
Articles from the Special Issue on Artificial Intelligence (AI) in Allergy/Immunology

Guest Editors: Mohamed Shamji, Nicholas Rider, and Janice Layhadi

Current perspectives and challenges of using 

artificial intelligence in immunodeficiencies

Jacques G. Rivi�ere, MD, MSc,a,b,c,d Roser Cantenys-Saba, MSc,e,f Gerard Carot-Sans, PhD,e,f Jordi Piera-Jim�enez, PhD,e,f

Manish J. Butte, MD, PhD,g,h,i Pere Soler-Palac�ın, MD, PhD,a,b,c,d and Xiao P. Peng, MD, PhDj,k,l Barcelona, Spain; Los 

Angeles, Calif; and Bronx, NY

The rapid growth of artificial intelligence (AI) in health care is 

promising for screening and early diagnosis in settings that 

heavily rely on professional expertise, such as rare diseases like 

inborn errors of immunity (IEI). However, the development of 

AI algorithms for IEI and other rare diseases faces important 

challenges such as dataset sizes, availability and harmonization. 

Similarly, the implementation of AI-based strategies for 

screening and diagnosis of IEI in real-world scenarios is 

hampered by multiple factors including stakeholders’ 

acceptance, ethical and legal constraints, and technologic 

barriers. Consequently, while the body of literature on AI-based 

solutions for early diagnosis of IEI continues to expand, 

clinical utility and widespread implementation remain limited. 

In this review, we provide an up-to-date comprehensive 

review of current applications and challenges facing AI use 

for IEI diagnosis and care. (J Allergy Clin Immunol 

2025;156:878-88.)
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Primary immune disorders, also known as inborn errors of 

immunity (IEI) or genetically driven blood and immune disorders, 

encompass a broad spectrum of genetically and environmentally 

influenced conditions that compromise immune function.1-3 The 

broad spectrum of their possible clinical presentations often involves 

complex combinations of infection susceptibility, immune dysregula

tion, inflammation, atopy, and malignancy risk, posing significant 

challenges to timely diagnosis. As a result, patients often undergo mul

tiple consultations with various medical specialists before an accurate 

diagnosis is established. This long journey typically results in a diag

nostic delay that may range between 1.3 years and decades, with a 4- 

to 7-year average in children and longer times in adults in real-world 

settings.4-6 The diagnostic delay in IEI not only exacerbates morbidity 

and mortality but also increases the burden on health care systems.7,8

Traditional diagnostic pathways rely on expert clinical recogni

tion, targeted genetic testing, and functional immunologic assess

ments, which are time-consuming and costly. Medical settings that 

depend heavily on professional expertise have been identified as 

areas that may benefit from artificial intelligence (AI) (see the Online 

Repository available at www.jacionline.org for a glossary of AI- 

related terms), which can process vast amounts of clinical and labo

ratory data, reducing workload and increasing accuracy.9 In recent 

years, a growing body of literature has highlighted promising AI- 

driven approaches for screening and early diagnosis of diverse dis

ease domains, including IEI.10 Fig 1 illustrates the vast amounts of 

data generated throughout an IEI patient’s journey from symptom 

onset to definitive diagnosis, highlighting windows of opportunity 

for AI use at various stages. The availability of machine learning 

(ML) and deep learning techniques to analyze these data suggests 

that AI could be a game changer in the management of IEI. However, 

many issues must be addressed before translating AI-based solutions 

from research to day-to-day clinical practice.

Here we present a state-of-art overview of AI application on 

immunodeficiencies, including proof-of-concept examples not 

only in exploiting electronic health records (EHRs) but also in 

genomics. Finally, we provide an in-depth analysis of the 
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challenges that may hinder the effective implementation of these 

strategies in real-world settings.

CLINICALLY FACING APPLICATIONS OF AI USE IN 

IMMUNODEFICIENCIES
The potential of AI algorithms for early diagnosis and precise 

identification of complex and rare diseases (RDs), such as IEI, 

based on vast amounts of data has raised much interest in both 

patients and health care professionals. AI-based models poten

tially improving the management of IEI can be broadly classified 

into generative and discriminative approaches. Discriminative 

models focus on classification tasks by learning decision 

boundaries that separate inputs into predefined categories. Unlike 

generative models, discriminative algorithms, including support 

vector machines, logistic regression, and decision trees, require 

labeled data during training to guide their learning process 

effectively. In contrast, generative models aim to learn the joint 

probability distribution of input and output data, allowing them to 

generate new data samples based on identified patterns.

