

In utero therapy for spinal muscular atrophy: closer to clinical translation

Eduardo F. Tizzano,^{1,2} Georg Lindner,¹ Ellie Chilcott,³ ©Richard S. Finkel⁴ and Rafael J. Yáñez-Muñoz⁵

5q-Spinal muscular atrophy (SMA) has been a trailblazer in the development of advanced therapies for inherited diseases. SMA is an autosomal recessive disorder affecting mainly motor neurons in the anterior horn of the spinal cord and brainstem motor nucle but currently considered a systemic disease. Advances in understanding the genetics of SMA led to the development of disease-modifying therapies, either transferring a healthy version of SMN1, the causative gene absent or altered in SMA, or modulating SMN2, a highly homologous but less functional version of SMN1, present in all patients. After successful clinical trials, these approaches have resulted in three marketed therapies. Severe SMA, 'type I', is the most common type and is considered both a developmental arrest and neurodegenerative disorder. As pathology starts during fetal life in type I patients, a cure is unlikely even when treatment is started shortly after birth in the pre- or mildly symptomatic state. *In utero* fetal therapy offers the opportunity to mitigate further or possibly prevent manifestations of the disease.

This review discusses clinical and developmental aspects of SMA, the advanced therapies approved (gene therapy, antisense oligonucleotide and small molecule compounds), and the rationale, options and challenges, including ethical and safety issues, to initiate in utero therapy. Looking beyond sporadic case reports of prenatal intervention, clinical trials of in utero SMA therapy can be envisaged and should be carefully designed and evaluated to move closer to clinical translation.

- 1 Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona 08035, Spain
- 2 Neuromuscular Pathology Unit, Fundación Hospital Sant Joan de Deu, Esplugues de Llobregat 08950, Barcelona, Spain
- 3 Institute for Women's Health, UCL, London WC1E 6HX, UK
- 4 Center for Experimental Neurotherapeutics, Department of Paediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- 5 AGCTlab.org, Centre of Gene and Cell Therapy, School of Life Sciences & the Environment, Royal Holloway University London, Egham, Surrey TW20 0EX, UK

Correspondence to: Eduardo F. Tizzano, MD, PhD Medicine Genetics, Vall d'Hebron Institut Recerca (VHIR) Passeig Vall Hebron 119-129, Barcelona 08035, Spain E-mails: eduardo.tizzano@vhir.org; eduardo.tizzano@sjd.es

Keywords: spinal muscular atrophy; in-utero therapy; pre-symptomatic; fetus; gene therapy; human development

Spinal muscular atrophy overview

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder mainly characterized by degeneration and loss of function of alpha motor neurons (MN) in the anterior horn of the spinal cord and brain stem motor nuclei. SMA is the second most common autosomal recessive inherited disorder with a global incidence of approximately 1/11 000.1 In addition, untreated SMA is the leading cause of death from monogenic disease in infancy. The carrier frequency lies between 1/32 and 1/72 globally. 2 Symptoms in SMA patients derive from an insufficient amount of survival motor neuron protein (SMN), caused by loss-of-function pathogenic variants within or deletions of SMN1. SMN is encoded by two highly similar genes, SMN1 and SMN2, located on chromosome 5. A single nucleotide variant ($C \rightarrow T$ at position c.840) in exon 7 results in the preferential exclusion of exon 7 in ~90% of SMN2 transcripts, which generates a truncated and unstable protein known as SMN Δ 7.3 Approximately 10% of functional full-length SMN, identical to that produced by SMN1, is produced from each SMN2 copy, and this can partially compensate for SMN1 loss and rescue what would otherwise be a lethal disorder. SMN2 copy number correlates inversely with disease severity.4

The SMN protein is considered multifunctional and impacts various aspects of RNA metabolism. It is highly associated with the ribonucleoprotein (RNP) complex, regulating the biogenesis of small nuclear RNPs. Besides multiple interactions reported, 5 SMN also has a role in axonal transport, 6.7 RNA trafficking and the maintenance of neuromuscular junctions (NMJs). 8 Despite thorough research, it is not yet well understood why MNs are the most sensitive cells to decreased amounts of SMN.

SMA classification is based on age of onset of symptoms and the highest degree of motor function achieved. The disease can be classified as types 0–IV, with type 0 being the most severe form. It should be noted that regardless of classification, manifestations and symptoms can vary in patients and the distinctions among the types are not absolute. However, the scheme remains relevant in the genetic era and provides useful clinical and prognostic information.

Type 0 SMA is the most severe and rarest of SMA forms. 10 It is associated with prenatal onset of symptoms such as decreased fetal movements. Patients suffer from arthrogryposis, as well as profound hypotonia, bulbar weakness (poor suck and swallow) and respiratory compromise at or soon after birth. Congenital heart defects and skin necrosis are also features of many type 0 cases, indicating systemic pathology from SMN deficiency. Their life expectancy is the lowest of all SMA types, typically with <1 month survival. 10 Type I SMA ('Werdnig-Hoffmann Disease') is the most common form, with more than 50% of SMA cases. Disease onset is before 6 months of age and by definition these individuals fail to gain independent sitting due to severe muscle weakness. Median survival in these children is less than 2 years of age, usually due to respiratory muscle dysfunction and respiratory failure. 11-13 The type II SMA phenotype (intermediate or 'Dubowitz' form) presents usually between 6 and 18 months of age with developmental arrest after sitting has been achieved, followed by a plateau, then a decline in motor skills. 14 While being able to sit upright and sometimes even stand using leg braces, affected children fail to achieve independent walking and are wheelchair-bound. They usually suffer from kyphoscoliosis and, if untreated, also from restrictive lung disease. Their cough and airway secretion clearing are progressively compromised. Even though the majority may survive into adulthood, they may require highly supportive management as

gastrointestinal and respiratory complications increase. ^{15,16} Type III SMA ('Kugelberg–Welander' form) patients are able to walk independently during their early life. They show profound symptom heterogeneity, and patients are often misdiagnosed with myopathy or muscular dystrophy. The distribution pattern of muscle weakness is similar to type I and II SMA—with proximal > distal, lower > upper limb predominance—however, disease progression is much slower. As muscle weakness progressively increases, particularly of leg muscles, the use of a wheelchair may be required. ¹⁷ Type IV SMA is the mildest form of SMA, with symptoms usually arising around the third decade of life. The comorbidities resemble type III SMA, mostly with slowly progressive weakness of lower extremities. People affected have an average lifespan and retain the ability to walk throughout adulthood. ¹⁷

While severity-based classification has clinical advantages, it is not always sufficient to provide prognostic information. Combining clinical features and SMN2 copy number allows for a more precise prognosis. For example, infants with SMA type I and two copies of SMN2 have less heterogeneity and follow a more predictable decline in survival (median of 10.5 months) than the overall group of type I patients. 13 Indeed, it is possible to correlate SMN2 copy number with clinical characteristics of SMA, whereby copy number increases with decreasing disease severity. SMN2 copy number variation is due to the plastic nature of this region of the genome. Patients with type 0 disease typically have only one SMN2 copy, most type I cases show two SMN2 copies, type II generally have three SMN2 copies, whilst long-term walkers usually have four copies.4 Determination of SMN2 copy number is widely implemented to study SMA patients, provide some level of prognosis and is frequently used by payers to determine eligibility for SMN-directed therapy. However, not all SMN2 copies are identical, and the actual structures and genomic sequences of SMN2 copies are usually not considered for routine study. 18 In this regard, the detection of positive variants such as c.859G>C and c.835-44A>G as well as the effect of possible SMN2-SMN1 hybrids may help to better determine the phenotype. 19,20 Exploration of the structure and quality of SMN2 copies and equivalence in different patients may provide clues to the diversity in genotype-phenotype correlation.

Developmental aspects of spinal muscular atrophy: a rationale for why and when to treat the disease

Several studies have shown that SMA pathology in the neuromuscular system begins during prenatal development. In the typically developing fetus the neuromuscular system develops from the first interneural connections between motor neurons (MNs) and muscles, formed around 7-8 weeks of gestation and leading to flexion and trunk movements.²¹ As neuronal connections are formed during development through axonal outgrowth, increased fetal movements can be seen even from 12 weeks. At around 15-weeks gestation, most neuromuscular junctions have been formed, with more specialized gross movement. At around 20-weeks gestation the fetus shows increased bilateral movements.²² During fetal development, polyneuronal innervation of the muscle is present.²³ Until term, regression from polyneuronal into mononeuronal innervation in muscles occurs, which however differs among various muscles, with the diaphragm and intercostal muscles having the fastest regression.²⁴ Maturation of the motor unit (motor neuronaxon-neuromuscular junction-muscle) continues postnatally and is completed in early childhood.

