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The rapid growth of artificial intelligence (AI) in health care is
promising for screening and early diagnosis in settings that
heavily rely on professional expertise, such as rare diseases like
inborn errors of immunity (IEI). However, the development of
AT algorithms for IEI and other rare diseases faces important
challenges such as dataset sizes, availability and harmonization.
Similarly, the implementation of Al-based strategies for
screening and diagnosis of IEI in real-world scenarios is
hampered by multiple factors including stakeholders’
acceptance, ethical and legal constraints, and technologic
barriers. Consequently, while the body of literature on AI-based
solutions for early diagnosis of IEI continues to expand,
clinical utility and widespread implementation remain limited.
In this review, we provide an up-to-date comprehensive

review of current applications and challenges facing Al use
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Primary immune disorders, also known as inborn errors of
immunity (IEI) or genetically driven blood and immune disorders,
encompass a broad spectrum of genetically and environmentally
influenced conditions that compromise immune function.'” The
broad spectrum of their possible clinical presentations often involves
complex combinations of infection susceptibility, immune dysregula-
tion, inflammation, atopy, and malignancy risk, posing significant
challenges to timely diagnosis. As a result, patients often undergo mul-
tiple consultations with various medical specialists before an accurate
diagnosis is established. This long journey typically results in a diag-
nostic delay that may range between 1.3 years and decades, with a 4-
to 7-year average in children and longer times in adults in real-world
settings.“’ The diagnostic delay in IEI not only exacerbates morbidity
and mortality but also increases the burden on health care systems.”*

Traditional diagnostic pathways rely on expert clinical recogni-
tion, targeted genetic testing, and functional immunologic assess-
ments, which are time-consuming and costly. Medical settings that
depend heavily on professional expertise have been identified as
areas that may benefit from artificial intelligence (Al) (see the Online
Repository available at www.jacionline.org for a glossary of Al-
related terms), which can process vast amounts of clinical and labo-
ratory data, reducing workload and increasing accuracy.” In recent
years, a growing body of literature has highlighted promising Al-
driven approaches for screening and early diagnosis of diverse dis-
ease domains, including IEL'® Fig 1 illustrates the vast amounts of
data generated throughout an IEI patient’s journey from symptom
onset to definitive diagnosis, highlighting windows of opportunity
for Al use at various stages. The availability of machine learning
(ML) and deep learning techniques to analyze these data suggests
that Al could be a game changer in the management of IEL. However,
many issues must be addressed before translating Al-based solutions
from research to day-to-day clinical practice.

Here we present a state-of-art overview of Al application on
immunodeficiencies, including proof-of-concept examples not
only in exploiting electronic health records (EHRs) but also in
genomics. Finally, we provide an in-depth analysis of the
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Abbreviations used

Al Artificial intelligence
CNN: Convolutional neural network
EHR: Electronic health record

IEI: Inborn errors of immunity

ML: Machine learning

RD: Rare disease

SID: Secondary immunodeficiency

challenges that may hinder the effective implementation of these
strategies in real-world settings.

CLINICALLY FACING APPLICATIONS OF Al USE IN
IMMUNODEFICIENCIES

The potential of Al algorithms for early diagnosis and precise
identification of complex and rare diseases (RDs), such as IEI,
based on vast amounts of data has raised much interest in both
patients and health care professionals. Al-based models poten-
tially improving the management of IEI can be broadly classified
into generative and discriminative approaches. Discriminative
models focus on classification tasks by learning decision
boundaries that separate inputs into predefined categories. Unlike
generative models, discriminative algorithms, including support
vector machines, logistic regression, and decision trees, require
labeled data during training to guide their learning process
effectively. In contrast, generative models aim to learn the joint
probability distribution of input and output data, allowing them to
generate new data samples based on identified patterns.

Screening and identification of individuals with
immunodeficiencies

A major focus of IEI patient advocacy groups has been the
achievement of faster and more accessible diagnoses. After suspi-
cion for an IEI arises, the time between a patient’s initial clinical
symptoms and referral to a specialist center can be particularly
challenging and discouraging for both patients and their families.