Screening and identification of individuals with 

immunodeficiencies
A major focus of IEI patient advocacy groups has been the 

achievement of faster and more accessible diagnoses. After suspi

cion for an IEI arises, the time between a patient’s initial clinical 

symptoms and referral to a specialist center can be particularly 

challenging and discouraging for both patients and their families.

However, unlike more common conditions such as diabetes or 

breast cancer, diagnosing IEI is uniquely complex because it 

requires distinguishing from among 6001 gene–disease relation

ships, each presenting with diverse phenotypes. This complexity 

is further challenged by the limited availability of robust datasets, 

which are often geographically dispersed and siloed across mul

tiple health care centers and highly diverse EHR systems.

The urgent need to improve diagnostic pathways has spurred 

awareness campaigns, including the creation of the widely recog

nized ‘‘10 Warning Signs’’ for IEI11-14 or updated versions of 

them.15-18 While these efforts are critical in educating the public 

and health care providers, they remain insufficient—particularly 

given the overwhelming amount of information faced by general pe

diatricians and practitioners across various medical fields.

In this context, supervised ML algorithms have emerged as a 

promising tool for identifying at-risk patients using EHRs and 

clinical phenotype databases. In the field of IEI, AI has already 

demonstrated its value for the first step (eg, identification of patients 

with potential disease from preexisting databases). An early 

innovation—the SPIRIT tool—used diagnosis and pharmacy codes 

within insurance claims data to classify patients into high, medium, 

or low risk for IEI using a point-based system.19 Mayampurath 

et al20 developed a ML model using EHR data to discriminate be

tween potential IEI and control patients for a single center, noting 

that extension from a logistic regression model to more advanced 

ML models did not improve performance for their patients, while 

Rider et al21 showed that an ML classifier with weighted rules could 

screen for IEI across a large population with high accuracy. More 

recently, ML and data mining techniques were used to identify 

patients with specific IEI endotypes within the USIDNET registry, 

while an ML algorithm called PheNet showed ability to identify 

common variable immunodeficiency patients earlier than traditional 

methods, with high accuracy in external validation across multiple 

medical systems.22 AI has been used to collect phenotypic data, 

with natural language processing extracting features from clinical 

notes23 and deep learning imputing missing phenotypes in biobank 

datasets to expand sample size.24 Discriminative and generative 

facial analysis tools assist clinicians in syndrome identification, 

with similar strategies applied to histopathology, imaging, and 

cellular data to generate data-driven models.

Regardless of the algorithm approach, these models have 

demonstrated the ability to improve IEI screening by leveraging 

diverse types of nongenomic data, ranging from automated data 

extraction and application of the classical ‘‘10 Warning Signs’’ to 

sophisticated deep learning designs for early diagnosis.11 Table I

lists examples of these approaches.25-32

EXAMPLES FROM OTHER RARE DISEASE 

DOMAINS
Initiatives in other RD domains have shown promising results 

with potential for extrapolation to IEIs. For instance, Faviez et al33

applied semantic similarity-based approaches to structured and un

structured EHR data to identify patients who may have rare ciliopa

thies. This approach could be adapted to IEI screening as well.

Retrieval augmentation generation, as demonstrated with Rar

eDxGPT, an enhanced ChatGPT model that integrates information 

about RDs from an external knowledge resource, has shown potential 

clinical utility.34 This approach could be used to help nonimmunol

ogists improve IEI patient care. However, the primary challenge lies 

in building and continuously updating the model with a well-curated, 

high-quality external database.

Recent studies in RD predictive modeling, such as Bayesian 

approaches in monogenic diabetes,35 could inform similar strate

gies for secondary immune disorders (SIDs) (eg, due to steroids or 

rituximab). The recalibration methods used in distinguishing 

maturity-onset diabetes of the young from type 1 diabetes high

light how integrating real-world data into AI algorithms can 

improve diagnostic precision. Such methods may enhance IEI 

detection by distinguishing them from the broader and more prev

alent SID. However, unlike type 1 diabetes, SID also remains 

underdiagnosed and poorly characterized, presenting additional 

challenges for AI application.