SMN is ubiquitously produced in all tissues and throughout fetal development and postnatal life. The spatial and temporal requirements for this protein, however, differ throughout development. Motor neurons have the greatest need for SMN protein for proper development²⁵ and maintenance during fetal and early postnatal life, ²⁶ less so in older children and adults. Immunoblot studies for SMN protein production have been performed on skeletal muscle, heart, kidney and brain tissues from postnatal and fetal controls and compared to fetal samples with SMA (predicted to be type I with two SMN2 copies; mainly at approximately 14 weeks of gestation). It was shown that SMN protein levels were reduced in the SMA samples compared to control tissues, both pre- and postnatally, with the decrease correlating with severity.²⁷

During the second and third trimester of gestation and the first 3 months after birth, the amount of SMN protein does not increase in SMA spinal cord samples, contrasting with the increase of SMN seen in age-matched controls, remaining 4-fold lower prenatally and 6-fold lower early postnatally.²⁶ It is likely that these periods of marked reduction in production of SMN protein in SMA during fetal and neonatal stages occur when developing motor neurons are most vulnerable and reliant upon this critical protein. The lack of sufficient SMN during early development appears to be the primary driver of MN dysfunction and death, although it has been observed that the most notable reduction of SMN protein levels happens in SMA skeletal muscle.^{27,28} In control samples, the relative amounts of SMN in kidney, brain and heart were similar to skeletal muscle. However, the drop in postnatal tissues was not as severe, with kidney showing the smallest reduction.²⁷ Older patients with SMA appear to have a lesser need for SMN protein to sustain MNs, as evidenced by a much slower rate of decline in function and by neurophysiological testing. This is also supported by the observations that the disease-modifying therapies (DMTs) appear to have a lesser effect in older children and adults with milder impairment than in infants with more severe disease.²² Biomarkers of disease activity, for example neurofilament levels in blood, are much higher in newborns (even if pre-symptomatic) and infants than in older individuals with more indolent disease.²⁹⁻³¹

SMA also affects sensory-motor connectivity in mice and zebrafish models. 32,33 MN development has a direct influence on the development of dorsal root ganglion (DRG) and Schwann cells. 25 In the severe SMA mouse model, impaired radial growth of motor axons and Schwann cell ensheathment identified during embryogenesis hindered neonatal motor axon function and caused fast degeneration of unsheathed axons.²⁵ Neonatal treatment with SMN2 splice modifiers increased radial growth of myelinated axons; however, in utero treatment was required to restore axonal growth and associated maturation, preventing subsequent neonatal axon degeneration and enhancing motor axon function.²⁵ In zebrafish Smn mutants, Schwann cells do not wrap axons tightly and had expanded nodes of Ranvier. DRG neurons showed abnormally short peripheral axons and failure to divide. 33 Increased SMN production in MNs rescued both cell types, highlighting the cell-autonomous effect of SMN, secondary to the developmental MN defects. Thus, these observations in animal models may be relevant for human pre/early postnatal MN network development-both cell-autonomous and non-cell autonomous.

Multiple lines of study have investigated nerve and muscle development and pathologic changes in tissues from fetuses with SMA. Abnormal nuclei shape, high nucleoplasm density, an increase in DNA fragmentation and lower choline acetyltransferase (ChAT) levels have been reported in SMA MNs from fetuses with

two SMN2 copies, indicating abnormal apoptosis and impaired motor neuron development ^{28,34} Furthermore, axon size was reduced and varicosities could be detected. In neuromuscular junctions, acetylcholine receptor (AChR) disaggregation and an increase in presynaptic vesicles could be seen, indicating synaptic defects in SMA development.⁸ In skeletal muscle, myotube diameter size was significantly decreased and slow myosin heavy chain (MHC) levels were decreased, while fast MHC production increased, reflecting a possible delay in muscle maturation.^{8,35,36} In addition, the early studies of muscle histopathology in SMA type I infants identified fetal-like muscle fibres.³⁷ The combination of all these neuropathologies suggests an element of developmental arrest even before denervation atrophy changes are evident.³⁴ These findings, summarized in Pérez-García et al.²² and Tizzano and Zafeiriou,³⁸ point to prenatal effects of SMA on the whole neuromuscular system.

Numerous studies have shown that in humans, the higher the SMN2 copy number, the more full-length SMN protein is produced and, in general, the milder the associated SMA phenotype. Some variants in SMN2 have been identified that further alter SMN production, e.g. c.859G > C, which increases SMN production and is associated with a milder course of disease.³⁹ Thus, SMN2 copy number may serve as a more general prognostic biomarker for disease severity that reflects pathological implications of SMN deficiency (Fig. 1), in addition to motor function impairment. Importantly, there could be a threshold for SMN levels below which the pathology in the SMA fetus emerges and above which the disease process is held in check. Individuals with one copy have cardiac malformation and arthrogryposis, congenital anomalies that are potentially detectable by ultrasound assessment during the prenatal period. 10 Fetuses with one and two SMN2 copies present with early neuropathological findings²² with early symptom onset within the first 3 months of life. 13 On the other hand, fetuses with three and four copies are predicted to produce SMN above the threshold to initiate fetal pathology and instead disease manifests solely in the postnatal period, usually after 6 months of life in most patients with three copies. There is no evidence currently that demonstrates prenatal MN loss or abnormal axonal/NMJ development at birth in individuals with three or more copies of SMN2. Indeed, in contrast with fetuses with two SMN2 copies, fetuses with three SMN2 copies do not show a detectable alteration in the developmental pattern, suggesting a wider therapeutic window to intervene.8 However, these observations should be taken carefully until more data on neurofilaments, CMAP and SMN2 variants are available from SMA neonates with three SMN2 copies. In general, patients with four copies may remain without symptoms for years, but some cases may present earlier. 40

The regulation of SMN production in different tissues and organs is more complex in humans and species with two SMN genes than in rodents and other sub-primate species that have a single copy of the SMN gene. In humans, it has been demonstrated that most of the complete messenger RNA and protein in the spinal cord during development originate from SMN1, whereas in other tissues such as kidney and muscle, the proportion is more balanced between both genes. SMN production in the spinal cord is dramatically reduced upon loss of SMN1, and SMN2 is not able to provide a sufficient compensatory source of full-length protein due to the biased expression towards SMN1 in this tissue. Thus, regulatory mechanisms of SMN2 expression (including transcript processing) during fetal development should be considered if an early therapeutic intervention such as gene addition therapy is to be administered.

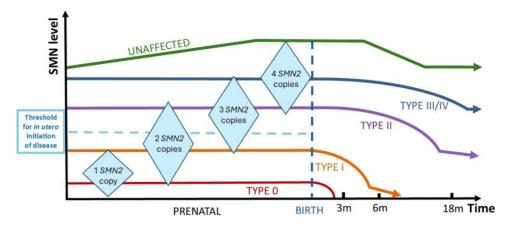


Figure 1 Possible threshold for development of prenatal spinal muscular atrophy neuropathology and extraneuronal manifestations. The amount of SMN protein present in spinal muscular atrophy (SMA) correlates with SMN2 copy number, a key factor in disease severity. Generic SMN levels are presented in the figure in two ways in SMA; as straight lines for average levels over time, and as diamonds to account for person-to-person variation, which in some cases, mainly with two or three SMN2 copies, may overlap considerably. SMN requirements are highest in the third trimester of fetal development and approximately the first 3 months after birth, then reduce (see green curve, based on Pérez-García et al. 22 and Ramos et al. 26) Manifestations in individuals with SMA appear depending on the motor neuron pool, generally inversely related to SMN2 copy number. Cases with one SMN2 copy usually develop type 0 SMA, with cardiac malformation and arthrogryposis, anomalies potentially detectable during the prenatal period. Other problems, such as severe hypotonia, weakness, respiratory insufficiency and vascular issues, are noted at birth as part of congenital SMA. In fetuses with two SMN2 copies, predicted to have type I disease, it has been demonstrated that pathology is present in the prenatal period, although the consequences usually manifest after birth (<3 months). Fetuses with three and four copies may produce SMN above the threshold for prenatal pathology $(horizontal\ dotted\ blue\ line), and\ thus\ disease\ may\ develop\ and\ manifest\ just\ in\ the\ postnatal\ period,\ usually\ after\ several\ months\ of\ life\ (>6\ months\ in\ line))$ type II, >18 months in type III disease). Patients with four copies may remain without symptoms for several months or years. Predicted prenatal levels of SMN are represented according to SMN2 copy number. Levels after birth represent the evolution according to natural history. 11,13 m = months; SMN = survival motor neuron protein.

Defining pre-symptomatic spinal muscular atrophy

SMA can be identified pre-symptomatically by using prenatal or newborn-specific genetic testing. Most of the cases diagnosed show SMN1 bi-allelic absence. Rare variants in the SMN1 gene have been described in SMA patients with compound heterozygous pathogenic variants. 41,42 Non-invasive prenatal screening methods have emerged that use haplotyping of couples at risk. 43,44 Parents identified as carriers can choose to undergo in vitro fertilization and pre-implantation genetic diagnosis, or intrauterine insemination with sperm of a donor who is not an SMA carrier to avoid the risk of SMA. 45 In pregnancies from couples with previous family history, the fetus can be screened by chorionic villus sampling (CVS) at 10-14 weeks or amniocentesis at 16-20 weeks to determine whether SMA is likely. Pregnancy interruption was usually the outcome after diagnosis of SMA; however, with the current effective therapies, there might be a shift in decision-making towards pregnancy continuation.⁴⁶ A confirmed diagnosis of SMA in prenatal screening could create further patient demand for treatment, even prenatally (see later).

Genetic, electrophysiological and biochemical tests can serve as prognostic biomarkers that predict the future phenotype of groups of individuals with SMA upon diagnosis, both symptomatic and pre-symptomatic. 47,48 Genetic tests include SMN1 deletion (for diagnosis) and SMN2 copy number, which can also be performed in utero from DNA derived from chrorionic villi or an amniocentesis specimen, but in isolation is not fully predictive of the phenotype in an individual patient. For example, two copies of SMN2 are approximately 90% predictive of a type 1 phenotype. But, as mentioned, uncommon variants in the SMN2 gene, such as c.859G>C and c.835-44A > G, predict a milder phenotype. Electrophysiological tests include measurement of the compound motor action

potential, motor unit number estimate and electrical impedance myography, which can serve as predictive, prognostic and pharmacodynamic biomarkers in postnatal individuals, but cannot be performed in utero. 48 Biochemical prognostic and pharmacodynamic biomarkers include SMN protein level (blood or CSF), neurofilament levels (blood or CSF) and creatine kinase levels (blood) and could be tested in a fetal blood sample. 49 In utero sampling of umbilical cord blood could be used to test for fetal drug level and for safety monitoring, but it involves a small but not negligible risk⁴⁹ and would need careful medical and ethical consideration in a protocol for prenatal therapy.