However, unlike more common conditions such as diabetes or
breast cancer, diagnosing IEI is uniquely complex because it
requires distinguishing from among 600+ gene—disease relation-
ships, each presenting with diverse phenotypes. This complexity
is further challenged by the limited availability of robust datasets,
which are often geographically dispersed and siloed across mul-
tiple health care centers and highly diverse EHR systems.

The urgent need to improve diagnostic pathways has spurred
awareness campaigns, including the creation of the widely recog-
nized “10 Warning Signs” for IEI'""* or updated versions of
them.'”'® While these efforts are critical in educating the public
and health care providers, they remain insufficient—particularly
given the overwhelming amount of information faced by general pe-
diatricians and practitioners across various medical fields.

In this context, supervised ML algorithms have emerged as a
promising tool for identifying at-risk patients using EHRs and
clinical phenotype databases. In the field of IEI, Al has already
demonstrated its value for the first step (eg, identification of patients
with potential disease from preexisting databases). An early
innovation—the SPIRIT tool—used diagnosis and pharmacy codes
within insurance claims data to classify patients into high, medium,
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or low risk for IEI using a point-based system.'’ Mayampurath
et al’” developed a ML model using EHR data to discriminate be-
tween potential IEI and control patients for a single center, noting
that extension from a logistic regression model to more advanced
ML models did not improve performance for their patients, while
Rider et al”' showed that an ML classifier with weighted rules could
screen for IEI across a large population with high accuracy. More
recently, ML and data mining techniques were used to identify
patients with specific IEI endotypes within the USIDNET registry,
while an ML algorithm called PheNet showed ability to identify
common variable immunodeficiency patients earlier than traditional
methods, with high accuracy in external validation across multiple
medical systems.”” AI has been used to collect phenotypic data,
with natural language processing extracting features from clinical
notes”’ and deep learning imputing missing phenotypes in biobank
datasets to expand sample size.”" Discriminative and generative
facial analysis tools assist clinicians in syndrome identification,
with similar strategies applied to histopathology, imaging, and
cellular data to generate data-driven models.

Regardless of the algorithm approach, these models have
demonstrated the ability to improve IEI screening by leveraging
diverse types of nongenomic data, ranging from automated data
extraction and application of the classical “10 Warning Signs” to
sophisticated deep learning designs for early diagnosis.'' Table I
lists examples of these approaches.”

EXAMPLES FROM OTHER RARE DISEASE
DOMAINS

Initiatives in other RD domains have shown promising results
with potential for extrapolation to IEIs. For instance, Faviez et al*®
applied semantic similarity-based approaches to structured and un-
structured EHR data to identify patients who may have rare ciliopa-
thies. This approach could be adapted to IEI screening as well.

Retrieval augmentation generation, as demonstrated with Rar-
eDxGPT, an enhanced ChatGPT model that integrates information
about RDs from an external knowledge resource, has shown potential
clinical utility.34 This approach could be used to help nonimmunol-
ogists improve IEI patient care. However, the primary challenge lies
in building and continuously updating the model with a well-curated,
high-quality external database.

Recent studies in RD predictive modeling, such as Bayesian
approaches in monogenic diabetes,*” could inform similar strate-
gies for secondary immune disorders (SIDs) (eg, due to steroids or
rituximab). The recalibration methods used in distinguishing
maturity-onset diabetes of the young from type 1 diabetes high-
light how integrating real-world data into Al algorithms can
improve diagnostic precision. Such methods may enhance IEI
detection by distinguishing them from the broader and more prev-
alent SID. However, unlike type 1 diabetes, SID also remains
underdiagnosed and poorly characterized, presenting additional
challenges for Al application.

At present, although models such as SPIRIT incorporate SIDs to
refine risk prediction,”’ most existing tools explicitly exclude sec-
ondary causes.''"”** Nonetheless, the clinical overlap between
primary and secondary immunodeficiencies is well recognized,
with shared warning signs and overlapping phenotypes, thus offering
an opportunity for mutual detection of both IEI and SIDs. ' !+20-2228-2
Future models should aim to address this overlap explicitly by incor-
porating treatment history, medication exposure, and longitudinal
immune trends to improve discrimination between IEI and SIDs.
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FIG 1. Opportunities for Al in patient and data journey throughout primary immunodeficiencies.