At present, although models such as SPIRIT incorporate SIDs to 

refine risk prediction,20 most existing tools explicitly exclude sec

ondary causes.11,28,29 Nonetheless, the clinical overlap between 

primary and secondary immunodeficiencies is well recognized, 

with shared warning signs and overlapping phenotypes, thus offering 

an opportunity for mutual detection of both IEI and SIDs.11,20,22,28,29

Future models should aim to address this overlap explicitly by incor

porating treatment history, medication exposure, and longitudinal 

immune trends to improve discrimination between IEI and SIDs.

Abbreviations used

AI: Artificial intelligence

CNN: Convolutional neural network

EHR: Electronic health record

IEI: Inborn errors of immunity

ML: Machine learning

RD: Rare disease

SID: Secondary immunodeficiency
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MOLECULAR DIAGNOSTIC APPLICATIONS OF AI 

USE IN IMMUNODEFICIENCIES

AI use for rare genetic disease diagnoses
Significantly reduced sequencing costs have driven the increased 

clinical adoption of genomics for diagnostic and screening 

purposes, as well as the growth of large population sequencing 

initiatives involving greater participant diversity. However, unlike 

population-based approaches, many datasets for IEIs involve 

smaller sample sizes and greater complexity than those found in 

other domains utilizing AI. Additional challenges include the large 

size of the human haploid genome, which consists of over 3 billion 

bases, and our still limited understanding of the functional aspects of 

most genomic variants. For instance, we do not yet know the exact 

number of protein-coding genes in the human genome, the functions 

of most of these genes, or the impact of individual variants on gene 

expression, RNA transcription, protein production, and their ulti

mate cellular and phenotypic consequences. Moreover, no gene 

operates in isolation. The ultimate impact of its protein products 

depends on posttranslational modifications, subcellular trafficking, 

secretion, and interactions with other proteins and environmental 

factors. Thus, achieving molecular diagnosis through the identifi

cation of a single rare variant driving immune dysfunction is no 

longer enough. Now we must also confront many layers of 

additional modulation that determine each individual’s specific 

expression of disease. Wrestling with this multidimensional 

complexity offers new opportunities for the application of AI.

Current AI applications in genomic data processing 

and analysis
AI-based tools have been used at virtually every stage of genomic 

analysis (Table II).36-96 After sequencing, AI enhances the accuracy 

of short- and long-read data and aids in alignment-based or 

alignment-free mapping, crucial for structural variant calling. It 

also helps create patient- and ancestry-specific reference genomes 

via de novo assembly or pangenome construction. However, the 

biggest preoccupation of AI applications currently resides with 

variant calling and prioritization, the processes most directly linked 

to identifying potential disease-causing loci in sequencing data. 

Tools like DeepVariant use deep convolutional neural network 

(CNN)-based approaches to call single nucleotide polymorphisms 

and small insertions and deletions (indels) from next-generation 

sequencing data by transforming the variant calling problem into 

an image recognition task, where the CNN analyzes images of 

read pileups to predict genotypes.97 Many other CNN-based algo

rithms have been developed to accommodate different sequencing 

platforms and/or different variants of interest (eg, de novo, struc

tural, noncoding, somatic). Many AI-based decision support tools 

are actively in use for clinical- and research-based variant prioritiza

tion. Some are disease or application specific while others are more 

general; all offer the capacity to aggregate and synthesize multidi

mensional features including phenotypic, phylogenetic, functional, 

model organism, and in silico pathogenicity predictors (which 

themselves may be AI based), even for poorly annotated loci. 

A number of these tools have demonstrated on par98 if not superior80

discovery and time performance compared with manual analysis or 

reanalysis76 for RDs, though experiences across the IEI realm may 

vary because of the significant differences in clinical and genetic 

paradigms between IEI and other RD landscapes.99 Some tools 

apply differential weighting of clinical phenotypes to help refine 

candidate prioritization. Many of the above programs build in auto

mated variant classification, but stand-alone AI tools also exist for 

classification of individual variants. Again, the conclusions of these 

tools often need to be adjusted in the context of gene- and disease- 

FIG 1. Opportunities for AI in patient and data journey throughout primary immunodeficiencies.
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specific knowledge, prompting some to develop more gene-specific 

tools.

