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Abstract

Obesity represents a serious and growing disease worldwide. The pathophysiological
changes secondary to chronic inflammation lead to the development of diseases that in-
crease the morbidity and mortality of individuals. Chronic kidney disease (CKD) is a
condition with deleterious effects that acts bidirectionally with obesity. From approxi-
mately 20% to 30% of individuals share phenotypes of CKD and obesity, increasing their
cardiovascular risk and the risk of other complications. Obesity and CKD form a vicious
cycle in which inflammation is the central axis of multiorgan damage. Despite increasing
the risk of cardiac and renal mortality, CKD progresses in relation to body mass index and
albuminuria. Nowadays, the implementation of the new medications aimed at mitigating
the peak of inflammation is becoming a cornerstone of treatments for obesity, diabetes,
cardiovascular diseases, and renal disease.

Keywords: kidney disease; obesity; cardiovascular disease

1. Introduction

Obesity is a complex and chronic disease that can potentially affect the quality of
life by decreasing physical health as well as mental and social well-being. Despite the
preventive interventions developed in recent years, the global prevalence and incidence of
obesity continue to rise, to the extent that the World Health Organization (WHO) considers
it a global health epidemic [1]. In 2022, approximately 2.5 billion people were affected by
overweightness, including 890 million individuals with obesity. Currently, one in eight
people has obesity, indicating that obesity rates double among adults and quadruple among
adolescents compared to values from the 1990s [2]. In some areas, the prevalence of obesity
is expected to double by 2050 [3].
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Obesity is characterized by the excessive accumulation of adipose tissue, which may be
attributed to genetic and/or socio-environmental factors, such as genetic predispositions, a
sedentary lifestyle, high-calorie foods, insufficient access to healthy foods, low educational
attainment, and psychiatric disorders. [4] Classically, obesity is described by a body mass
index (BMI) > 30 kg/m?, in contrast to overweight, which is defined by a BMI between
25 and 30 kg/m? [5]. Currently, the diagnosis of obesity remains controversial and is
also a matter of significant interest for multidisciplinary medical discussion, as the use
of BMI as the sole diagnostic marker promotes erroneous stratification in many patients,
leading to overdiagnosis with potential negative socioeconomic effects. BMI does not
provide information about the individual health of patients. Furthermore, the definition of
obesity established by BMI excludes the phenotypes that precede it, which also increase
metabolic risk, and for which preventive and corrective treatment strategies should be
established [6]. Therefore, BMI alone is often an insufficient biomarker, as it does not fully
capture cardiometabolic risk. The combination of BMI > 25 kg/m? and a waist-to-height
ratio (WtHr) of >0.5 helps optimize the stratification of obesity risk [7,8].

There is sufficient evidence highlighting the role of obesity in metabolic syndrome,
cardiovascular diseases, endocrine disorders, mental health conditions, neoplastic diseases,
and renal diseases [9-11]. Visceral obesity is also associated with increased inflammation
and the risk of all-cause mortality [12]. Currently, a new classification of obesity is referred
to as adiposity-based chronic disease (ABCD), which is based on its etiology, degree of
adiposity, and associated health risks. Concurrently, the complications of obesity are
influenced by two pathological processes: fat mass disease, which involves mechanical and
physical forces, and sick fat disease, which pertains to endocrine and immune responses.
The latter is associated with the activation of inflammatory responses that can lead to
organ damage [13].

Chronic kidney disease (CKD) is a public health priority and a global concern, as
it is projected to be among the top five causes of death by 2040. In many countries, the
prevalence of CKD is underestimated due to insufficient screening measures to detect
functional and structural renal abnormalities [14]. The progressive increase in the number
of patients with CKD is also explained by the rise in cases of hypertension, metabolic
syndrome (MS), and diabetes mellitus (DM) [15]. Thereby, Chang et al. describe that
elevated BMI, waist circumference, and waist-to-height ratio are independent risk factors
for a decline in glomerular filtration rate (GFR) and mortality in individuals with and
without prior kidney disease [16].