In newborn children with an asymptomatic phenotype, it is important to assess their disease characteristics if an absence of SMN1 has been detected by screening. Traits associated with the typical SMA phenotype should be considered, e.g. manifestations in the neuromuscular system (such as hypotonia, decreased movement, reduced/absent tendon reflexes, feeding difficulty) and respiratory system (hypoxaemia, hypercapnia or abnormal breathing pattern). Even without such clinical findings, electrophysiological defects [reduced motor unit number estimation (MUNE) or compound muscle action potential (CMAP)|38 or a fluid biomarker (such as an elevated neurofilament level)44 could indicate loss or non-functional MNs undergoing active but rather silent denervation. Collateral sprouting and reinnervation have been identified in symptomatic patients with SMA and may be present during fetal development.50-52 We propose that this mechanism, in addition to polyneuronal innervation, could compensate for MN loss or dysfunctional neurons during this clinically silent period. As newborn screening for SMA is implemented more widely, data collection from structured patient registries will allow a thorough assessment of asymptomatic SMA and its baseline characteristics. 53,54 Eventually, by combining clinical and biomarker assessments, it may be possible to predict whether a neonate is truly asymptomatic

or pre-symptomatic and without evidence of silent burden of disease (see later and Fig. 2).

There is growing evidence that some babies identified shortly after birth with genetically confirmed SMA and two copies of SMN2 may not be completely asymptomatic in the first weeks of life. Indeed, early areflexia may be present as well as hypoxaemia or hypercapnia, before further signs such as hypotonia, diaphragmatic breathing and tongue fasciculations appear. 56,57 Results of a pilot trial of newborn screening in Italy showed that ~40% of such newborns may already have manifestations at first assessment, before treatment is initiated.⁵⁸ Indeed, prodromal symptoms should be investigated and properly documented in all neonates with genetically confirmed SMA. It is possible that biomarkers such as CMAP/MUNE, neurofilament proteins^{48,59} and SMN2 variants¹⁹ may inform on clinically inapparent disease progression when a neonate with SMA is detected by newborn screening. This information may be very important to initiate early treatment of newborns in SMA. Finkel and Benatar⁵⁵ proposed a classification of infants with SMA identified by newborn screening, recognizing an initial clinically silent stage followed by a pauci-symptomatic phase with a later phenoconversion in which the patient becomes truly symptomatic (summarized and further elaborated in Fig. 2).

Brief overview of spinal muscular atrophy therapeutics

Improvements in our understanding of the underlying defects in SMA remain critical for the development of therapeutic approaches. It is now appreciated that SMA is more than a disease of MNs. The model proposed by Mentis³² includes sensory neurons and interneurons of the motor unit circuit. This is consistent with the observation that individuals with SMA type 0 have impaired sensory nerves and proprioceptive sensory neurons in the dorsal root ganglia (DRG) and may be vulnerable to overexpression of SMN.⁶⁰ Considerable evidence has emerged that SMN deficiency can create pathological changes and inflammation in neurons, but also glial cells throughout the CNS, as well as peripheral organs and non-neuronal cells. 8,34,35,61 Non-cell autonomous pathology is an increasingly studied topic, the clinical relevance of which is still not fully understood. 62 Therapies for SMA, which can be categorized into SMN-dependent and SMN-independent, vary in their proficiency to target different tissues. The absence or alteration of SMN1 can be compensated to some extent by SMN protein produced from existing SMN2 copies, which therefore provides a target for therapeutic approaches. SMN-dependent therapeutic approaches have demonstrated efficacy in several types of SMA, particularly in type I SMA patients, with impressive motor achievements. In other SMA types, the outcome of treatment is often stability and nonprogression of motor dysfunction, which is very much appreciated by those affected.⁶³ Other promising treatment approaches, focused on non-SMN-targets in tissues outside the CNS, such as muscle, are currently in clinical trials.

The first marketed therapeutic for SMA was nusinersen (Spinraza®), an antisense oligonucleotide (ASO) which specifically inhibits the ISS-N1 motif in intron 7 of SMN2 pre-mRNA to promote exon 7 inclusion and hence increased production of full-length SMN protein. Preclinical studies indicated that nusinersen had to be injected very early in neonatal development for maximal efficacy. Nusinersen is unable to penetrate the blood-brain barrier (BBB), and therefore periodic intrathecal injections need to be performed. Such treatment may not address non-CNS aspects of

SMA pathology, as leakage of the ASO outside the CNS is very scarce. Promotion of exon 7 inclusion in SMN2 transcripts can also be achieved with an oral compound, risdiplam (Evrysdi®), more recently approved for marketing. Risdiplam has the potential benefit of systemic delivery of drug to non-neuronal organs that may benefit from an increase in SMN protein production, e.g. muscle.

An alternative to SMN2 upregulation is SMN1 gene replacement, implemented in the clinic by using onasemnogene abeparvovec (OA; Zolgensma®), an adeno-associated virus serotype 9 (AAV9) vector driven by the ubiquitous and stable CBA promotor, in a single intravenous infusion. AAV9 is able to cross the BBB during early development, allowing transgene delivery to both peripheral tissues and the CNS, where it shows an avidity for neurons. Given that SMN is ubiquitously produced, this is expected to provide additional benefit. Concerns about long-term efficacy, safety, durability of effect and toxicity are still present. 64,65

There are currently only limited data on the treatment of premature babies. A case report on a 30-week-old infant (two SMN2 copies), who was treated with nusinersen as a bridge-therapy until appropriate use of OA, demonstrates the feasibility of premature therapy-delivery. ⁶⁶ A German study also reported successful risdiplam implementation as a bridge before OA therapy in premature infants. ⁶⁷ Another case of 30-week-old twins (one SMN2 copy) reported the favourable outcome of OA delivery enabled by premature delivery. ⁶⁸ It is worth noting that in the last case, the single SMN2 copy had a positive modifier c.835-44A > G that should have influenced the phenotype.

Combination therapy has been explored in clinical trials (Table 1) and clinical practice, and it is anticipated that there will be further scope for it as more information becomes available.⁶⁹ Possible ways in which this could be attempted are outlined in Fig. 3. A proposed classification for different therapeutic combinatorial approaches has recently been published, including switch therapies, bridge therapy, added on or combined.⁷⁰

There is published evidence of combined SMN-dependent therapies in SMA. A retrospective report on dual treatment of five children with type I SMA who received nusinersen and OA resulted in overall improvement with no adverse effects, showing that combination therapy was tolerated in these patients.⁷¹ Seven SMA type I patients who received both treatments (mostly nusinersen before OA) were assessed for motor function trajectories, ventilation hours and cough assist sessions. The second therapy improved ventilation, but there was no improvement in motor function trajectory compared to single therapy, pointing to the importance of early treatment. 72 A report of four cases of type I SMA initially treated with OA (one of them also with nusinersen) who later received risdiplam treatment showed increased therapeutic benefits from the combination therapy, with no significant adverse effects.⁷³ The multinational RESTORE registry captures 15-year real-world data on patients treated with the three DMTs, focusing mainly on OA.⁷⁴ The majority of these patients are treated with a splicing modifier prior to receiving OA, or the former is added on after OA administration. Informative safety and efficacy data are expected from this registry. The SMArtCARE registry in Germany, Austria and Switzerland will serve a similar function.⁵⁴

While the vast majority of DMTs are indicated in patients with two or three SMN2 copies, treatments for one- and four-copy individuals have also been reported, although they are often excluded by payer coverage policies. One patient with SMA type 0 was treated with both nusinersen and OA, and although modest motor improvements were achieved, with continued motor gain at age

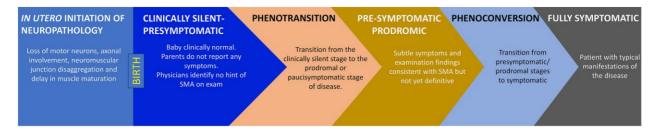


Figure 2 Evolution of clinical stages in spinal muscular atrophy babies with two SMN2 copies from fetal stage to postnatal period. Most fetuses with spinal muscular atrophy (SMA) and two copies of SMN2 are predicted to have severe type I disease with prenatal initiation of neuropathology. In cases detected by newborn screening, the three main stages observable are clinically silent—presymptomatic, prodromic and fully symptomatic. The disease evolution between stages occurs by phenotransition in the first case and phenoconversion in the second. In patients with three SMN2 copies, the clinically silent phase varies but is typically at >3 months in duration and may be extended over years in four-copy individuals. Based on Finkel and Benatar⁵⁵ and Tizzano and Zafeiriou.