IMPLEMENTATION CHALLENGES

Implementation gap
Among the promising applications of large language models, 

which can process and integrate vast amounts of structured and 

unstructured data, AI-based screening strategies have emerged as 

a potential solution to mitigate underdiagnosis in conditions 

where early detection heavily depends on professional expertise. 

Some remarkable examples of this use of AI to this purpose 

include systematic breast cancer screening through mammog

raphy,100 retinopathy detection from fundoscopy,101 and the early 

identification of atrial fibrillation.102

However, while the number of proof-of-concept studies, as well 

as development and validation efforts for AI-based screening 

algorithms, including the IEI use cases described in Table I, con

tinues to grow, only a handful of studies have reported the successful 

implementation of these algorithms in real-world settings and 

outside the field of IEI.100,103-105 Recent experiences in deploying 

and evaluating AI-based screening tools have highlighted key chal

lenges that contribute to this gap between evidence generation and 

practical implementation. These challenges span multiple domains, 

including psychological patient-related factors (eg, privacy 

concerns, bias), professional considerations (eg, lacking trust in 

algorithms, need for interpretability), and issues faced by developers 

and policymakers (eg, data integration, regulatory hurdles).

Notably, all real-world implementations of AI-based screening 

systems to date have been limited to single centers or a small 

number of facilities in specialized settings. However, for RD such 

as IEI, meaningful results are unlikely to be achieved without 

scaling these algorithms to a nationwide level. Such scaling 

efforts would inevitably amplify the existing challenges, under

scoring the need for robust strategies to address these barriers. 

Finally, it is worth mentioning that screening for IEI or other RDs 

at the population level should not be viewed in isolation but rather 

as part of the broader complexity of health care systems. Primary 

care physicians, and in general all physicians, are not expected to 

recognize or retain alerts for every rare condition outside their 

field, making it essential to develop AI-driven models that 

prioritize minimizing false alarms. Furthermore, as AI strategies 

for screening evolve, other areas aside from immunology may 

also introduce alert systems for early diagnosis. Alert fatigue and 

its consequences should be addressed in any implementation 

study and taken into account when assessing statistical power of 

AI models.106 Additionally, in the context of increasing patient 

involvement in clinical decision-making, the potential for patients 

to access these alerts through personal health records will need to 

be thoughtfully considered.

The difficulties of translating evidence-based solutions into 

real-world practice are not limited to AI. In the past years, 

increasing awareness has been raised about the need for system

atically investigating barriers and facilitators of real-world 

adoption of evidence-based solutions in medicine. This process, 

addressed by the emerging field of implementation science, has 

provided several theory-based implementation frameworks for 

successful adoption and monitoring of evidence-based solutions 

in routine care.107-109

Despite the promising applications of AI in enabling early 

diagnosis of IEI, no large-scale AI-driven screening strategies 

have been effectively implemented to date. Given the complexity 

of integrating multiple data sources and health care levels to 

meaningfully identify IEI within the general population, a 

systematic, theory-based approach to implementation will be 

essential. The following sections outline some of the most 

significant potential barriers to this endeavor, analyzed from the 

perspective of the primary stakeholders: health care profes

sionals, patients and caregivers, and health care systems (Fig 2).

Regulation in AI development and implementation
The regulatory landscape governing AI development and 

implementation is continuously evolving. As with many techno

logic innovations, the establishment of legal and regulatory 

TABLE I. ML approaches to diagnosis and/or screening of primary and secondary immune disorders

Study Data source IEI focus Objectives

Rider (2019-23),19,21,25

Modell (SPIRIT) (2017)26

Primary and secondary care/structured data All IEI Development and validation of AI-driven diagnostic 

tools for IEI, focusing on predictive modeling and 

clinical decision support; population screening and 

early IEI detection using health care claims and 

electronic records

Roberts (2024)27 Secondary care/unstructured data (free text) All IEI Proof of concept of free-text analysis in early IEI 

diagnosis

Johnson (2024)22 Secondary care/structured data CVID/PAD Identification of CVID by ML using PheNet from EHR