MOLECULAR DIAGNOSTIC APPLICATIONS OF Al
USE IN IMMUNODEFICIENCIES
Al use for rare genetic disease diagnoses
Significantly reduced sequencing costs have driven the increased
clinical adoption of genomics for diagnostic and screening
purposes, as well as the growth of large population sequencing
initiatives involving greater participant diversity. However, unlike
population-based approaches, many datasets for IEIs involve
smaller sample sizes and greater complexity than those found in
other domains utilizing AI. Additional challenges include the large
size of the human haploid genome, which consists of over 3 billion
bases, and our still limited understanding of the functional aspects of
most genomic variants. For instance, we do not yet know the exact
number of protein-coding genes in the human genome, the functions
of most of these genes, or the impact of individual variants on gene
expression, RNA transcription, protein production, and their ulti-
mate cellular and phenotypic consequences. Moreover, no gene
operates in isolation. The ultimate impact of its protein products
depends on posttranslational modifications, subcellular trafficking,
secretion, and interactions with other proteins and environmental
factors. Thus, achieving molecular diagnosis through the identifi-
cation of a single rare variant driving immune dysfunction is no
longer enough. Now we must also confront many layers of
additional modulation that determine each individual’s specific
expression of disease. Wrestling with this multidimensional
complexity offers new opportunities for the application of Al

Current Al applications in genomic data processing
and analysis

Al-based tools have been used at virtually every stage of genomic
analysis (Table I1).**“® After sequencing, Al enhances the accuracy

of short- and long-read data and aids in alignment-based or
alignment-free mapping, crucial for structural variant calling. It
also helps create patient- and ancestry-specific reference genomes
via de novo assembly or pangenome construction. However, the
biggest preoccupation of Al applications currently resides with
variant calling and prioritization, the processes most directly linked
to identifying potential disease-causing loci in sequencing data.
Tools like DeepVariant use deep convolutional neural network
(CNN)-based approaches to call single nucleotide polymorphisms
and small insertions and deletions (indels) from next-generation
sequencing data by transforming the variant calling problem into
an image recognition task, where the CNN analyzes images of
read pileups to predict genotypes.”” Many other CNN-based algo-
rithms have been developed to accommodate different sequencing
platforms and/or different variants of interest (eg, de novo, struc-
tural, noncoding, somatic). Many Al-based decision support tools
are actively in use for clinical- and research-based variant prioritiza-
tion. Some are disease or application specific while others are more
general; all offer the capacity to aggregate and synthesize multidi-
mensional features including phenotypic, phylogenetic, functional,
model organism, and in silico pathogenicity predictors (which
themselves may be Al based), even for poorly annotated loci.
A number of these tools have demonstrated on par”® if not superior™
discovery and time performance compared with manual analysis or
reanalysis’® for RDs, though experiences across the IEI realm may
vary because of the significant differences in clinical and genetic
paradigms between IEI and other RD landscapes.”’ Some tools
apply differential weighting of clinical phenotypes to help refine
candidate prioritization. Many of the above programs build in auto-
mated variant classification, but stand-alone Al tools also exist for
classification of individual variants. Again, the conclusions of these
tools often need to be adjusted in the context of gene- and disease-
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TABLE I. ML approaches to diagnosis and/or screening of primary and secondary immune disorders

Study Data source IEl focus Objectives
Rider (2019-23),'%2"%3 Primary and secondary care/structured data All IEI Development and validation of Al-driven diagnostic
Modell (SPIRIT) (2017)*° tools for IEI, focusing on predictive modeling and

clinical decision support; population screening and
early IEI detection using health care claims and
electronic records

Roberts (2024)*7 Secondary care/unstructured data (free text) All IET Proof of concept of free-text analysis in early IEI
diagnosis