The objective of this review is to focus on the importance of inflammation and the
pathophysiological processes involved in the relationship between obesity and the develop-
ment of kidney disease. Additionally, the various existing treatments and those currently
under clinical trials are discussed.

2. Mechanisms Underlying Chronic Kidney Disease Development
in Obesity

Obesity is an independent risk factor for the development of kidney disease, as it
creates an environment of intraglomerular hypertension conditioned by many pathways.
Garcia-Carro et al. defined three main groups explaining the pathophysiological mecha-
nisms of kidney disease in obesity: the hemodynamic, adipose tissue-related, and insulin
resistance-hyperinsulinism pathways [17]. It is important that hemodynamic, adipose
tissue-related, and insulin resistance pathways interact with each other and adapt to factors
related to other comorbidities, such as age and sex (Figure 1).
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Figure 1. Pathophysiology of obesity. The mechanisms of renal disease in obesity. Three pathways
have been described: hemodynamic, adipose tissue, and insulin resistance. These three pathways
interact with each other, secreting adipokines and cytokines, activating the sympathetic nervous
system, and promoting the pathological activation of the RAAS. All three pathways lead to renal
damage, as the pro-inflammatory state and profibrotic factors favor glomerular hyperfiltration and,
consequently, promote endothelial, podocyte, and tubular damage, increasing albuminuria excretion.
RAAS: renin-angiotensin-aldosterone system. SNS: sympathetic nervous system. CKD: chronic
kidney disease. TNF- «: tumor necrosis factor-c.. IL: interleukin. PAI-1: plasminogen activator
inhibitor 1.

2.1. The Hemodynamic Pathway

The hemodynamics of individuals with obesity are compromised in part secondary to
the pathological hyperfiltration process associated with increased metabolic demands, the
activity of the renin—angiotensin—aldosterone system (RAAS), the affinity of angiotensin
II (Ang-1I) receptors, fluid overload, and the positive feedback from the sympathetic
nervous system [17].

The pathophysiological process includes vasodilation of the afferent arterioles and
vasoconstriction of the efferent arterioles, associated with a reduction in tubuloglomerular
feedback responsible for the vasoconstriction of the afferent arterioles [18]. The alteration of
the renal sympathetic nervous system is also explained by the activation of chemoreceptors
in the carotid bodies and, consequently, increased sympathetic activity [19,20]. Moreover,
proximal tubular sodium reabsorption is increased, leading to diminished distal sodium
delivery and stimulating the macula to increase renin secretion, thereby contributing to the
perpetuation of the vicious cycle of hypertension and fluid overload [21].

2.2. Adipose Tissue-Related Pathway

Excessive accumulation of fat in patients with obesity enhances the endocrine and
paracrine capabilities of adipocytes [22]. Visceral adipocytes also contain angiotensinogen,
and their activity directly depends on the increase in BMI related to fat [23]. Adipocytes
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are responsible for the secretion of adipokines. Among the most important adipokines
are leptin, adiponectin, tumor necrosis factor-« (TNF-«), resistin, interleukin-6 (IL-6), and
plasminogen activator inhibitor 1 [24].

Adiponectin typically facilitates the oxidation of fatty acids and plays a crucial role
in the regulation of glucose metabolism. This adipokine is primarily secreted by adi-
pose tissue and is present in the bloodstream. Adiponectin levels are directly associated
with renal function. Its physiological effects are mediated through receptors located in
various tissues, including the arterial endothelium, smooth muscle cells of the kidney,
and capillary endothelium [25]. In patients with obesity, there is an independent in-
verse association between albuminuria and adiponectin levels in nondiabetic individuals
with overweight or obesity [26]. Thus, low levels of adiponectin also correlate with im-
paired fatty acid metabolism and insulin resistance. Studies in mice have shown that
the deletion of adiponectin is associated with podocyte dysfunction, interstitial fibrosis,
and albuminuria [27].