Messelink (2023)28,29 Primary care/structured data PAD Early diagnosis of PADs in general population and 

proof of concept of implementation in primary care

Mayampurath (2022)20 Secondary care/structured data PAD* Risk stratification and prediction model for PADs

Takao (2022)30 Secondary care/structured data All IEI Development and comparison of risk prediction models 

to identify children at risk for IEI in immunology 

clinic

M�endez Barrera (2023)31 Registry (USIDINET)/structured data 12 IEI Proof of concept of computational aid to assist IEI 

clinical diagnosis

Rivi�ere (2025)11 Primary care/structure data (ICD codes) All IEI Early diagnosis of IEI in general population and proof 

of concept of primary care implementation

FitzPatrick (2025)32 Secondary care/structure data (ICD codes) APDS Identification of APDS patients through ICD codes

APDS, Activated p110δ syndrome; CVID, common variable immunodeficiency; ICD, International Classification of Disease; PAD, predominant antibody deficiency.
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frameworks struggles to keep pace with rapid advancements in 

AI-based health care solutions. Currently, AI algorithms designed 

for clinical decision support are classified as medical devices. 

Consequently, these algorithms must comply with regulatory 

standards and obtain clearance from relevant agencies by 

demonstrating safety, accuracy, and seamless integration with 

existing health care systems. Given the novelty of AI applications 

in the medical device sector, the US Food and Drug Administra

tion introduced a specific action plan in 2021 to regulate AI-based 

software as a medical device.110 This action plan was intended to 

ensure not only the safety and efficacy of approved algorithms but 

also the robustness of future modifications. A regulatory frame

work that balances regulatory oversight for safeguarding patient 

safety and privacy with prevention of excessive regulation that 

could impede innovation was intended to follow but has not yet 

been implemented. In the European Union, an overarching frame

work for AI regulation, the Artificial Intelligence Act, has also 

recently been developed and began implementation in 2024. 

However, AI algorithms designed for clinical decision support 

are categorized as medical devices and must therefore comply 

with medical device regulation. The European Medicines Agency 

is currently formulating a specific AI regulatory framework for 

medical devices, anticipated to take effect by August 2026.111

Beyond specific regulatory considerations for AI algorithms to 

ensure their safe and effective use in health care, their development 

requires the integration of extensive datasets from diverse sources. 

Although these datasets undergo deidentification before their use in 

training and validation, deep learning algorithms have demonstrated 

the capacity for reidentifying individuals through complex data 

correlations, including but not limited to genetic information.112,113

The potential for patient reidentification poses significant ethical and 

legal concerns, potentially leading to discrimination in employment 

and health insurance, as well as emotional distress and diminished 

trust in the health care system from potential misuse of private med

ical data.112,114 While anonymization techniques exist to mitigate 

reidentification risks, overly stringent anonymization may compro

mise data utility, thereby reducing algorithmic accuracy.115 Feder

ated learning and swarm learning approaches,116 which enable 

decentralized model training without requiring direct data sharing, 

represent a promising alternative for facilitating secure data collab

oration while preserving patient privacy.117

Stakeholder barriers
Because health care is primarily delivered and received by 

humans, the adoption of new technologies—regardless of their 

demonstrated effectiveness—depends on their acceptance by both 

users (eg, health care professionals) and recipients (eg, patients and 

caregivers).118 In the context of AI, trust in these technologies, 

particularly among health care professionals, has been identified 

as a significant barrier to adoption.9,119 Survey-based studies indi

cate that acceptance of AI in health care is heterogeneous and 

may be influenced by factors such as professional seniority.9

TABLE II. Examples of AI tools used at different stages of RD diagnostics

Step in clinical diagnostics where AI has been 

applied Examples from RD

Identification of patients with potential genetic 

diseases meriting evaluation from EHR data

● Specific RDs: Fabry,36 Pompe,37 hereditary transthyretin amyloidosis.38

● All RDs: Using diagnostic billing information39 or NLP-based feature extraction.23

Clinical phenotypic discrimination ● Facial data: PhenoScore,40 DeepGestalt.41

Laboratory phenotypic discrimination ● Flow and mass cytometry data.42

● Cellular imaging data.43

● Cancer histopathology data.44-46

Refinement of raw sequencing data ● SRS correction: MAC-ErrorReads,47 CARE 2.0.48