Johnson (2024)* Secondary care/structured data CVID/PAD Identification of CVID by ML using PheNet from EHR

Messelink (2023)*%2° Primary care/structured data PAD Early diagnosis of PADs in general population and
proof of concept of implementation in primary care

Mayampurath (2022)*° Secondary care/structured data PAD* Risk stratification and prediction model for PADs

Takao (2022)* Secondary care/structured data All IEI Development and comparison of risk prediction models
to identify children at risk for IEI in immunology
clinic

Méndez Barrera (2023)' Registry (USIDINET)/structured data 12 IEL Proof of concept of computational aid to assist IEI
clinical diagnosis

Riviere (2025)" Primary care/structure data (ICD codes) All IET Early diagnosis of IEI in general population and proof
of concept of primary care implementation

FitzPatrick (2025)* Secondary care/structure data (ICD codes) APDS Identification of APDS patients through ICD codes

APDS, Activated p1108 syndrome; CVID, common variable immunodeficiency; /CD, International Classification of Disease; PAD, predominant antibody deficiency.

specific knowledge, prompting some to develop more gene-specific
tools.

IMPLEMENTATION CHALLENGES
Implementation gap

Among the promising applications of large language models,
which can process and integrate vast amounts of structured and
unstructured data, Al-based screening strategies have emerged as
a potential solution to mitigate underdiagnosis in conditions
where early detection heavily depends on professional expertise.
Some remarkable examples of this use of Al to this purpose
include systematic breast cancer screening through mammog-
raphy,'®" retinopathy detection from fundoscopy,'' and the early
identification of atrial fibrillation.'**

However, while the number of proof-of-concept studies, as well
as development and validation efforts for Al-based screening
algorithms, including the IEI use cases described in Table I, con-
tinues to grow, only a handful of studies have reported the successful
implementation of these algorithms in real-world settings and
outside the field of IEL'""'%"'9 Recent experiences in deploying
and evaluating Al-based screening tools have highlighted key chal-
lenges that contribute to this gap between evidence generation and
practical implementation. These challenges span multiple domains,
including psychological patient-related factors (eg, privacy
concerns, bias), professional considerations (eg, lacking trust in
algorithms, need for interpretability), and issues faced by developers
and policymakers (eg, data integration, regulatory hurdles).

Notably, all real-world implementations of Al-based screening
systems to date have been limited to single centers or a small
number of facilities in specialized settings. However, for RD such
as IEI, meaningful results are unlikely to be achieved without
scaling these algorithms to a nationwide level. Such scaling
efforts would inevitably amplify the existing challenges, under-
scoring the need for robust strategies to address these barriers.
Finally, it is worth mentioning that screening for IEI or other RDs
at the population level should not be viewed in isolation but rather

as part of the broader complexity of health care systems. Primary
care physicians, and in general all physicians, are not expected to
recognize or retain alerts for every rare condition outside their
field, making it essential to develop Al-driven models that
prioritize minimizing false alarms. Furthermore, as Al strategies
for screening evolve, other areas aside from immunology may
also introduce alert systems for early diagnosis. Alert fatigue and
its consequences should be addressed in any implementation
study and taken into account when assessing statistical power of
Al models.'” Additionally, in the context of increasing patient
involvement in clinical decision-making, the potential for patients
to access these alerts through personal health records will need to
be thoughtfully considered.

The difficulties of translating evidence-based solutions into
real-world practice are not limited to Al In the past years,
increasing awareness has been raised about the need for system-
atically investigating barriers and facilitators of real-world
adoption of evidence-based solutions in medicine. This process,
addressed by the emerging field of implementation science, has
provided several theory-based implementation frameworks for
successful adoption and monitoring of evidence-based solutions
in routine care.'””""”

Despite the promising applications of Al in enabling early
diagnosis of IEI, no large-scale Al-driven screening strategies
have been effectively implemented to date. Given the complexity
of integrating multiple data sources and health care levels to
meaningfully identify IEI within the general population, a
systematic, theory-based approach to implementation will be
essential. The following sections outline some of the most
significant potential barriers to this endeavor, analyzed from the
perspective of the primary stakeholders: health care profes-
sionals, patients and caregivers, and health care systems (Fig 2).