13 months without regression of function, she remained profoundly weak with continued systemic complications from SMA, including chronic respiratory failure, dysphagia, congenital heart malformation, digit necrosis and diffuse macular rash.⁷⁵ Another patient with one copy of SMN2 received early treatment with nusinersen at the age of 13 days and although mild motor improvement 2 months after treatment as well as minimal respiratory enhancement were achieved, tracheostomy at the age of 4 months was still required with increasing cardiac and autonomic dysfunction, ultimately leading to exitus at 5 months.⁷⁶

Given that present SMN-dependent therapies are not able to provide a full cure, therapeutics that target SMN-independent pathways are also under investigation. While neuroprotective agents have shown no clear and convincing results in clinical trials, 77 it has been demonstrated in animal models that MNs in SMA show loss of excitatory input from primary sensory afferents and intermediate neurons, pointing to a neural circuit dysfunction.³² A possible therapy is under investigation with the implant of epidural electrodes targeting sensory axons over the lumbosacral spinal cord (NCT054301139).⁷⁸ On the other hand, therapy in muscle, particularly with myostatin inhibitors, has become promising. Myostatin is a hormone that inhibits skeletal muscle growth. Serum myostatin levels are reduced in patients with SMA and may serve as an informative biomarker for progression of disease and response to an intervention.⁷⁹ Three clinical trials are currently in progress to examine the possible added benefit from drugs that inhibit myostatin (Table 1).

General perspective of in utero (gene) therapy

Advancements in maternal-fetal medicine and gene sequencing have greatly improved early detection and accurate diagnosis of genetic disorders during pregnancy, paving the way for a new therapeutic field, in utero molecular and cellular therapeutics. There are currently several approaches to in utero therapy, with the potential to treat single-gene pathogenic variants, such as blood transfusion, enzyme replacement therapy (ERT) and stem cell transplantation, offering the opportunity to intervene before irreversible disease onset. For anatomical conditions detected prenatally, fetal surgery can have real impact to improve outcomes⁸⁰: open spina bifida disorders and congenital diaphragmatic hernia have been treated successfully.81

Anecdotal evidence of treatment during pregnancy with biologics for maternal atopic diseases seems encouraging in terms of lack of detrimental effects on maternal and fetal outcomes.82 On-going clinical trials of fetal treatment with protein therapy (enzyme replacement for lysosomal diseases, recombinant ectodysplasin protein receptor-binding domain for X-linked hypohidrotic ectodermal dysplasia) and cell therapy [mesenchymal stem cells for osteogenesis imperfecta (BoostB4), maternal bone marrow haematopoietic stem cells for alpha thalassaemia major] will be highly relevant for clinical translation of any in utero therapy for SMA. 83,84 The PEARL clinical trial (NCT04532047) aims to treat lysosomal storage diseases that already have US Food and Drug Administration (FDA)-approved postnatal treatments, with in utero intervention. Eight diseases are included in this trial, including Mucopolysaccharidosis types 1, 2, 4a, 6 and 7, as well as infantileonset Pompe disease, neuronopathic Gaucher disease and lysosomal acid lipase deficiency.

Recently, in utero ERT for a fetus with Pompe disease has been reported. Six umbilical cord injections at 2-week intervals were administered between 24 weeks 5 days gestation through to 36 weeks 5 days gestation. The benefit of prenatal therapy was reportedly superior in this patient in comparison with treatment after birth in their siblings. The child did not develop cardiac hypertrophy, had normal creatine kinase levels and no evidence of glycogen build-up in the placenta, suggesting that fetal pathophysiology had been prevented by the prenatal therapeutic approach.85

Successful in utero protein treatment for X-linked hipohydrotic dysplasia has been reported for six patients.^{86,87} A recombinant form of ectodysplasin A1 (EDA1), Fc-EDA, that includes the receptor-binding domain, was administered at gestational week 26 and later by injection in the amniotic fluid. Treated children demonstrate sweat gland development and pilocarpine-inducible sweating and have not had hyperthermic episodes during the summer nor any significant eye, nose, throat or respiratory issues. They also have more permanent teeth than untreated siblings, even though oligodontia is not fully corrected. The follow-up has reached 6 years for the first children treated and shows possible dose-dependency. These results are in stark contrast with postnatal treatment with the same protein, which did not lead to patient improvements. To confirm and extend these prenatal treatment data, the phase 2 clinical trial EDELIFE has been initiated (NCT04980638).88

Furthermore, progress in gene therapy has been steady. Currently, over 700 active gene therapy investigational drug applications have been reported (https://www.nhlbi.nih.gov/healthtopics/genetic-therapies). While postnatal applications of gene therapy are well developed, in utero gene therapy (IUGT), the delivery of relevant genes to the developing fetus to correct genetic

Table 1 Clinical trials in which combination therapies are currently investigated in spinal muscular atrophy

Clinical trial (NTC number)	Trial phase	Baseline therapy	Intervention	Mechanism of action	Patient criteria
RESPOND (NCT04488133)	Phase 4	Onasemnogene abeparvovec	Nusinersen	SMN1 gene transfer + ASO to modulate SMN2	2–36 months
ASCEND (NCT05067790)	Phase 3b	Risdiplam (for at least 6months)	High-dose nusinersen	oral SMN2 modifier + ASO	15–50 years
TOPAZ (NCT03921528)	Phase 2	Nusinersen treatment initiated in different cohorts with different ages	Apitegromab (IV) every 4 weeks	ASO + anti-promyostatin antibody	>2 years
SAPPHIRE (NCT05156320)	Phase 3	Nusinersen or risdiplam	Apitegromab (IV) every 4 weeks for 1 year	ASO or oral SMN2 modifier + anti-promyostatin antibody	2–21 years
ONYX (NCT05626855)	Phase 3 (open-label extension)	Nusinersen or risdiplam	Apitegromab (IV) every 4 weeks for 2 years	ASO or oral SMN2 modifier + anti-promyostatin antibody	>2 years + Completion of TOPAZ or SAPPHIRE
JEWELFISH (NCT03032172)	Phase 2	RG7800, olesoxime, nusinersen or onasemnogene abeparvovec	Risdiplam for 2 years	Any prior therapy + oral SMN2 modifier	6 months–60 years
MANATEE (NCT03032172)	Phase 3	Risdiplam	Investigational anti-myostatin antibody	Oral SMN2 modifier + anti-promyostatin antibody	2–25 years
RESILIENT (NCT05337553)	Phase 3	Nusinersen, risdiplam or previously treated with onasemnogene abeparvovec	Taldefgrobep alfa	Any SMN-dependent therapy + anti-promyostatin antibody	4–21 years

OA = onasemnogene abeparvovec; ASO = antisense oligonucleotide; NCT = National Clinical Trial.

defects, is yet to be applied clinically. 89 Prevention of disease onset, immune tolerance to the transgene product due to an immature immune system, increased vector biodistribution due to small body size and the possibility of transducing stem cells leading to permanent genetic correction are all potential beneficial features of this treatment modality. 90,91 However, proposals for the clinical application of in utero therapy in humans must be firmly rooted in established experience of therapeutic delivery to relevant animal models, including traditional drugs, gene therapies and cell therapies. Animal work should extend to large animals, with gestational age when administered, size, physiology, immune responses and delivery challenges more akin to humans. Risks to the developing fetus and the mother must be thoroughly assessed, as well as germline transmission. Both gene therapy and genome editing should be considered as therapeutic options. An initial path towards clinical application has been recently outlined.83

IUGT has been explored in a variety of animal models, including mice, guinea pigs, sheep, pigs and macaques. Diseases under study have included both inherited and idiotypic disorders: X-Linked hypohidrotic ectodermal dysplasia, bereditary tyrosinemia type I, 29,93 thalassaemia, haemophilia, 69,98 Gaucher disease, Angelman syndrome and fetal growth restriction. 101-103

As an example, neuropathic Gaucher disease (nGD) is characterized by a mutation in the GBA gene, which leads to glucocerebrosidase enzyme deficiency. The lethal type II form affects newborn children, beginning with prenatal pathology and symptoms starting to develop around 3–6 months of age, with no currently available therapy. A study in nGD mice using AAV9 vector to deliver the GBA gene resulted in increased expression of neuronal glucocerebrosidase, which eliminated neurodegeneration and led to a large decrease in neuroinflammation and improved survival rate of mice. ¹⁰⁴ Importantly, prenatal administration was more effective at improving the phenotype than neonatal delivery. In the

search for less invasive ways of treating genetic disorders before birth, scientists working in mice with Angelman syndrome have found that delivering ASO to the fetal brain through amniotic fluid is as effective as delivering it via CSF. ⁹⁹

Currently, one of the biggest limitations of postnatal gene therapy is the natural immune response of the patient to the viral vector and/or the transgene product. A significant benefit of IUGT is the tolerogenic immune system of the fetus, but pre-existing maternal antibodies crossing the placenta may limit IUGT. However, this can be avoided either by conducting maternal antibody screening or carrying out IUGT at the beginning of the second trimester of pregnancy, before significant maternal antibody transfer. 105 This could, for instance, be of benefit to avoid anti-AAV antibodies, which have been detected in newborns. 106 Haemophilia B can be complicated by the presence of antibodies to human factor IX (hF.IX). A study in which IUGT was carried out using intramuscular injection of AAV1-hF.IX vector in haemophilia B fetal mice and subsequent postnatal challenge showed preserved expression of hF.IX with absence of hF.IX antibodies. In comparison, mice treated with AAV postnatally and receiving the challenge developed hF.IX antibodies, therefore showing the advantage of preempting the immune response. 107 In a more recent study, IUGT was used to achieve immune tolerance to foreign protein using AAV-GFP vectors in fetal sheep. ¹⁰⁸ The treated sheep developed postnatal immune tolerance to GFP; however, such tolerance did not extend to AAV vector capsid proteins, with serotype-specific neutralizing antibodies being detected. Durable hepatic transgene expression was also serotypedependent. Another study also used AAV9-GFP vector delivery in fetal sheep, whereby widespread distribution of vector genomes was present in all tissues harvested at term. Transduction in maternal ewes and also germline transduction were observed. 105