● LRS correction: DeepConsensus for PacBio data,49 NanoReviser for ONT data.50

Reference genome construction ● De novo assembly.51

● Pangenome assembly.52,53

Reference genome annotation ● Helixer.54

● DeepGenGrep.55

Mapping to reference genome ● SRS: BWA-MEME,56 Embed-Search-Align transformer model.57

● LRS: HQAlign,58 lordFAST,59 kngMap,60 S-conLSH.61

Variant calling ● SRS and LRS data: Clairvoyante,62 HELLO.63

● De novo: DeNovoCNN.64

● SV: Cue.65

● Noncoding:66 Hi-C interactome data,67 genome sequence features 1 chromatin structure,68

transfer learning based.69

● Somatic: Paired tumor–normal data,70,71 tumor-only data.72

Variant prioritization and triage ● Phenotype-driven refinement: PhenoApt,73 GenomeDiver.74

● Decision support tools: Fabric GEM,75 Moon,76 AI-MARRVEL,77

Nostos AION, EvORanker,78 eDiVA,79 Xrare.80

● Pathogenicity prediction: SpliceAI,81 AlphaMissense.82

● Disease specific: Congenital hearing loss (GenOtoScope),83 cancer.84-86

Data aggregation platforms with or 

without variant classification

● General: Franklin Genoox,87 VarSome,88 LEAP,89 MAVERICK,90 Genomenon Mastermind.91

● Gene or disease specific: BRCA1/2,92 ATP7B,93 CPVT- and LQTS-related genes.94

Genetic counseling and return of results ● Chatbot for delivery of pretest informed consent counseling.95

● Chatbot for return of positive HCPS screening results.96

CPVT, Catecholaminergic polymorphic ventricular tachycardia; HCPS, hereditary cancer predisposition syndrome; LQTS, long QT syndrome; LRS, long-read sequencing; NLP, 

natural language processing; SRS, short-read sequencing.
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However, interpretability has consistently emerged as a key deter

minant of trust and acceptability among health care 

professionals.9,119-121

A major challenge in achieving explainability is the accuracy 

toll associated: while advanced deep learning approaches may 

increase classification performance, their ‘‘black box’’ nature can 

limit clinical interpretability. In contrast, more transparent 

models (eg, rule-based or probabilistic frameworks) may be 

more likely to gain professional acceptance and facilitate integra

tion into clinical workflows, particularly in settings where clinical 

decision support must be explainable.121 Beyond general skepti

cism associated with novel technologies, explainability 

(including understanding data sources) is crucial for identifying 

potential biases,122 which can be significant in IEI and be origi

nated from both clinical and genomic information.123,124 AI 

algorithms are inherently trained on datasets that may not 

comprehensively represent the complexities of health care, 

thereby perpetuating existing inequities in health care access 

and delivery.125,126 Encouragingly, significant efforts are under

way to develop interpretability techniques that mitigate the 

accuracy–interpretability trade-off.121 Recently issued recom

mendations for increasing transparency and reducing algorithmic 

bias in AI should also be considered when developing these 

models.122 This guidance is still limited in AI-based genomic 

tools, which currently rely on general computational tools.127 In 

addition to interpretability and understanding of AI solutions, 

effective communication between medical and technical experts 

will also be a mainstay for successful implementations of these 

solutions. Therefore, user-centered codesign approaches are high

ly encouraged before planning implementation of evidence-based 

AI solutions in routine care.128,129

Finally, as AI becomes increasingly integrated into medicine, 

concerns about job displacement among health care professionals 

cannot be ruled out as a potential barrier to adoption.119,130 In a screening 

context, this concern is unlikely to particularly affect specialist physi

cians, who will continue to oversee the diagnosis of suspected IEI cases. 

However, it may affect general practitioners, who serve as the first point 

of contact in identifying individuals at high risk for IEI on the basis of 

symptoms, medical history, and diagnostic tests. To address these con

cerns, it has been suggested that AI applications should be limited to 

tasks where they demonstrably outperform human expertise.131 In 

line with this perspective, organizations such as the American Medical 

Association have advocated for the term augmented intelligence rather 

than artificial intelligence to emphasize AI’s role as an enhancer—rather 

than a replacement—of human capabilities.132

Data integration and harmonization
One of the fundamental challenges of AI is the vast amount of 

data required for training and validation. These data must not only be 

accessible and harmonized but also of high quality to prevent the 

‘‘garbage in, garbage out’’ scenario. This need for large datasets is 

particularly challenging in the context of RDs such as IEI, and 

even more so when it comes to genetic information, which is not 

routinely collected in clinical practice in many regions.