Unlike adiponectin, leptin levels are elevated in individuals with obesity and CKD,
which represents a greater risk of hypertension, inflammation, and fibrosis [28]. Leptin
enhances hypertension through the activation of the RAAS and increased sympathetic
activity. Leptin also enhances fatty acid oxidation, the secretion of inflammatory cytokines
such as monocyte chemoattractant protein-1 (MCP-1), and the formation of the NLRP3
inflammasome, exacerbating renal inflammation and fibrosis [29]. Studies have found
that hyperleptinemia may contribute to the development of glomerulosclerosis and exert
profibrotic effects on mesangial cells [28].

The activation of the NLRP3 inflammasome has been described in diabetes and obesity-
related glomerulopathy (ORG), as hyperlipidemia and hyperglycemia activate the inflam-
masome through reactive oxygen species, mitochondrial damage, and stress [30,31]. At the
renal level, the inflammasome acts in both the tubule-interstitium and glomeruli, promoting
albuminuria through fibrosis and podocyte effacement [32].

Finally, the intestinal microbiota has also been identified as a key factor in the de-
velopment of diseases such as obesity, T2DM, CKD, cardiovascular diseases, and certain
types of cancer, due to its regulatory role in energy and immune balance [33]. Intestinal
dysbiosis can be both caused and exacerbated by uremia, making CKD a contributing
factor that is part of the vicious cycle of ongoing damage to the microbiota, alongside
pro-inflammatory processes [34]. It has been observed that children with obesity present
elevated levels of Bacteroides compared to the control group, and that quantitative and
qualitative alterations of the intestinal microbiota are common in patients with CKD and
end-stage renal disease (ESRD) [35,36].

2.3. Insulin Resistance-Hyperinsulinism Pathway

Insulin resistance is directly related to the visceral fat mass of individuals and the
secretory activity of adipokines. The pro-inflammatory state of obesity inhibits insulin
receptor substrate 1 (IRS-1) signaling pathways in adipose and muscle tissue, as well as
limits the activity of peroxisome proliferator-activated receptor gamma (PPARY), which is
responsible for the processes of fat storage and lipid synthesis in adipose tissue [37].

Excessive insulin secretion interferes with podocyte and cytoskeleton activities [38].
Podocytes express glucose transporters (GLUT1, GLUT2, GLUT3, GLUT4, and GLUTS) and
components of the insulin signaling cascade, such as IRS and the insulin receptor. Podocytes
are capable of glucose uptake in response to insulin stimulation through GLUT4, as GLUT4
is the glucose transporter most sensitive to such stimuli [39,40]. Under normal conditions,
insulin induces the rapid translocation of GLUT4 to the plasma membrane, promoting
cytoskeletal remodeling and contraction, thereby facilitating the physiological response to
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glomerular pressure. Renal damage is manifested by the inability to phosphorylate AKT,
which prevents the translocation of GLUT4 to the plasma membrane following insulin
stimulation and, consequently, decreases glucose uptake. The deficiency of GLUT4 also
suppresses the mammalian target of rapamycin (nTOR) pathway, resulting in a deficit in
nutrient sensing [41]. Furthermore, insulin promotes tubulointerstitial fibrosis by enhancing
the formation of type IV collagen and TGF-f3 in the renal tubules [38].

3. Effect of Obesity on Kidney

Obesity is one of the modifiable risk factors for the development of CKD. There is
evidence linking obesity to CKD. According to reports, 14 individuals per 1000 adults
in the United States have obesity associated with CKD. Additionally, between 20% and
30% of individuals with obesity suffer from kidney disease, and more than 20% of adults
with ESRD are diagnosed with morbid obesity [42]. Furthermore, obesity is a factor
that complicates access to kidney transplantation in patients with ESRD, as the risk of
complications increases compared to recipients with a normal BMI [43,44]. While obesity
is described as a risk factor for the development of kidney disease, there are phenotypes
of obesity that also represent a risk for renal damage. In the meta-analysis conducted by
Valizadeh et al., it is noted that healthy patients with overweight and obesity have a higher
risk of renal dysfunction, refuting the previously established notion of the benignity of
these phenotypes [45].