Regulation in Al development and implementation

The regulatory landscape governing Al development and
implementation is continuously evolving. As with many techno-
logic innovations, the establishment of legal and regulatory
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TABLE Il. Examples of Al tools used at different stages of RD diagnostics

Step in clinical diagnostics where Al has been
applied

Examples from RD

Specific RDs: Fabry,”® Pompe,”’ hereditary transthyretin amyloidosis.*®

All RDs: Using diagnostic billing information® or NLP-based feature extraction.””
Facial data: PhenoScore,*’ DeepGestalt.J'I

Flow and mass cytometry data.*”

Cellular imaging data.*’
Cancer histopathology data.
SRS correction: MAC—ErrorReads,47 CARE 2.0.*%

LRS correction: DeepConsensus for PacBio data,w NanoReviser for ONT data.”’

44-46

52,53

SRS: BWA—MEME,S(‘ Embed-Search-Align transformer model.”’
LRS: HQAlign,’® 1ordFAST,” kngMap,** S-conLSH.®'

SRS and LRS data: Clairvoyantefyz HELLO.%

De novo: DeNovoCNN.**

Identification of patients with potential genetic o
diseases meriting evaluation from EHR data °
Clinical phenotypic discrimination °
Laboratory phenotypic discrimination °
[ ]
[ ]
Refinement of raw sequencing data °
[ ]
Reference genome construction ® De novo assembly.”’
® Pangenome assembly.
Reference genome annotation ® Helixer.”*
® DeepGenGrep.””
Mapping to reference genome °
[ ]
Variant calling °
[ ]
® SV: Cue.”
@ Noncoding:*°

ey 67 : 68
Hi-C interactome data,”’ genome sequence features + chromatin structure,’

. 9
transfer learning based.®

Somatic: Paired tumor—-normal data,

7071 tumor-only data.”*

Variant prioritization and triage ® Phenotype-driven refinement: PhenoApt,”* GenomeDiver.”*
® Decision support tools: Fabric GEM,75 Moon,’® AI-MARRVEL,"’
Nostos AION, EvORanker,” eDiVA,” Xrare."’
® Pathogenicity prediction: SpliceAL"! AlphaMissense.®”

® Discase specific: Congenital hearing loss (GenOtoScope),* cancer.
® General: Franklin Genoox,}"7 VarSome,}”8 LEAP,89 MAVERICK,”’ Genomenon Mastermind.”'
® Gene or disease specific: BRCA1/2,”> ATP7B,”* CPVT- and LQTS-related genes.”

® Chatbot for delivery of pretest informed consent counseling.”

® Chatbot for return of positive HCPS screening results.

Data aggregation platforms with or
without variant classification
Genetic counseling and return of results

84-86

96

CPVT, Catecholaminergic polymorphic ventricular tachycardia; HCPS, hereditary cancer predisposition syndrome; LQTS, long QT syndrome; LRS, long-read sequencing; NLP,

natural language processing; SRS, short-read sequencing.

frameworks struggles to keep pace with rapid advancements in
Al-based health care solutions. Currently, Al algorithms designed
for clinical decision support are classified as medical devices.
Consequently, these algorithms must comply with regulatory
standards and obtain clearance from relevant agencies by
demonstrating safety, accuracy, and seamless integration with
existing health care systems. Given the novelty of Al applications
in the medical device sector, the US Food and Drug Administra-
tion introduced a specific action plan in 2021 to regulate Al-based
software as a medical device.''” This action plan was intended to
ensure not only the safety and efficacy of approved algorithms but
also the robustness of future modifications. A regulatory frame-
work that balances regulatory oversight for safeguarding patient
safety and privacy with prevention of excessive regulation that
could impede innovation was intended to follow but has not yet
been implemented. In the European Union, an overarching frame-
work for Al regulation, the Artificial Intelligence Act, has also
recently been developed and began implementation in 2024.
However, Al algorithms designed for clinical decision support
are categorized as medical devices and must therefore comply
with medical device regulation. The European Medicines Agency
is currently formulating a specific Al regulatory framework for
medical devices, anticipated to take effect by August 2026.""'
Beyond specific regulatory considerations for Al algorithms to
ensure their safe and effective use in health care, their development
requires the integration of extensive datasets from diverse sources.
Although these datasets undergo deidentification before their use in