IUGT may also enhance the chance of transducing stem and progenitor cells, as their presence is increased in a multitude of

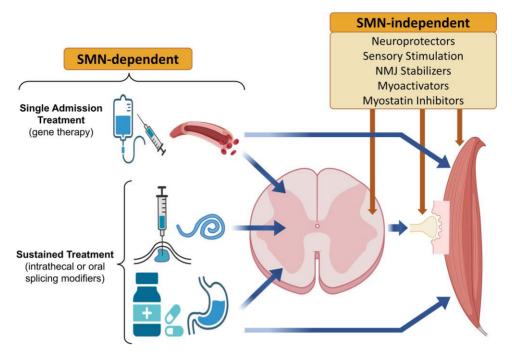


Figure 3 Various approaches to treat spinal muscular atrophy (SMN-dependent and SMN-independent) could be complementary. Data from clinical trials and clinical practice will be used to assess whether a multi-pronged approach results in beneficial effects. See Table 1: Clinical trials, for combination therapies currently investigated in spinal muscular atrophy (SMA). At present, combination therapy has yet to be experimentally investigated in the prenatal stage in terms of clinical research. SMN = survival motor neuron protein. Created in BioRender. Tizzano, E. F. Lindner, G. (2025) https:// BioRender.com/o5kmjq7.

developing fetal organs. To maximize efficiency, the vector serotype and vector delivery route should be extensively explored. In a study on BALB/c mice fetuses at 14-15 days gestation, lentiviral vectors with different pseudotypes were used. The comparison of intramuscular and intrahepatic injection with the various vectors showed different patterns of expression of the marker gene. 110 Intrahepatic injection mostly led to marker gene expression in liver and heart, while most organs were negative; however, distinct positive cells could be seen in the lung and muscles near the injection site. Intramuscular injection led to primary expression in the targeted muscle groups and the heart, with isolated cells being visible in the liver. 110

While fetal gene therapy offers opportunities for the actual prevention of genetic disorders, there are potential risks involved. First, gene therapy might disrupt normal fetal development as prenatal production of a particular transgenic protein might have unknown side effects, even if postnatal therapeutic function has been established. 111 Furthermore, gene therapy might increase the risk of unintentional germline transfer, even if animal studies to date have not demonstrated significant germline effects. 108 Nonetheless, if prenatal gene therapy is carried out after the 7th week of gestation, when germ cells are already compartmentalized, this risk may be reduced, 111 although not discarded. Gene therapy can also cause insertional mutagenesis, observed, for instance, with an early, non-self-inactivating gamma-retroviral vector used to treat SCID-X1 immune deficiency, in which 5 of 21 children developed malignant tumours. 112 Insertion of the vector into or near active tumour-promoting genes caused transcriptional activation and oncogenesis. 112 If those specific genes are particularly active during fetal development, there may be an enhanced risk of insertional mutagenesis from prenatal vector delivery.

Feasibility of in utero therapy in spinal muscular atrophy

Despite the current licensed and pipeline therapies, no strategies address the genesis of SMA in utero. It is recognized that the translation of fetal gene therapy to humans is challenging, but the technology is becoming more common and in utero gene therapy remains a very promising avenue for the treatment of genetic diseases arising during gestation. This statement is supported by the conclusions of a recent panel discussion held by the International Fetal Transplantation and Immunology Society (IFeTIS) regarding the scientific, clinical and ethical issues related to prenatal gene therapy. 113 Pre-symptomatic delivery of treatment may prevent development of the SMA phenotype and the irreversible damage that accompanies this, perhaps due to the deficiency being corrected during the period of motor unit maturation. 114 In utero treatment could lessen disease symptoms in the early years of life, slow disease progression, or perhaps even prevent disease onset and complications. Combining prenatal diagnostic screening for SMA with in utero delivery could have the potential to reduce the severity and number of SMA cases presenting to the clinic, thus reducing clinical burden. In light of this, in utero delivery is an attractive opportunity to prevent development of symptoms and potentially allow healthy offspring to be born. The cases of SMA that initially may be considered for in utero treatment are those with few SMN2 copies (one or two) and with a previous family history of severe SMA. 115

Mice are a common model used for prenatal vector delivery due to ease of use and handling and the presence of between 6 and 12 fetuses per pregnancy, each surrounded by their own interior gestation sac, allowing each fetus to receive different vector injections. ASO administration by intra-embryonic injection in mice can lead to effective distribution and improved phenotypic functions in

Table 2 Ethical aspects of in utero therapy

Risk	Ethical issues
Treatment limitations or failure to meet expectations	In utero therapy could lessen disease symptoms, slow disease progression or perhaps even prevent disease onset. However, treatment might be sub-optimal or have variable levels of success or fail to meet parental expectations of a cure.
Risk-benefit considerations/safety concerns	The disease under consideration for IUGT must have significant pathology that occurs during gestation, whereby waiting to initiate treatment after birth has clear limitations in efficacy, to support equipoise of benefit/risk.
	Risks can be present for the mother (fetal loss, preterm birth, infection, immune response, maternal-fetal surgery, insertional mutagenesis), the child (disrupted development, insertional mutagenesis) and future generations (unintentional germline transfer).
Restricted access	Cost may vary significantly based on several factors, including the phenotype, severity of the condition, therapeutic drug and selected treatment approach. These variables may determine whether cost can be reimbursed or access be denied. Equitable access may not be possible.

See text for further explanation. IUGT = in utero gene therapy.

pups. Transuterine microinjection of a metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)-targeted ASO resulted in significantly reduced MALAT1 RNA in multiple tissues of neonatal mice, which persisted throughout 30 days after birth. 116 Transuterine injection of a splice-switching ASO into the amniotic cavity immediately surrounding the embryo at embryonic Day (E)13.5 partially rescued hearing in juvenile Usher syndrome type 1c (Ush1c) mouse mutants, while direct injection into the E12.5 inner ear led to improved therapeutic outcomes, which were sustained well into adulthood, showing that in utero ASO administrations can preemptively correct disease phenotype. 117 Such studies could pave the way for in utero administration of nusinersen ASO. Indeed, in a recent study, 118 administration of intra-amniotic ASO treatment improved the phenotypes of preclinical models of SMA. On the other hand, intravenous administration of nusinersen may be feasible in the fetus, similar to enzyme replacement therapy, as the porous BBB in the fetus may allow penetration into the CNS. In addition, the SMN2 modulator risdiplam could potentially be administered orally to the mother with the aim of crossing the placenta (see later). Experience of successful treatment of cystic fibrosis in utero with modulators has been reported. 119 A fetus with ultrasound findings suggestive of meconium ileus was diagnosed with cystic fibrosis by amniocentesis at 26 weeks, and oral maternal therapy with modulators was initiated at 31 weeks. No dilated bowel was observed in the fetus at 39 weeks, and no signs of bowel obstruction were observed after birth. Maternal treatment was continued during breastfeeding. 119

These results encouraged the application of DMTs to fetuses with SMA. Indeed, preliminary successful results of a single case of prenatal treatment with risdiplam to a fetus with two copies of SMN2 expected to develop severe SMA has been recently reported. Drug was administered to the mother during the last 6 weeks of the pregnancy. Pharmacokinetic and pharmacodynamic data supported target engagement and a favorable effect on motor neuron development. Other cases of prenatal treatment with risdiplam have occurred in USA and Europe as a compassionate use effort. Resuls from these experiencies have not yet been released.

While administration in the last months of gestation could be possible, it should be stressed that labels for all currently marketed treatments note a lack of data and warn about their use in pregnant women. Furthermore, the postnatal observed adverse effects of the type of therapy administered (e.g. hepatotoxicity, off-target effects) should also be considered when treating a fetus with SMA.⁶⁹ Idiosyncratic liver injury is common during pregnancy, therefore

SMA fetal liver may be more prone to hepatotoxicity or other adverse effects. 121

Integration-deficient lentiviral vector (IDLV) transduction of the spinal cord in rodents in vivo¹²² and in utero IDLV delivery¹²³ have been previously described. We have also reported in utero technology with IDLVs, of potential application in SMA. Intraspinal injection of IDLV expressing eGFP at E16 into CD1 wild-type mouse embryos led to complete transduction of the spinal cord at all levels, with eGFP expression sustained for at least 7 months post administration. ChAT+ MNs showed 100% transduction efficiency. IDLVs were more efficient at transducing MNs after in vivo injection than AAV vectors. 124 More recently, a laboratory has published the first use of IUGT in SMA mice to investigate the efficacy of fetal gene therapy for this disease. 104 This study compared intracerebroventricular (ICV) and intraplacental routes of administration, as well as both single-stranded (ss) and self-complementary (sc) AAV9-SMN1 vectors, concluding that ICV injection of scAAV9 vectors was optimal. SMNA7 mice fetuses injected in this manner at E15 resulted in 43.8% full-term gestation births, with these pups going on to survive for a median of 105 days, compared to 12 days in untreated pups. 104 Atrophied muscle present in untreated SMA mice was rescued in IUGT-treated animals, which also showed increased numbers of MNs in spinal cord sections. 104 This study highlighted three issues of concern. First, supraphysiological levels of SMN protein were found in CNS samples (but not in muscle). This may need to be addressed, as it appears that overproduction of SMN protein from AAV9 may have long-term toxic neuronal effects in an SMA mouse model.³² Second, low survival to full gestation was observed, with the authors citing a possible inflammatory response to the AAV capsid as a factor. It is tempting to speculate that vector engineering could rectify these issues, but no studies have been completed to address this. Third, the rescued mice still had a shorter median survival, about half of that in wild-type mice. While this study provided proof of principle that IUGT for SMA may be a viable option and should be explored further, a comparison between the phenotypic benefits of in utero and postnatal gene therapy for SMA should be thoroughly evaluated. Another study investigated in utero viral delivery in the domestic sow, showing AAV9-related fetal rejection, which suggests that in this model preclinical in utero AAV9 gene therapy studies may not be successful. 125

Combinatorial in utero therapy (IUT) in SMA also remains a topic of future experimental investigation when more data are available from treating postnatal SMA patients under the aforementioned circumstances.

