https://manichanh.vhir.org/sFFQ/login.php). It included 58 food
items divided into 13 sections (Supplementary Table S10): vegetables,
legumes, and potatoes; fruits and dried fruits; cereals and derivatives; milk
andderivatives; eggs,fish, andmeat; selfish; oils and fats; bakery andpastry;
sauces; non-alcoholic drinks; alcoholic drinks; processed food and others.
Frequency of consumption was categorized into six possible options:
“Never”, “1 or 3 times per month”, “1 or 2 times per week”, “3 or more
timesperweek”, “onceper day”, and “2 ormore times per day”. Serving size
consistedof a “standardportion” estimatedusing theENALIA2Survey30 as
well as our own expertise, “half of the standard”, and “double of the
standard”. To facilitate the estimation of the amount of food consumed by
the participants, we added colored photographs. Additional information
such as age, sex, weight, height, birth type, smoking, blood type, specific
diet, consumption of ready-to-eat food or sweeteners, liquids and sup-
plements, or medication was also recorded. The participants also self-
collected their stool samples. The samples were preserved in 97% ethanol
and stored in a domestic freezer until theywere shipped by the participants
to the microbiome lab, where they were maintained at -80°C until DNA
extraction.

Dietary data processing
The first step in converting the dietary information collected from the sFFQ
was to transform monthly consumption into daily consumption: for
instance, a consumption responseof 1-2 timesperweekwas interpreted as an
average consumption of 1·5 times per week, which, when divided by the
seven days of the week, yielded an average daily consumption of 0.21. Sub-
sequently, this consumption value was multiplied by the weight associated
with the selected serving size. For instance, for the legume itemwith a serving
size of 150 g and the aforementioned consumption frequency, the final value
of grams per daywould be 0.21 × 150 g = 31·5 g/day. The values for the other
consumption frequencies were as follows: 1–3 times per month =
0.066; +3 times per week = 0.64; once per day = 1; +2 times per day = 3.
Using this gram-per-day information, the energy and nutritional value of
each item in the sFFQ were then calculated utilizing a custom-developed
food composition database11.

We calculated the magnitude of the influence of specific participant’s
characteristics on dietary intake using permutational analysis of variance
(PERMANOVA), as implemented in the adonis2 function of the vegan R
package (https://cran.r-project.org/web/packages/vegan/index.html) with
the Bray-Curtismethod. The correlation between eating quality indexes and
continuous population characteristics was calculated using the Spearman
correlation test. For categorical data, the Mann-Whitney U test was used.

Dietary indexes
Weutilized various eating quality indexes to assess the nutritional quality of
diets. These indexes encompass theHealthy Eating Index-2015 (HEI-2015),
the IASE (derived from its Spanish acronym ‘Índice de Alimentación
Saludable para la Población Española´), the plant-based dietary indexes
PDI, uPDI (u=unhealthy), hPDI (h=healthy), the Healthy Food Diversity
Index (HFD-index), and theAlternativeMediterraneanDiet (aMED) score.

The HEI-2015, developed by the United States Department of Agri-
culture (USDA), is a scoring system designed to provide recommended
nutritional guidelines to promote health and prevent chronic diseases31. It
assesses the intake of different food groups andnutrients, assigning scores to
components such as fruits, vegetables, whole grains, dairy, protein foods,
fatty acids, refined grains, sodium, added sugars, and saturated fats. Higher
scores indicate better adherence to dietary guidelines, with the maximum
score for each component representing optimal intake according to the
guidelines.

The IASE is amodified version of theHEI-2005, specifically tailored to
assess the dietary quality of the Spanish population in 201132. Similar to the
HEI-2005, the IASE evaluates dietary patterns and adherence to dietary
guidelines, but with considerations for the specific food choices and dietary
habits commonly found in Spain. The IASE takes into account various
components of the diet, including the consumption of fruits and vegetables,
cereals and grains, proteins, dairy products, fats and oils, sweets, pastries,
and alcoholic beverages. It assesses the quality of these food groups based on
recommended intake levels and patterns that are more relevant to the
Spanish diet and nutritional guidelines.

Introduced by Satija et al. in 201733, the PDI, uPDI, and hPDI evaluate
the quality of a person’s diet based on various aspects of dietary intake in the
US.ThePDI assesses theproportionof plant-based foods consumed relative
to animal-based foods. A higher PDI score indicates a diet richer in plant-
based foods like fruits, vegetables, whole grains, nuts, and seeds, with lower
consumption of animal-based foods such as meat and dairy. The uPDI
focuses on less healthy plant-based items like refined grains, potatoes, and
sweets, with a higher score suggesting an increased intake of these less
nutritious plant-based foods. In contrast, the hPDI emphasizes the con-
sumption of healthier plant-based foods within a plant-based diet, such as
fruits, vegetables, whole grains, nuts, and legumes, with a higher hPDI score
reflecting a diet rich in these nutrient-dense plant-based food groups.