training and validation, deep learning algorithms have demonstrated
the capacity for reidentifying individuals through complex data
correlations, including but not limited to genetic information.''>'"?
The potential for patient reidentification poses significant ethical and
legal concerns, potentially leading to discrimination in employment
and health insurance, as well as emotional distress and diminished
trust in the health care system from potential misuse of private med-
ical data.''>"'* While anonymization techniques exist to mitigate
reidentification risks, overly stringent anonymization may compro-
mise data utility, thereby reducing algorithmic accuracy.''” Feder-
ated learning and swarm learning approaches,''® which enable
decentralized model training without requiring direct data sharing,
represent a promising alternative for facilitating secure data collab-
oration while preserving patient privacy.''’

Stakeholder barriers

Because health care is primarily delivered and received by
humans, the adoption of new technologies—regardless of their
demonstrated effectiveness—depends on their acceptance by both
users (eg, health care professionals) and recipients (eg, patients and
caregivers).] '8 In the context of Al, trust in these technologies,
particularly among health care professionals, has been identified
as a significant barrier to adoption.”'"” Survey-based studies indi-
cate that acceptance of Al in health care is heterogeneous and
may be influenced by factors such as professional seniority.”
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FIG 2. Potential challenges (left) and mitigation actions (right) associated with implementation of Al-based

solutions for early IEl diagnosis.

However, interpretability has consistently emerged as a key deter-
minant of trust and acceptability among health care
professionals.”"''%!

A major challenge in achieving explainability is the accuracy
toll associated: while advanced deep learning approaches may
increase classification performance, their “black box” nature can
limit clinical interpretability. In contrast, more transparent
models (eg, rule-based or probabilistic frameworks) may be
more likely to gain professional acceptance and facilitate integra-
tion into clinical workflows, particularly in settings where clinical
decision support must be explainable.'”' Beyond general skepti-
cism associated with novel technologies, explainability
(including understanding data sources) is crucial for identifying
potential biases,'”> which can be significant in IEI and be origi-
nated from both clinical and genomic information.'**'?* Al
algorithms are inherently trained on datasets that may not
comprehensively represent the complexities of health care,
thereby perpetuating existing inequities in health care access
and delivery.'”>'?° Encouragingly, significant efforts are under-
way to develop interpretability techniques that mitigate the
accuracy—interpretability trade-off.'?' Recently issued recom-
mendations for increasing transparency and reducing algorithmic
bias in Al should also be considered when developing these
models.'** This guidance is still limited in Al-based genomic
tools, which currently rely on general computational tools.'*’ In
addition to interpretability and understanding of Al solutions,
effective communication between medical and technical experts
will also be a mainstay for successful implementations of these
solutions. Therefore, user-centered codesign approaches are high-
ly encouraged before planning implementation of evidence-based
Al solutions in routine care.'**'*

Finally, as Al becomes increasingly integrated into medicine,
concerns about job displacement among health care professionals
cannot be ruled out as a potential barrier to adoption.''*'*" In a screening
context, this concern is unlikely to particularly affect specialist physi-
cians, who will continue to oversee the diagnosis of suspected IEI cases.
However, it may affect general practitioners, who serve as the first point
of contact in identifying individuals at high risk for IEI on the basis of
symptoms, medical history, and diagnostic tests. To address these con-
cerns, it has been suggested that Al applications should be limited to
tasks where they demonstrably outperform human expertise.””’ In
line with this perspective, organizations such as the American Medical
Association have advocated for the term augmented intelligence rather
than artificial intelligence to emphasize Al’s role as an enhancer—rather
than a replacement—of human capabilities.'*

Data integration and harmonization

One of the fundamental challenges of Al is the vast amount of
data required for training and validation. These data must not only be
accessible and harmonized but also of high quality to prevent the
“garbage in, garbage out” scenario. This need for large datasets is
particularly challenging in the context of RDs such as IEI, and
even more so when it comes to genetic information, which is not
routinely collected in clinical practice in many regions.