Ethical issues

The goal of fetal therapy is not only to improve outcomes for the fetus but also to minimize risks and complications for the mother during pregnancy. A summary of possible ethical risks involved in IUT is provided in Table 2. Complications of fetal therapy can include fetal loss, preterm birth, infection, maternal immune response or the need for maternal-fetal surgery.83

Multiple levels of risk need to be addressed when IUT is considered. The presence of two patients-mother and fetus-requires special precautions to be included in the protocol. Diagnostic and therapeutic monitoring of the fetus may involve added risk, e.g. percutaneous umbilical cord blood sampling (PUBS).49 The mother's health also needs to be carefully monitored for adverse events. IUT, therefore, should be conducted in a centre with expertise in the care of the mother and fetus, to include maternal-fetal medicine and neonatologists, where such monitoring can be performed and adverse events addressed promptly. From the three gene-targeted medications approved for postnatal treatment of individuals with SMA, nusinersen is currently administered via lumbar puncture into the CSF and would be a challenge and risk to perform in the fetus. Other means of delivery of an ASO to the fetus are being considered. Risdiplam can be administered to the mother orally in a safe dosage, as recommended for adult patients with SMA. It is known that this drug crosses the placenta in animals and has been demonstrated in one prenatal therapy case. 119 OA carries risk of adverse immune response to capsid proteins or the transgene, which may be tempered in the relatively tolerant fetus but not necessarily in the mother.80 In addition, animal studies have demonstrated concerns over gene integration into germ cells of the fetus 108 and even fetal loss. 126

Regarding maternal-fetal surgical interventions, which have become relatively common in prenatal care, particularly in neural tube defects or diaphragmatic hernia, there might be uncertainty in predicting the seriousness of disease severity and its consequences; this makes discussions around treatment choices difficult and complex. 127 Gene therapy and genome editing carry the additional risk of the therapeutic vector crossing the placental barrier and causing maternal genotoxic damage or an immune response, or even maternal genome editing. Potential risks to the mother from gene therapy thus include insertional mutagenesis. Studies in mice have shown no evidence of maternal genome editing after in utero CRISPR nuclease delivery. 92,128 Germline modification following genetic therapy to the fetus would be an additional risk to future generations, and it would have to be assessed in suitable animal models.

Maternal-fetal surgery, gene therapy or pharmacological intervention can save the life of a fetus that would otherwise die but may result in a child with severe disabilities. One could argue against investing medical and financial resources for sub-optimal treatment. IUT can also raise ethical issues regarding the role of healthcare professionals in relation to maternal decision-making and the fetus' life. In a case of prenatal diagnosis of myelomeningocele, the parents decided to refuse resuscitation measures of a 25-week fetus if emergency delivery was necessary during the open uterine procedure. 129 The pressure to intervene, for instance in the case of SMA, could be increased by the rapid evolution of disease. If IUT were to be carried out in SMA fetuses, it would be imperative for healthcare professionals to carefully navigate this delicate environment by engaging in meaningful discussions with parents, weighing the potential risks and benefits of various treatment options, respecting parental autonomy while safeguarding

the best interests of the fetus/child and clinical obligations. 130 Prenatal decision-making is therefore complex, emphasizing the need for early engagement and counselling, and it is crucial that informed decisions be made in a supportive environment. In the US, the FDA has special requirements for investigational testing of drugs in a pregnant woman, whether directed to the mother or the fetus as referred to in FDA 45 CFR 46: 'subpart B-additional protections for pregnant women, human fetuses and neonates involved in research' (https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-A/part-46). The European Medicines Agency also has a policy for investigational drugs in pregnant women. In all cases, surveillance should follow, and efficacy and safety information from studies with predefined outcomes should be collected. Adverse outcome data of fetal exposure comprise both structural malformations that may be detected at birth or in early childhood, and non-structural or longterm functional effects that can be potentially important but also difficult to detect or define (https://www.ema.europa.eu/en/documents/ regulatory-procedural-guideline/guideline-exposure-medicinalproducts-during-pregnancy-need-post-authorisation-data_en.pdf). Most of these guidelines were developed in relation to classic pharmacological compounds. However, the recent booming of advanced therapies has created a thin red line between experimental research success and the possibility of application in a translational way to clinical use. 131

Importantly, genetic therapies are the most expensive drugs currently available. Access to them can be restricted by reimbursement agreements between manufacturers and insurance companies or national health services. In addition to the cost of the drug, it is likely that fetal interventions will carry a significant price tag from clinical services. Access to this medical care could thus be particularly constrained financially in the case of fetal therapies.

The clinical and therapeutic experience in SMA so far is that the earlier intervention occurs, the better the outcome for the patient. However, there are still shortcomings of present therapies, particularly in severe SMA patients. Neurodevelopmental problems are currently observed in a proportion of treated patients with two SMN2 copies that need further investigation. 132 Parents are demanding information about long-term effects and prognosis of the disease when treatment is offered. Facing a pregnancy with SMA diagnosis (either by previous family history or prenatal screening) for a fetus with one or two SMN2 copies, parents may request information about premature delivery to initiate postnatal therapy as early as possible⁶⁸ or even request the alternative of initiating IUT. 119 This represents a challenge for physicians in communicating the diagnosis and shared decision of treatment. 130

Despite the risks and ethical concerns, women still express interest in enrolling in clinical trials for fetal gene therapy to achieve a more favourable pregnancy outcome, 133 with Schwab et al. 134 reporting favourable attitudes to fetal enzyme replacement therapy for lysosomal storage diseases and SMA gene therapies (ASO, small molecule and AAV). Nonetheless, multidisciplinary approach, prenatal counseling and thorough informed consent will be critical for successful implementation of IUT.

Conclusions

There have been impressive advances in SMA therapy during the last decades, especially after the initiation of the investigational clinical trials in 2011-2012. However, none of the three currently approved therapies offer a complete cure. Early detection by newborn

screening followed by pre-symptomatic treatment ameliorates manifestations and delays the initiation of disease in most treated babies. Given that SMA with one or two SMN2 copies presents with low SMN levels and pathology during prenatal stages, in utero therapy for SMA should be explored as a possible alternative to optimize response to a gene-directed treatment. Therefore, the development of pre-clinical investigations and well-designed clinical trials of IUT in SMA (balancing risk, benefit and ethical issues) should be regarded as an opportunity to approach treatment of the disease as early as possible, maximizing therapeutic benefit.

Acknowledgement

The thumbnail image for the online table of contents was created in BioRender. Tizzano E.F., Lindner G. (2025) https://BioRender.com/krd56zq.

Funding

G.L. was supported by the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (H2020 Marie Skłodowska-Curie Actions) agreement no. 9561859 (SMABEYOND ITN to E.F. T.).

Competing interests

E.F.T. received personal compensation for consultancy from Novartis Gene Therapies, Inc., Biogen, Biologix, Cytokinetics, Novartis, and Roche, and research funding from Biogen/Ionis and Roche. RSF has received personal compensation for advisory board/data safety monitoring board participation from Novartis Gene Therapies, Inc., Biogen, Catabasis, Capricor, ReveraGen, Roche, and Scholar Rock; editorial fees from Elsevier for co-editing a neurology textbook; license fees from the Children's Hospital of Philadelphia; research funding from Novartis Gene Therapies, Inc., Biogen, Capricor, Catabasis, ReveraGen, Roche, and Scholar Rock; and received personal compensation for serving as a speaker for a workshop with the National Academy of Sciences. E.C. and R.J.Y-M. have filed a patent application for a novel sequence-optimized SMN1 transgene. G.L. has no conflicts of interest to disclose.

References

- Sugarman EA, Nagan N, Zhu H, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: Clinical laboratory analysis of >72,400 specimens. Eur J Hum Genet. 2012;20:27-32.
- Ogino S, Wilson RB. Genetic testing and risk assessment for spinal muscular atrophy (SMA). Hum Genet. 2002;111:477-500.
- Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A. 1999;96:6307-6311.
- Calucho M, Bernal S, Alías L, et al. Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord. 2018;28:208-215.
- Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. Biochim Biophys Acta. 2017; 1860:299-315.
- Jablonka S, Wiese S, Sendtner M. Axonal defects in mouse models of motoneuron disease. J Neurobiol. 2004;58:272-286.