The HFD, developed by Dresher et al. in 200734, measures food intake
diversity by evaluating the intake of various food groups including fruits,
vegetables, whole grains, lean proteins, and healthy fats. A higher HFD-
index score generally indicates a more diverse and nutritious diet.
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The aMED score corresponds to a scoring system developed by Fung
et al.35, which is based on the original Mediterranean diet scale proposed by
Trichopoulou et al.36. The aMED score ranges from 0 (indicating minimal
adherence) to 9 (representing perfect adherence) points and evaluates
adherence tonine food groups: 1)All kinds of vegetables excludingpotatoes;
2) Legumes including tofu, beans, andpeas; 3) Fruits and fruit juices; 4)Nuts
includingpeanutbutter; 5)Whole grains; 6)Redandprocessedmeat; 7) Fish
and shellfish; 8) Ratio of monounsaturated to saturated fat; 9) Alcoholic
drinks. For each category, including the fatty acid ratio, the median intake
was calculated in grams per day. Healthy food groups (vegetables, legumes,
fruits, nuts, whole grains, fish, and the fatty acid ratio) were scored with 1 if
the participant’s intake was above the median and 0 if it was below. Con-
versely, for red and processed meats, 1 point was assigned if participants
reported lower intake compared to themedian,while 0 pointswere given for
higher intake. Alcoholic drinks were scored differently. For men, con-
sumptionbetween10and50 gperdayor 5–25 gperday for females received
1 point, while intake outside these ranges received a score of 0.

Microbiome analysis
Genomic DNA was extracted following the recommendations of the
International Human Microbiome Standards (IHMS; http://www.
microbiome-standards.org). Briefly, a frozen aliquot (200mg) of each
sample was suspended in 250 μL of guanidine thiocyanate, 40 μL of 10%
N-lauryl sarcosine, and 500 μL of 5% N-lauryl sarcosine. Mechanical dis-
ruption of themicrobial cells with beads was applied, and nucleic acids were
recovered from the lysates through ethanol precipitation17.

The DNA shotgun library was prepared and sequenced using the
Illumina NovaSeq6000 platform. The sequencing process provided an
average of 5 Gbof sequencedata per sample.TheKneadData v0.7.4 pipeline
was used to pre-process and decontaminate the sequence reads (https://
huttenhower.sph.harvard.edu/kneaddata). KneadData performed a quality
filtering of the reads using trimmomatic and then mapped them against a
humanreference genomedatabaseusingBowtie 2.Readswith lengthsbelow
50% of the total input length and also those that mapped with the human
genome were discarded from further analysis. Taxonomic profiles were
provided by the MetaPhlan4’s intermediary output file in the HumanN3
pipeline and functional profiles from the final output37. Taxonomic profiles,
the outputs of MetaPhlan4, were generated in stratified relative abundance,
from phylum to SGB level. For this reason, no normalization was applied,
but the stratified relative abundances were extracted according to the
taxonomic species level. Alpha and beta diversity analyses were computed
using Chao1 and Shannon indexes17 and the adonis2 function (Permuta-
tional Multivariate Analysis of Variance), respectively.

Functional profiles, the output of HumanN3, provided gene families
and MetaCyc pathways. MetaCyc pathways were filtered to remove
unmapped and unintegrated reads. All features that did not achieve 0.001
abundance and 0.1 prevalence (pathways that did not achieve 0.1% of the
total sample abundance in at least 10% of the samples) were also discarded.
Then, pathways were sum-normalized to counts per million (CPM) before
further analysis.

Comparison of dietary intake with recommendations from the
GBD-2017 consortium
To comparemajor food andnutrient consumptionwithin the context of the
Global Burden of Disease (GBD) study, we grouped our semi-quantitative
sFFQ items into 12 out of the 15 proposed dietary risk factors defined by the
GBD, aiming to align with their dietary profiles. We calculated the median
intake in grams per day for fruits, vegetables, legumes, whole grains, nuts
and seeds,milk, redmeat, processedmeat, sugar-sweetened beverages, fiber,
and calcium, and compared these valueswith the optimal andoptimal range
of intake defined in the GBD study. For polyunsaturated fatty acids
(PUFAs), we calculated their consumption percentage relative to the total
energy intake and compared it with theGBD recommended values. Sodium
was omitted from our analysis as our data only reflected sodium present in
food and did not account for sodium added during cooking. Additionally,

seafood omega-3 and trans fatty acidswere not evaluated due to the absence
of these variables in our sFFQ. Supplementary Table S2 listed the clustering
of items into the dietary risk factors as suggested by the GBD consortium.

Development of a disease similarity index
We developed an estimator (disease similarity index) to quantify the simi-
larity between themicrobiome compositionof healthy individuals and those
of patients with non-communicable gastrointestinal diseases. To do so, we
included a cohort of patients with IBD. Sequence data for this cohort were
obtained from a previous study38. This index is defined as one minus the
medianweightedor unweightedUniFrac distance between ahealthy sample
and a reference set of 321 IBD samples (208 from Crohn’s disease patients
and 113 fromulcerative colitis patients). To compute this, wefirst calculated
both weighted and unweighted UniFrac distances between a plane of IBD-
affected individuals and each of the healthy participants of the study. To
determine the distribution of these distances, we used the Shapiro-Wilk
normality test. For the unweighted UniFrac metric, only 6 out of 491 par-
ticipants exhibited normally distributed distances, while 491did not. For the
weightedUniFrac, 497 out of 497 distance distributions were non-normally
distributed. Given the widespread non-normality, we selected the median
rather than themean as amore robust and representativemeasure of central
tendency for defining the IBD-similarity index.