The widespread integration of data in professional and personal
domains, such as banking and global distribution systems (eg,
plane ticketing, hotel bookings, car rentals), has led to the
mistaken perception that data integration in medicine is straight-
forward. However, EHRs are built on an inconsistent blend of
vendor-specific models and standards, necessitating complex
—and often inefficient—interoperability processes for meaningful
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data integration and semantic consistency. In research settings,
data harmonization can be performed in a controlled way with
multiple quality control steps. However, an automated, real-time
screening algorithm for identifying and diagnosing patients at high
risk of IEI on the basis of information collected throughout the
care journey requires true interoperability.

Interoperability is the ability to seamlessly exchange, interpret,
and use medical data across different health care providers and
systems. This process is hindered not only by regulatory
constraints related to data governance and privacy but also by
the coexistence of multiple medical ontologies (ie, structured
frameworks that define concepts and terms for consistent data
representation), such as ICD-10, SNOMED-CT, LOINC (logical
observation identifiers names and codes), and DICOM (digital
imaging and communications in medicine).'*”

The vast range of medical data sources and formats—including
structured clinical data, unstructured information such as clinical
notes, and medical imaging—further contributes to data heteroge-
neity. This may be particularly relevant for genomic data, which are
sometimes collected and stored in settings different from routine
care. Additionally, many health care facilities—and even individual
data-producing devices (eg, a diagnostic imaging machine)—
operate on isolated platforms using proprietary information models
that are incompatible with hospital information systems, preventing
direct access to comprehensive patient data through the EHR. To be
effectively utilized, unstructured data—such as radiology reports
and pathology findings—require advanced processing techniques.
Similarly, vital signs, test results, and EHR entries often differ in
format and structure across health care systems.' ** Without a robust
interoperability framework, inefficiencies arise, compromising the
quality of care and wasting health care resources.'*

All these issues related to the codification of health information
must be understood in the context of a diverse and heterogeneous
world, where health care systems globally are progressing at varying
speeds along their digitalization jourrley.13 > Beyond the differences
between health care systems, the degree of data integration can also
vary across different levels of care. Hospitals and specialized settings
often have more accessible and integrated data, whereas primary care
frequently relies on a fragmented mix of multiple provider organiza-
tions or even individual practitioners. In the best-case scenario, this
fragmented landscape will likely reduce the real-world effectiveness
and generalizability of Al models, increasing the risk of false-
positive and -negative results negatives.'*® In many cases, however,
these algorithms may struggle to operate in real-world settings as a
result of the unavailability of necessary data at the point of care.

FUTURE DIRECTIONS
Emerging applications based on generative
approaches

The use of generative Al has grown significantly since the public
launch of ChatGPT in November 2022. As previously mentioned,
the integration of sharable data and interoperability is key to the
successful implementation and scalability of Al use for RDs. For
clinical domains like IEI, data curation and standardization are
critical but currently very limited. This challenge also presents a
unique opportunity for generative Al to play a transformative role.

Beyond assisting health care professionals with routine tasks,
generative Al has shown promising results in terms of analyzing
EHRs and providing valuable support in coding and patient
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classification.'””"'** Additionally, advanced approaches such as
generative adversarial networks have demonstrated potential for
imputing missing data.'*” However, in the context of IEI—
characterized by complex phenotypes and limited datasets—there
is an elevated risk of bias, which must be carefully addressed.

Generative Al can also help bridge language and cultural
barriers, thereby improving patient—physician communication,
comprehension, and treatment adherence. By facilitating access
to medical information in multiple languages with plainer
wording, generative Al makes educational materials more inclu-
sive and accessible,”® reducing reliance on time-consuming
manual translations.