Remarkably, the previously mentioned inflammatory mechanisms contribute to
changes in renal structure, both due to the accumulation of ectopic fat and the increase in
fat within the renal sinus [46]. Furthermore, obesity is also a risk factor for renal lithiasis
and renal neoplasms. Nephrolithiasis is associated with low urinary pH, increased urinary
oxalate, uric acid, and other electrolytes, while insulin resistance promotes the production
of insulin-like growth factor 1, which may exert stimulating effects on the growth of various
types of tumor cells [47].

ORG represents the structural manifestation of renal damage directly attributable to
excess body weight; histologically, it is characterized by structural alterations in both the
glomerulus and the renal interstitium [48,49]. Despite the fact that the prevalence of obesity
is continuously increasing, only a proportion of individuals with obesity develop ORG.
This suggests that predisposing factors, such as genetic susceptibility or low nephron mass,
modulate the individual vulnerability of patients to chronic damage [50]. The albuminuria
associated with ORG may present with objective clinical findings such as hypertension
and/or edema, or it may be asymptomatic [51]. Since the presence of albuminuria indicates
existing renal damage, recent experimental studies are advancing transcriptomic analysis
to facilitate the prompt diagnosis of ORG through non-invasive biomarkers [52].

ORG is characterized by glomerulomegaly, focal and segmental glomerulosclerosis
(FSGS), and tubulointerstitial fibrosis. Glomerulomegaly is defined as the diffuse enlarge-
ment of glomerular size and is interpreted as a compensatory mechanism in response to
increased demand for renal function [23]. Morphologically, there is an enlargement of the
glomeruli compared to the mean glomerular diameter of patients without obesity, adjusted
for age and sex [49]. Additionally, it is accompanied by mesangial expansion and podocyte
hypertrophy with foot process fusion [23]. Perihilar predominant FSGS is characterized
by partial and heterogeneous podocyte effacement, with proteinuria generally in the sub-
nephrotic range. The clinical manifestations of ORG are often variable [53]. Obesity also
promotes the deposition of lipids in mesangial cells, podocytes, and renal tubules, which
in turn enhances fibrosis and tubulointerstitial atrophy [46,54]. Finally, metabolic stress,
combined with factors such as hypertension or dysfunction of the renin-angiotensin axis,
promotes fibrosis through the activation of TGF-f3 and other profibrotic pathways [23].
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4. Obesity and Cardiovascular-Kidney—-Metabolic Syndrome

Cardiovascular disease is a significant cause of morbidity and mortality in individuals
with obesity. The cardiometabolic risk depends on the distribution of fat, with visceral
adipose tissue representing the highest associated risk [55]. Remote and local adipose
tissue also exert pro-atherogenic and pro-inflammatory effects in certain organs [56]. Obe-
sity accelerates the process of atherosclerosis through various mechanisms, including
insulin resistance and inflammation. Thus, atherosclerosis promotes the development of
cardiovascular diseases, such as ischemic heart disease, stroke, and death [10].

The development of atherosclerosis begins in childhood, with endothelial dysfunction
and damage to the tunica being its initial steps. Consequently, the endothelium expresses
adhesion molecules such as vascular cell adhesion molecule-1 and MCP-1, which are
responsible for recruiting inflammatory cells such as monocytes and lymphocytes. The
recruited monocytes mature into macrophages that take up cholesterol particles. The
resulting inflammatory response leads to the secretion of interleukins, which promote
the synthesis of extracellular matrix, consolidating and propagating the development of
atheromatous plaques [57].

Obesity is one of the risk factors for cardiovascular disease, as the pro-inflammatory
state exacerbates vascular damage and the recruitment of inflammatory cells. Obesity is
also associated with metabolic distress. Several studies have shown that a high BMI and /or
the accumulation of abdominal fat increase cholesterol deposits in the coronary arteries
and raise the risk of other comorbidities such as heart failure, atrial fibrillation, sleep apnea,
and stroke [58].