Statistical analyses
Microbiome sequence data were performed in R (v4.3). Covariates such as
gender, age, body mass index (BMI), region areas, smoking habit, season,
and workplace were tested for their impact on microbiota variation using
the PERMANOVA test on weighted and unweighted UniFrac distance
indexes.

We evaluated the gutmicrobiome’s capacity to predict individual food
items, food groups, and nutrient intakes using both Random Forest classi-
fiers and regressors. For each task, we performed 100 bootstrap iterations
with an 80/20 split between training and test sets to ensure robust perfor-
mance estimates. Classification setup: Frequencies of food items, groups,
and nutrients were divided into “low” (first quartile) and “high” (fourth
quartile) consumption classes. We trained Random Forest classifiers on
species‑level genome bin (SGB) relative abundances generated by
MetaPhlAn4.Model discrimination was assessed by themedian area under
the ROC curve (AUC) across the 100 test folds. Regression setup: Con-
tinuous intake values were predicted with Random Forest regressors, also
trained on MetaPhlAn4 SGB relative abundances. Performance was
quantified by the median Spearman correlation between observed and
predicted values in the held‑out data.

Given the compositional nature of the sequence data, differential
abundance (DA) analysis of themicrobial communitywas performed using
MaAsLin2 (Multivariate Association with Linear Models)39. The analysis
tested for differences in population microbiome while including bowel
movement, gender, BMI, age, smoking habit, and season as fixed effects, as
they showed a significant effect on themicrobiome composition. To control
the false discovery rate (FDR), the resulting p-valueswere adjustedusing the
Benjamini–Hochberg (BH) method and, when applicable, referred to as
q-values.Associations identifiedbyMaAsLin2were considered significant if
the coefficient, measuring the strength and direction of the association, was
greater than 1 (in most cases) and the q-value was less than 0.05. Spearman
tests were used to correlate dietary data with microbiome data.

For functional analysis, Spearman’s correlationbetweenalphadiversity
indexes (Chao1 and Shannon) and pathway abundances was computed,
and p-values were FDR (BH) corrected and referred to as q-values. Corre-
lations with −0.4 <= rho or >= 0.4 and FDR < 0.05 were considered sig-
nificant and kept for further analyses. Association analysis was performed
between these pathways and food items, food groups, and nutrients using
the Spearman correlation test.

To assess changes in the potential pathways of the microbial com-
munity depending on personal information, we used linear models as
implemented in MaAsLin2, adjusting for variables that showed significant
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effects on the microbiome composition, such as bowel movement (transit
time), gender, BMI, age, smoking habit, region area, and season years as
fixed-effects, using MetaCyc pathways information. To increase the inter-
pretability of these results, pathways were grouped into their MetaCyc
parent instances up to 7 levels, in which each level represents a broader
biological function, with level 1 being the broadest and 7 the most specific.
Pathwayswithmore than one parent instancewere duplicated and assigned
to different parents for plotting and interpretation purposes.

Website construction: initiative for the general public
We built a website dedicated to this study (https://manichanh.vhir.org/
POP/en/), where participants can access an overview of the results of this
research, aswell as their personal informationonnutrient intake anddietary
indices (based on the short food frequency questionnaire), and, if available,
their microbiome sequencing results, including bacterial composition, and
measures of alpha diversity. Nutrient intake data are compared to the
guidelines establishedby the ScientificCommittee of the SpanishAgency for
Food Safety and Nutrition (AESAN), while dietary indices and alpha
diversity scores are compared to the populationmedian found in this study.
Nutrient intake data and EQIs can be visualized across the different time
points when each participant completed the sFFQ survey, allowing for the
tracking of their progression over the 12-month period. Participant reports
areproduceddynamically in the formofaShinyapp (https://shiny.posit.co/),
which is run in R language and hosted in our local Shiny server. All personal
results are anonymized and password-protected, ensuring each participant
may only access their own information.

Data availability
The statistical analyses and data visualization in this study were performed
using R (version 4.3). Custom R scripts used for diversity metrics, random
forestmodeling, differential abundance testing, correlation analyses, and the
development of the disease similarity index were home-made and tailored
specifically for this project. These scripts are relatively short and not orga-
nized as reusable packages; therefore, they have not been deposited in any
public repository. They are available from the corresponding author upon
reasonable request. Parameters and software versions used for key analyses
are detailed in the “Methods” section. The Shiny web application was built
using the Shiny framework in R and is hosted locally for secure access by
study participants. Data collected for the study include individual partici-
pant data and microbiome sequence data. Participants were codified.
Shotgun metagenomic sequencing raw data (short-read archives, SRA) are
available via NCBI Project Number PRJNA1146994.
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