Finally, both pre- and posttest counseling are crucial in the genetic
testing process. However, health care systems lack enough trained
genetics providers to ensure all patients receive proper informed
consent counseling before testing and appropriate results counseling
afterward for responsible medical use. While our discussion has
primarily focused on discriminative models, this is one area where
generative Al could be valuable—specifically, using large language
model-powered chatbots for patient- and genotype-specific coun-
seling. These chatbots could consider relevant genetic landscapes
and inheritance models before testing and provide gene-, disease-,
and variant-specific information, along with potential clinical
implications, after testing.

Technologic evolution for Al implementation

As ongoing technologic innovation increases the complexity of
health care delivery, several key issues must be addressed to
enable successful integration of Al-driven diagnostics into real-
time clinical practice. In the long term, a profound transformation
of health care information technologies globally will be essential
to fully harness AI’s potential for routine screening and diagnosis.

Among existing clinical information systems, openEHR—an
open specification for the development of interoperable EHR
systems—has been proposed as a vendor-neutral and future-proof
solution for clinical data storage. The openEHR standard is a
dual-level architecture model (outlined in ISO13606), meaning
that it clearly separates information (ie, the data underlying
patient records) from knowledge (ie, the rules, guidelines, and
domain-specific logic that define how the data is interpreted and
used). The information layer is structured through a reference
model containing the basic entities for representing any EHR
information. The knowledge layer is based on archetypes, which
are formal definitions of clinical information models (such as
discharge reports, glucose measurements, or family histories) in
the form of structured and constrained combinations of reference
model entities. The combination of the reference model (repre-
senting data entries in the EHR) and the archetype model
(organizing these data in a meaningful and usable way) creates
systems with powerful evolutionary capabilities as medical
practice evolves. Clinical information models may change over
time, but the underlying data always remain interoperable—a
critical feature for Al integration. Several countries are progres-
sively adopting this standard,'*>'*" while alternative interopera-
bility solutions are being applied in others.'” Continuous
technologic innovation is increasing the complexity of health
care, with diverse settings and devices collecting patient data,
making interoperability essential for Al adoption. Health care
organizations worldwide are becoming increasingly aware of
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the need to code and store health information using a unified
standard. However, because many health care systems are already
in advanced stages of digitalization, implementing such a trans-
formation is expected to be highly challenging.

CONCLUSIONS

In light of all these different applications and strategies, one
might be tempted to undertake a widespread benchmarking com-
parison to determine the best-performing model. However, this may
not be feasible because most of the studies are derived from single
centers or databases, which raises concerns about generalizability.
Additionally, there is a trade-off between reaching out to every
possible source to obtain more detailed information and the
associated costs, biases, and privacy issues. As a result, a more
pragmatic and scalable approach may be to refine and expand the
use of existing models rather than developing new ones to prioritize
a context-specific approach to ensure timely real-world
implementation.

This mirrors the approach taken with early warning signs in
clinical practice: although imperfect, they were widely imple-
mented because their immediate utility outweighs the pursuit of
an ideal alternative. Similarly, advancing Al in IEI may depend
not on perfection but on optimizing existing models for broader
adoption. This requires balancing usability with adaptability,
ensuring that models remain flexible enough to accommodate
evolving disease paradigms and health care needs. Scientific
societies and patient organizations should advocate for real-world
deployment, engaging health care decision-makers to prioritize
scalability and integration into clinical workflows.

Although still an emerging field, the application of Alto IEI has
shown significant promise, both for clinical screening and
genomic analysis. However, substantial challenges remain before
these powerful tools can be fully integrated into routine clinical
practice. Key outstanding challenges remain in terms of data
quality, integration, and harmonization; algorithm transparencys;
regulatory frameworks; data sharing and privacy protection; and
equity of representation, access, and implementation. Addressing
these concerns is crucial to unlocking the full potential of Al for
IEI and other RDs. Moreover, bridging the gap between research
and real-world implementation will also require widespread
changes in provider practices and health information system
architectures.
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