The widespread integration of data in professional and personal 

domains, such as banking and global distribution systems (eg, 

plane ticketing, hotel bookings, car rentals), has led to the 

mistaken perception that data integration in medicine is straight

forward. However, EHRs are built on an inconsistent blend of 

vendor-specific models and standards, necessitating complex 

—and often inefficient—interoperability processes for meaningful 

FIG 2. Potential challenges (left) and mitigation actions (right) associated with implementation of AI-based 

solutions for early IEI diagnosis.
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data integration and semantic consistency. In research settings, 

data harmonization can be performed in a controlled way with 

multiple quality control steps. However, an automated, real-time 

screening algorithm for identifying and diagnosing patients at high 

risk of IEI on the basis of information collected throughout the 

care journey requires true interoperability.

Interoperability is the ability to seamlessly exchange, interpret, 

and use medical data across different health care providers and 

systems. This process is hindered not only by regulatory 

constraints related to data governance and privacy but also by 

the coexistence of multiple medical ontologies (ie, structured 

frameworks that define concepts and terms for consistent data 

representation), such as ICD-10, SNOMED-CT, LOINC (logical 

observation identifiers names and codes), and DICOM (digital 

imaging and communications in medicine).133

The vast range of medical data sources and formats—including 

structured clinical data, unstructured information such as clinical 

notes, and medical imaging—further contributes to data heteroge

neity. This may be particularly relevant for genomic data, which are 

sometimes collected and stored in settings different from routine 

care. Additionally, many health care facilities—and even individual 

data-producing devices (eg, a diagnostic imaging machine)— 

operate on isolated platforms using proprietary information models 

that are incompatible with hospital information systems, preventing 

direct access to comprehensive patient data through the EHR. To be 

effectively utilized, unstructured data—such as radiology reports 

and pathology findings—require advanced processing techniques. 

Similarly, vital signs, test results, and EHR entries often differ in 

format and structure across health care systems.134 Without a robust 

interoperability framework, inefficiencies arise, compromising the 

quality of care and wasting health care resources.133

All these issues related to the codification of health information 

must be understood in the context of a diverse and heterogeneous 

world, where health care systems globally are progressing at varying 

speeds along their digitalization journey.135 Beyond the differences 

between health care systems, the degree of data integration can also 

vary across different levels of care. Hospitals and specialized settings 

often have more accessible and integrated data, whereas primary care 

frequently relies on a fragmented mix of multiple provider organiza

tions or even individual practitioners. In the best-case scenario, this 

fragmented landscape will likely reduce the real-world effectiveness 

and generalizability of AI models, increasing the risk of false- 

positive and -negative results negatives.136 In many cases, however, 

these algorithms may struggle to operate in real-world settings as a 

result of the unavailability of necessary data at the point of care.

FUTURE DIRECTIONS

Emerging applications based on generative 

approaches
The use of generative AI has grown significantly since the public 

launch of ChatGPT in November 2022. As previously mentioned, 

the integration of sharable data and interoperability is key to the 

successful implementation and scalability of AI use for RDs. For 

clinical domains like IEI, data curation and standardization are 

critical but currently very limited. This challenge also presents a 

unique opportunity for generative AI to play a transformative role.

Beyond assisting health care professionals with routine tasks, 

generative AI has shown promising results in terms of analyzing 

EHRs and providing valuable support in coding and patient 

classification.137,138 Additionally, advanced approaches such as 

generative adversarial networks have demonstrated potential for 

imputing missing data.139 However, in the context of IEI—

characterized by complex phenotypes and limited datasets—there 

is an elevated risk of bias, which must be carefully addressed.

Generative AI can also help bridge language and cultural 

barriers, thereby improving patient–physician communication, 

comprehension, and treatment adherence. By facilitating access 

to medical information in multiple languages with plainer 

wording, generative AI makes educational materials more inclu

sive and accessible,7,8 reducing reliance on time-consuming 

manual translations.