Obesity, cardiovascular disease, and renal diseases are currently encompassed within
a syndrome known as cardiovascular-kidney—-metabolic syndrome (CKM) (Figure 2). The
main objective of describing this new syndrome is to focus on the pro-inflammatory state
within a set of pathologies with similar pathophysiological phenomena, stratify risk, and
optimize treatments and preventive measures [59].

Environmental Genetic
factors factors
Proinflammatory status
Smoking ® 9
Diet ﬁ 00 g ®0
Physical activity YR
Alcohol ® .0 e
® e

Figure 2. The cardiovascular-kidney—metabolic syndrome. The cardiovascular-kidney—-metabolic
(CKM) syndrome is the result of diseases affecting the organs and systems previously discussed, fol-
lowing exposure to environmental and/or genetic factors. These factors promote a pro-inflammatory
state, triggering chronic pathologies based on inflammation and fibrosis. In addition to increasing
cardiovascular and renal risk, obesity interferes with sleep physiology and increases the risk of devel-
oping neoplasms. All these clinical manifestations are part of a vicious cycle where inflammation is
the cornerstone of the pathological process.
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5. Obesity, Diabetes, and Their Link with Kidney Disease

DM has been rising over the past decade, with an estimated 643 million people
diagnosed in 2023 [60]. However, this does not account for the undiagnosed patients
with type 2 diabetes mellitus (T2DM) who are unaware that they have this condition, in
part ascribed to delays in diagnosis or lack of access to diagnostic tools [42]. T2DM is
the most common type of diabetes worldwide, accounting for 90% of cases, and is the
result of decreased pancreatic beta-cell function and increased insulin resistance. Although
genetics plays a role, it is now established that unhealthy lifestyles and lower socioeconomic
status are among the main factors that contribute to the development of prediabetes and
diabetes mellitus [61].

DM has a significant impact on quality of life and increases cardiovascular and over-
all mortality. There is a higher risk of macrovascular complications such as myocardial
infarction, stroke, and peripheral vascular disease, while microvascular complications
include diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy [61,62]. The
increase in adipose tissue in obesity leads to the previously mentioned pro-inflammatory
state, promoting insulin resistance. As a result, the pancreas adjusts to insulin resis-
tance by initially increasing insulin secretion. However, the microenvironment created
by obesity—characterized by hypoxia, mitochondrial dysfunction, and fibrosis—increases
oxidative stress, resulting in beta-cell dysfunction and eventually leading to reduced
beta-cell mass [61].

Therefore, obesity and diabetes have a bidirectional and intertwined relationship
that is enhanced by kidney disease: obesity decreases the function of beta cells, thereby
increasing insulin resistance, which, in turn, leads to hyperglycemia and, consequently,
to T2DM. Conversely, patients with T2DM who have higher baseline insulin resistance
can contribute to obesity due to elevated insulin levels and increased hepatic gluconeoge-
nesis [61]. There is also a correlation between obesity and DM in the risk of developing
kidney and cardiovascular diseases [63].

6. Challenges of New Management Options for Obesity and
Kidney Disease

6.1. Lifestyle Interventions and Traditional Drugs

Glucose monitoring, a healthy lifestyle, and regular exercise should be the first options
and the cornerstones of treatment. Many overweight individuals and patients with obesity
might also reverse this condition or delay disease progression [64].

Traditionally, the use of angiotensin-converting enzyme inhibitors (ACE inhibitors)
or angiotensin II receptor antagonists (ARBs) has served as a fundamental treatment to
slow the deterioration of renal function by reducing the state of renal hyperfiltration,
as demonstrated by the RENAAL (losartan) and IDNT (ibersartan) studies. However,
the residual risk, despite standard treatments, continues to be a risk factor for major
adverse events [65,66].