- Pagliardini S, Giavazzi A, Setola V, et al. Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord. Hum Mol Genet. 2000:9:47-56.
- Martínez-Hernández R, Bernal S, Also-Rallo E, et al. Synaptic defects in type I spinal muscular atrophy in human development. J Pathol. 2013;229:49-61.
- Mercuri E, Bertini E, Messina S, et al. Randomized, doubleblind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy. Neurology. 2007;68:51-55.
- Grotto S, Cuisset JM, Marret S, et al. Type 0 spinal muscular atrophy: Further delineation of prenatal and postnatal features in 16 patients. J Neuromuscul Dis. 2016;3:487-495.
- Kolb SJ, Coffey CS, Yankey JW, et al. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol. 2017;82: 883-891
- Cobben JM, Lemmink HH, Snoeck I, Barth PA, van der Lee JH, de Visser M. Survival in SMA type I: A prospective analysis of 34 consecutive cases. Neuromuscul Disord. 2008; 18:541-544.
- Finkel R, Bertini E, Muntoni F, Mercuri E. 209th ENMC international workshop: Outcome measures and clinical trial readiness in spinal muscular atrophy 7–9 November 2014, Heemskerk, The Netherlands. Neuromuscul Disord. 2015;25:593-602.
- 14. Zerres K, Rudnik-Schöneborn S. Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications. *Arch Neurol.* 1995;52:518-523.
- Kaufmann P, McDermott MP, Darras BT, et al. Prospective cohort study of spinal muscular atrophy types 2 and 3. Neurology. 2012;79:1889-1897.
- Wijngaarde CA, Brink RC, de Kort FAS, et al. Natural course of scoliosis and lifetime risk of scoliosis surgery in spinal muscular atrophy. Neurology. 2019;93:e149-e158.
- 17. Zerres K, Davies KE. 59th ENMC international workshop: Spinal muscular atrophies: Recent progress and revised diagnostic criteria 17–19 April 1998, Soestduinen, The Netherlands. Neuromuscul Disord. 1999;9:272-278.
- Butchbach MER. Genomic variability in the survival motor neuron genes (SMN1 and SMN2): Implications for spinal muscular atrophy phenotype and therapeutics development. Int J Mol Sci. 2021;22:7896.
- Costa-Roger M, Blasco-Pérez L, Cuscó I, Tizzano EF. The importance of digging into the genetics of SMN genes in the therapeutic scenario of spinal muscular atrophy. Int J Mol Sci. 2021;22:9029.
- Costa-Roger M, Blasco-Pérez L, Gerin L, et al. Complex SMN hybrids detected in a cohort of 31 patients with spinal muscular atrophy. Neurol Genet. 2024;10:e200175.
- Kurjak A, Tikvica A, Stanojevic M, et al. The assessment of fetal neurobehavior by three-dimensional and fourdimensional ultrasound. J Matern Fetal Neonatal Med. 2008; 21:675-684.
- 22. Pérez-García MJ, Kong L, Sumner CJ, Tizzano EF. Developmental aspects and pathological findings in spinal muscular atrophy. Spinal muscular atrophy: Disease mechanisms and therapy. Academic Press; 2017:21-42.
- IJkema-Paassen J, Gramsbergen A. Development of postural muscles and their innervation. Neural Plast. 2005;12:141-151; discussion 263–272.
- Bennett MR, Pettigrew AG. The formation of synapses in striated muscle during development. J Physiol. 1974;241:515-545.
- Kong L, Valdivia DO, Simon CM, et al. Impaired prenatal motor axon development necessitates early therapeutic intervention in severe SMA. Sci Transl Med. 2021;13:eabb6871.

- 26. Ramos DM, d'Ydewalle C, Gabbeta V, et al. Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment. J Clin Invest. 2019;129:4817-4831.
- 27. Burlet P, Huber C, Bertrandy S, et al. The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum Mol Genet. 1998;7:1927-1933.
- Soler-Botija C, Cuscó I, Caselles L, López E, Baiget M, Tizzano EF. Implication of fetal SMN2 expression in type I SMA pathogenesis: Protection or pathological gain of function? J Neuropathol Exp Neurol. 2005;64:215-223.
- 29. Darras BT, Crawford TO, Finkel RS, et al. Neurofilament as a potential biomarker for spinal muscular atrophy. Ann Clin Transl Neurol. 2019;6:932-944.
- Totzeck A, Stolte B, Kizina K, et al. Neurofilament heavy chain and tau protein are not elevated in cerebrospinal fluid of adult patients with spinal muscular atrophy during loading with nusinersen. Int J Mol Sci. 2019;20:5397.
- 31. Seo G, Kim S, Byun JC, Kwon S, Lee YJ. Evaluation of the neurofilament light chain as a biomarker in children with spinal muscular atrophy treated with nusinersen. Brain Dev. 2023;
- 32. Mentis GZ, Blivis D, Liu W, et al. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron. 2011;69:453-467.
- 33. Hao le T, Duy PQ, Jontes JD, Beattie CE. Motoneuron development influences dorsal root ganglia survival and Schwann cell development in a vertebrate model of spinal muscular atrophy. Hum Mol Genet. 2015;24:346-360.
- 34. Soler-Botija C, Ferrer I, Gich I, Baiget M, Tizzano EF. Neuronal death is enhanced and begins during foetal development in type I spinal muscular atrophy spinal cord. Brain. 2002;125(Pt 7):1624-1634.
- 35. Martínez-Hernández R, Bernal S, Alias L, Tizzano EF. Abnormalities in early markers of muscle involvement support a delay in myogenesis in spinal muscular atrophy. J Neuropathol Exp Neurol. 2014;73:559-567.
- 36. Martínez-Hernández R, Soler-Botija C, Also E, et al. The developmental pattern of myotubes in spinal muscular atrophy indicates prenatal delay of muscle maturation. J Neuropathol Exp Neurol. 2009;68:474-481.
- 37. Fidzianska A, Hausmanowa-Petrusewicz I. Morphology of the lower motor neuron and muscle. In: Gamstorp IB, Sarnat H, eds. Progressive spinal muscular atrophie. Raven Press; 1984: 55-89.
- 38. Tizzano EF, Zafeiriou D. Prenatal aspects in spinal muscular atrophy: From early detection to early presymptomatic intervention. Eur J Paediatr Neurol. 2018;22:944-950.
- 39. Prior TW, Krainer AR, Hua Y, et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet. 2009;85: 408-413.
- 40. Müller-Felber W, Vill K, Schwartz O, et al. Infants diagnosed with spinal muscular atrophy and 4 SMN2 copies through newborn screening—Opportunity or burden? J Neuromuscul Dis. 2024;7:109-117.
- 41. Ma K, Zhang K, Chen D, et al. Real-world evidence: Risdiplam in a patient with spinal muscular atrophy type I with a novel splicing mutation and one SMN2 copy. Hum Mol Genet. 2024; 33:1120-1130.
- 42. Votsi C, Koutsou P, Ververis A, et al. Spinal muscular atrophy type I associated with a novel SMN1 splicing variant that disrupts the expression of the functional transcript. Front Neurol. 2023;14:1241195.
- 43. Chen C, Li R, Sun J, et al. Noninvasive prenatal testing of α -thalassemia and β -thalassemia through population-based parental haplotyping. Genome Med. 2021;13:18.

- 44. Parks M, Court S, Bowns B, et al. Non-invasive prenatal diagnosis of spinal muscular atrophy by relative haplotype dosage. Eur J Hum Genet. 2017;25:416-422.
- 45. Girardet A, Fernandez C, Claustres M. Efficient strategies for preimplantation genetic diagnosis of spinal muscular atrophy. Fertil Steril. 2008:90:443.e7-443.e12.
- Serra-Juhe C, Tizzano EF. Perspectives in genetic counseling for spinal muscular atrophy in the new therapeutic era: Early pre-symptomatic intervention and test in minors. Eur J Hum Genet. 2019;27:1774-1782.
- Glascock J, Darras BT, Crawford TO, et al. Identifying biomarkers of spinal muscular atrophy for further development. J Neuromuscul Dis. 2023;10:937-954.
- Pino MG, Rich KA, Kolb SJ. Update on biomarkers in spinal muscular atrophy. Biomark Insights. 2021;16:11772719211035643.
- Peddi NC, Avanthika C, Vuppalapati S, Balasubramanian R, Kaur J, N CD. A review of cordocentesis: Percutaneous umbilical cord blood sampling. Cureus. 2021;13:e16423.
- Vacchiano V, Morabito F, Faini C, et al. Motor unit number estimation via MScanFit MUNE in spinal muscular atrophy. Muscle Nerve. 2024;70:71-81.
- 51. Udina E, Putman CT, Harris LR, Tyreman N, Cook VE, Gordon T. Compensatory axon sprouting for very slow axonal die-back in a transgenic model of spinal muscular atrophy type III. J Physiol. 2017;595:1815-1829.
- Schmalbruch H. The effect of peripheral nerve injury on immature motor and sensory neurons and on muscle fibres. Possible relation to the histogenesis of Werdnig-Hoffmann disease. Rev Neurol (Paris). 1988;144:721-729.
- 53. Finkel RS, Day JW, De Vivo DC, et al. RESTORE: A prospective multinational registry of patients with genetically confirmed spinal muscular atrophy—Rationale and study design. J Neuromuscul Dis. 2020;7:145-152.
- 54. Pechmann A, König K, Bernert G, et al. SMArtCARE—A platform to collect real-life outcome data of patients with spinal muscular atrophy. Orphanet J Rare Dis. 2019;14:18.
- 55. Finkel RS, Benatar M. Pre-symptomatic spinal muscular atrophy: A proposed nosology. Brain. 2022;145:2247-2249.
- 56. Kolb SJ, Kissel JT. Spinal muscular atrophy: A timely review. Arch Neurol. 2011;68:979-984.
- 57. Tizzano EF. Treating neonatal spinal muscular atrophy: A 21st century success story? Early Hum Dev. 2019;138:104851.
- 58. Pane M, Donati MA, Cutrona C, et al. Neurological assessment of newborns with spinal muscular atrophy identified through neonatal screening. Eur J Pediatr. 2022;181: 2821-2829.
- 59. Khalil M, Teunissen CE, Otto M, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 2018;14:
- 60. Van Alstyne M, Tattoli I, Delestrée N, et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat Neurosci. 2021;24:930-940.
- 61. Harding BN, Kariya S, Monani UR, et al. Spectrum of neuropathophysiology in spinal muscular atrophy type I. J Neuropathol Exp Neurol. 2015;74:15-24.
- 62. Jablonka S, Hennlein L, Sendtner M. Therapy development for spinal muscular atrophy: Perspectives for muscular dystrophies and neurodegenerative disorders. Neurol Res Pract.
- 63. Wadman RI, van der Pol WL, Bosboom WM, et al. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev. 2020;1:CD006282.
- Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377:1713-1722.