Finally, both pre- and posttest counseling are crucial in the genetic 

testing process. However, health care systems lack enough trained 

genetics providers to ensure all patients receive proper informed 

consent counseling before testing and appropriate results counseling 

afterward for responsible medical use. While our discussion has 

primarily focused on discriminative models, this is one area where 

generative AI could be valuable—specifically, using large language 

model–powered chatbots for patient- and genotype-specific coun

seling. These chatbots could consider relevant genetic landscapes 

and inheritance models before testing and provide gene-, disease-, 

and variant-specific information, along with potential clinical 

implications, after testing.

Technologic evolution for AI implementation
As ongoing technologic innovation increases the complexity of 

health care delivery, several key issues must be addressed to 

enable successful integration of AI-driven diagnostics into real- 

time clinical practice. In the long term, a profound transformation 

of health care information technologies globally will be essential 

to fully harness AI’s potential for routine screening and diagnosis.

Among existing clinical information systems, openEHR—an 

open specification for the development of interoperable EHR 

systems—has been proposed as a vendor-neutral and future-proof 

solution for clinical data storage. The openEHR standard is a 

dual-level architecture model (outlined in ISO13606), meaning 

that it clearly separates information (ie, the data underlying 

patient records) from knowledge (ie, the rules, guidelines, and 

domain-specific logic that define how the data is interpreted and 

used). The information layer is structured through a reference 

model containing the basic entities for representing any EHR 

information. The knowledge layer is based on archetypes, which 

are formal definitions of clinical information models (such as 

discharge reports, glucose measurements, or family histories) in 

the form of structured and constrained combinations of reference 

model entities. The combination of the reference model (repre

senting data entries in the EHR) and the archetype model 

(organizing these data in a meaningful and usable way) creates 

systems with powerful evolutionary capabilities as medical 

practice evolves. Clinical information models may change over 

time, but the underlying data always remain interoperable—a 

critical feature for AI integration. Several countries are progres

sively adopting this standard,135,140 while alternative interopera

bility solutions are being applied in others.133 Continuous 

technologic innovation is increasing the complexity of health 

care, with diverse settings and devices collecting patient data, 

making interoperability essential for AI adoption. Health care 

organizations worldwide are becoming increasingly aware of 
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the need to code and store health information using a unified 

standard. However, because many health care systems are already 

in advanced stages of digitalization, implementing such a trans

formation is expected to be highly challenging.

CONCLUSIONS
In light of all these different applications and strategies, one 

might be tempted to undertake a widespread benchmarking com

parison to determine the best-performing model. However, this may 

not be feasible because most of the studies are derived from single 

centers or databases, which raises concerns about generalizability. 

Additionally, there is a trade-off between reaching out to every 

possible source to obtain more detailed information and the 

associated costs, biases, and privacy issues. As a result, a more 

pragmatic and scalable approach may be to refine and expand the 

use of existing models rather than developing new ones to prioritize 

a context-specific approach to ensure timely real-world 

implementation.

This mirrors the approach taken with early warning signs in 

clinical practice: although imperfect, they were widely imple

mented because their immediate utility outweighs the pursuit of 

an ideal alternative. Similarly, advancing AI in IEI may depend 

not on perfection but on optimizing existing models for broader 

adoption. This requires balancing usability with adaptability, 

ensuring that models remain flexible enough to accommodate 

evolving disease paradigms and health care needs. Scientific 

societies and patient organizations should advocate for real-world 

deployment, engaging health care decision-makers to prioritize 

scalability and integration into clinical workflows.

Although still an emerging field, the application of AI to IEI has 

shown significant promise, both for clinical screening and 

genomic analysis. However, substantial challenges remain before 

these powerful tools can be fully integrated into routine clinical 

practice. Key outstanding challenges remain in terms of data 

quality, integration, and harmonization; algorithm transparency; 

regulatory frameworks; data sharing and privacy protection; and 

equity of representation, access, and implementation. Addressing 

these concerns is crucial to unlocking the full potential of AI for 

IEI and other RDs. Moreover, bridging the gap between research 

and real-world implementation will also require widespread 

changes in provider practices and health information system 

architectures.
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