6.2. The Emerging Treatments of Cardiovascular—Kidney—Metabolic Syndrome: Incretin-Based
Therapies and Gliflozins

Glucagon-like peptide-1 (GLP-1) is a gastrointestinal peptide secreted by the intestinal
tract that enhances insulin release and decreases glucagon concentration under normal
physiological conditions. Therefore, it represents a class of drugs based on the entero-
insular axis, capable of modulating insulinotropic activity [67]. GLP-1 receptor agonists
work by decreasing gastric emptying and increasing the sensation of fullness, thereby
improving weight loss in addition to lifestyle changes [68].
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The benefits of GLP-1 are numerous. Firstly, it has been described as playing an impor-
tant role in controlling inflammation and reducing endothelial dysfunction. Additionally, it
improves lipid metabolism and lowers blood pressure due to its natriuretic effect [69,70].
Its cardiac benefits in reducing major adverse cardiac events (MACEs) have also been
reflected in several studies, including the LEADER trial (Liraglutide and Cardiovascular
Outcomes in Type 2 Diabetes) [71], SUSTAIN-6 (Trial to Evaluate Cardiovascular and Other
Long-term Outcomes With Semaglutide in Subjects With Type 2 Diabetes) [72], REWIND
trial (Dulaglutide and Cardiovascular Outcomes in Type 2 Diabetes) [73], HARMONY
Outcomes (Effects of Albiglutide on Major Cardiovascular Events In Patients With Type
2 Diabetes Mellitus) [74], SELECT trial (Semaglutide and Cardiovascular Outcomes in
Obesity without Diabetes) [75], and SOUL trial (Oral Semaglutide and Cardiovascular
Outcomes in High-Risk Type 2 Diabetes) [76].

Additionally, the renal benefits of GLP-1 have been described in patients with obesity,
with or without T2DM, through studies such as the AMPLITUDE-O trial (Cardiovascular
and Renal Outcomes with Efpeglenatide in Type 2 Diabetes), which demonstrated a reduc-
tion in albuminuria and less deterioration of renal function in the efpeglenatide group [77].
Additionally, the AWARD-7 trial (Dulaglutide versus insulin glargine in patients with type
2 diabetes and CKD) demonstrated a reduction in insulin use among patients treated with
dulaglutide as well as a lower incidence of the combined endpoint of progression to ESKD
or a reduction in glomerular filtration rate [78]. The LEADER and SUSTAIN-6 trials showed
a reduction in MACE as well as a decrease in the progression of CKD due to a reduction
in albuminuria [71,72]. The FLOW trial (Effect of semaglutide versus placebo on the pro-
gression of renal impairment in people with type 2 diabetes and chronic kidney disease)
demonstrated that subcutaneous semaglutide was associated with a risk reduction in major
adverse renal events (MARE) and death from cardiovascular causes in patients with T2DM
and CKD [79]. The SMART (Semaglutide in patients with overweight or obesity and chronic
disease without diabetes: a randomized double-blind placebo-controlled clinical) trial also
established that semaglutide treatment for 24 weeks resulted in a clinically meaningful
reduction in albuminuria in patients with overweight/obesity and non-diabetic CKD [80].

Sodium-glucose cotransporter-2 inhibitors (SGLT2i), also known as gliflozins or flozins,
have proven to be a fundamental pillar in the treatment of CKM syndrome due to their in-
hibition of sodium and glucose reabsorption in the proximal convoluted tubule, promoting
urinary glucose excretion and osmotic diuresis [81,82]. The success of this class of drugs
is based on an insulin-independent mechanism that involves a competitive interaction
between the SGLT2 protein and glucose binding in the renal tubules, followed by the
transport of glucose across the basolateral membrane into the bloodstream [83].

There are sufficient clinical trials demonstrating the effectiveness of SGLT2i in the
treatment of hyperglycemia, while also enhancing blood pressure control, promoting
weight loss, and reducing the risk of developing MACE [84]. From a renal perspective,
the CREDENCE (Canagliflozin and Renal Outcomes in Type 2 Diabetes with Established
Nephropathy Clinical Evaluation) [85], the DAPA-CKD (Dapagliflozin and Prevention of
Adverse Outcomes in Chronic Kidney Disease) [86], and the EMPA-KIDNEY (Empagliflozin
in Patients with Chronic Kidney Disease) trials have shown a reduction in MARE, including
decreases in albuminuria, mortality, and progression to CKD [87].

Although it is not from a group of drugs primarily used to treat obesity, finerenone is a
highly selective non-steroidal mineralocorticoid receptor antagonist; its binding blocks the
recruitment of transcriptional coactivators involved in the expression of pro-inflammatory
and profibrotic factors. The FIDELIO-DKD (Effect of Finerenone on Chronic Kidney
Disease Outcomes in Type 2 Diabetes) and the FIGARO-DKD (Cardiovascular Events with
Finerenone in Kidney Disease and Type 2 Diabetes) studies demonstrated a reduction in
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MACE and MARE, along with a significant reduction in albuminuria levels compared to
the control group [88,89].

6.3. Bariatric Surgery and Alternative Weight Loss Procedures

Bariatric surgery leads to favorable long-term outcomes, including reductions in body
weight, decreased cardiovascular disease risk, improved glycemic control, and enhanced
quality of life [90]. This surgery is offered to individuals with a BMI of >40 kg/m? who
struggle to lose weight despite lifestyle changes and exercise, or to those with a BMI of
>35 Kg/m? who have obesity-related comorbidities such as hypertension, T2DM or MS.
Several studies have demonstrated improvements in estimated GFR and inflammatory
biomarkers, as well as remission of albuminuria, following bariatric surgery [91-94]. Never-
theless, these invasive procedures are often associated with long-term side effects [91,95,96].
Other procedures, such as gastric emptying systems or intragastric balloons, have been
proposed to achieve weight loss and, consequently, better glycemic control. However,
studies regarding the long-term efficacy and safety of these devices are scarce [97].

6.4. Emerging Frontiers

Currently, there are no obesity biomarkers associated with the progression of CKD.
Albuminuria remains one of the most reliable markers, but its presence indicates estab-
lished structural damage. The literature regarding other biomarkers is relatively scarce.
Nevertheless, microRNAs (such as microRNA-802, microRNA-155, microRNA-130b, and
microRNA-21) are emerging as potential biomarkers for both obesity and the progression
of CKD, as they can regulate pathways that culminate in inflammation and fibrosis in
renal tissue [52].

6.5. Challenges

Obesity is a multifactorial and complex disease with numerous implications and
consequences. Once kidney disease is established, reversing the inflammation and fibrosis
caused by obesity is a matter of significant interest. Finerenone is one of the few drugs that
allows for the reduction of renal inflammation and fibrosis. Studies are being conducted to
verify its efficacy in non-diabetic CKD patients (FIND-CKD trial) [98].

6.6. Future Directions

Given the rapid increase in obesity prevalence, newer medications have been proposed,
with recent studies highlighting the role of growth/differentiation factor 15 (GDF15).
GDF15 belongs to the transforming growth factor-beta family, and when overexpressed,
it leads to reductions in body weight and food intake in obese mice and monkeys. A
dual analogue drug (GLP-1-GDF15) is being developed and has already demonstrated
reductions in body weight, food intake, triglyceride levels, and glucose levels in obese
mice and monkeys. This drug may constitute an important tool against obesity and
kidney disease [5].

7. Conclusions

Obesity is associated with diseases that increase the morbidity and mortality of indi-
viduals. While obesity is related to the development of cardiovascular diseases and their
associated complications, CKD is of vital importance, as it represents the continuation of
the vicious cycle of inflammation, with bidirectional deleterious effects. Currently, obesity-
focused treatments also benefit patients with diabetes, cardiovascular disease, and CKD.
The key to these new treatments is breaking the toxic cycle of inflammation to reduce its
adverse effects in both the short and long term. The treatment of CKD syndrome aims to
improve the associated comorbidities of obesity through a holistic approach.
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