- 65. Papaioannou I, Owen JS, Yáñez-Muñoz RJ. Clinical applications of gene therapy for rare diseases: A review. Int J Exp Pathol. 2023:104:154-176.
- 66. Ferrante L, Melendez-Zaidi A, Lindsey W, Lotze T. Novel use of nusinersen as a therapeutic bridge to onasemnogene abeparvovec-xioi in a premature neonate with type 1 spinal muscular atrophy. Muscle Nerve. 2022;66:E8-e10.
- Trollmann R, Johannsen J, Vill K, et al. Postnatal management of preterm infants with spinal muscular atrophy: Experience from German newborn screening. Orphanet J Rare Dis. 2024; 19:353.
- Brown SM, Ajjarapu AS, Ramachandra D, et al. Onasemnogene-abeparvovec administration to premature infants with spinal muscular atrophy. Ann Clin Transl Neurol. 2024;11:3042-3046.
- Yeo CJJ, Tizzano EF, Darras BT. Challenges and opportunities in spinal muscular atrophy therapeutics. Lancet Neurol. 2024;23: 205-218.
- Proud CM, Mercuri E, Finkel RS, et al. Combination diseasemodifying treatment in spinal muscular atrophy: A proposed classification. Ann Clin Transl Neurol. 2023;10:2155-2160.
- 71. Harada Y, Rao VK, Arya K, et al. Combination molecular therapies for type 1 spinal muscular atrophy. *Muscle Nerve*. 2020; 62:550-554.
- 72. Mirea A, Shelby ES, Axente M, et al. Combination therapy with nusinersen and onasemnogene abeparvovec-xioi in spinal muscular atrophy type I. *J Clin Med.* 2021;10:5540.
- 73. Oechsel KF, Cartwright MS. Combination therapy with onasemnogene and risdiplam in spinal muscular atrophy type 1. *Muscle Nerve*. 2021;64:487-490.
- 74. Servais L, Day JW, De Vivo DC, et al. Real-world outcomes in patients with spinal muscular atrophy treated with onasemnogene abeparvovec monotherapy: Findings from the RESTORE registry. *J Neuromuscul Dis.* 2024;11:425-442.
- 75. Tiberi E, Costa S, Pane M, et al. Nusinersen in type 0 spinal muscular atrophy: Should we treat? Ann Clin Transl Neurol. 2020;7:2481-2483.
- Matesanz SE, Curry C, Gross B, et al. Clinical course in a patient with spinal muscular atrophy type 0 treated with nusinersen and onasemnogene abeparvovec. J Child Neurol. 2020;35: 717-773
- 77. Ojala KS, Reedich EJ, DiDonato CJ, Meriney SD. In search of a cure: The development of therapeutics to alter the progression of spinal muscular atrophy. *Brain Sci.* 2021;11: 194.
- Prat-Ortega G, Ensel S, Donadio S, et al. First-in-human study of epidural spinal cord stimulation in individuals with spinal muscular atrophy. Nat Med. 2025;31:1246-56.
- 79. de Albuquerque ALA, Chadanowicz JK, Giudicelli GC, et al. Serum myostatin as a candidate disease severity and progression biomarker of spinal muscular atrophy. *Brain Commun.* 2024;6:fcae062.
- Herzeg A, Almeida-Porada G, Charo RA, et al. Prenatal somatic cell gene therapies: Charting a path toward clinical applications (proceedings of the CERSI-FDA meeting). J Clin Pharmacol. 2022;62(Suppl 1):S36-S52.
- 81. Baumgarten HD, Flake AW. Fetal surgery. Pediatr Clin North Am. 2019;66:295-308.
- Shakuntulla F, Chiarella SE. Safety of biologics for atopic diseases during pregnancy. J Allergy Clin Immunol Pract. 2022;10: 3149-3155.
- 83. Sagar R, Almeida-Porada G, Blakemore K, et al. Fetal and maternal safety considerations for in utero therapy clinical trials: iFeTiS consensus statement. *Molecular Therapy*. 2020;28: 2316-2319.

- 84. MacKenzie TC, Frascoli M, Sper R, et al. In utero stem cell transplantation in patients with alpha thalassemia major: Interim results of a phase 1 clinical trial. Blood. 2020; 136(Suppl 1):1.
- Cohen JL, Chakraborty P, Fung-Kee-Fung K, et al. In utero enzyme-replacement therapy for infantile-onset Pompe's disease. N Engl J Med. 2022;387:2150-2158.
- Schneider H, Schweikl C, Faschingbauer F, Hadj-Rabia S, Schneider P. A causal treatment for X-linked hypohidrotic ectodermal dysplasia: Long-term results of short-term perinatal ectodysplasin A1 replacement. Int J Mol Sci. 2023;24: 7155.
- Schneider H, Hadj-Rabia S, Faschingbauer F, et al. Protocol for the phase 2 EDELIFE trial investigating the efficacy and safety of intra-amniotic ER004 administration to male subjects with X-linked hypohidrotic ectodermal dysplasia. Genes (Basel). 2023;14:153.
- Schneider H, Faschingbauer F, Schuepbach-Mallepell S, et al. Prenatal correction of X-linked hypohidrotic ectodermal dysplasia. N Engl J Med. 2018;378:1604-1610.
- Chauhan DP, Srivastava AS, Moustafa ME, Shenouda S, Carrier
 In utero gene therapy: Prospect and future. Curr Pharm Des. 2004;10:3663-3672.
- Waddington SN, Kennea NL, Buckley SMK, Gregory LG, Themis M, Coutelle C. Fetal and neonatal gene therapy: Benefits and pitfalls. Gene Ther. 2004;11(Suppl 1):S92-S97.
- Waddington SN, Kramer MG, Hernandez-Alcoceba R, et al. In utero gene therapy: Current challenges and perspectives. Mol Ther. 2005;11:661-676.
- Rossidis AC, Stratigis JD, Chadwick AC, et al. In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat Med. 2018;24:1513-1518.
- 93. Nicolas CT, VanLith CJ, Hickey RD, et al. In vivo lentiviral vector gene therapy to cure hereditary tyrosinemia type 1 and prevent development of precancerous and cancerous lesions. Nat Commun. 2022;13:5012.
- Shangaris P, Loukogeorgakis SP, Subramaniam S, et al. In utero gene therapy (IUGT) using GLOBE lentiviral vector phenotypically corrects the heterozygous humanised mouse model and its progress can be monitored using MRI techniques. Sci Rep. 2019;9:11592.
- 95. Ricciardi AS, Bahal R, Farrelly JS, et al. In utero nanoparticle delivery for site-specific genome editing. Nat Commun. 2018;9:
- Mattar CN, Nathwani AC, Waddington SN, et al. Stable human FIX expression after 0.9G intrauterine gene transfer of selfcomplementary adeno-associated viral vector 5 and 8 in macaques. Molecular Therapy. 2011;19:1950-1960.
- Mattar CNZ, Gil-Farina I, Rosales C, et al. In utero transfer of adeno-associated viral vectors produces long-term factor IX levels in a cynomolgus macaque model. Mol Ther. 2017;25: 1843-1853.
- Chan JKY, Gil-Farina I, Johana N, et al. Therapeutic expression of human clotting factors IX and X following adeno-associated viral vector-mediated intrauterine gene transfer in earlygestation fetal macaques. FASEB J. 2019;33:3954-3967.
- Massaro G, Mattar CNZ, Wong AMS, et al. Fetal gene therapy for neurodegenerative disease of infants. Nat Med. 2018;24: 1317-1323
- 100. Clarke MT, Remesal L, Lentz L, et al. Prenatal delivery of a therapeutic antisense oligonucleotide achieves broad biodistribution in the brain and ameliorates Angelman syndrome phenotype in mice. Mol Ther. 2024;32:935-951.
- 101. Carr DJ, Wallace JM, Aitken RP, et al. Uteroplacental adenovirus vascular endothelial growth factor gene therapy increases

- fetal growth velocity in growth-restricted sheep pregnancies. Hum Gene Ther. 2014;25:375-384.
- 102. David AL, Torondel B, Zachary I, et al. Local delivery of VEGF adenovirus to the uterine artery increases vasorelaxation and uterine blood flow in the pregnant sheep. Gene Ther. 2008:15:1344-1350.
- 103. Swanson AM, Rossi CA, Ofir K, et al. Maternal therapy with Ad. VEGF-A165 increases fetal weight at term in a Guinea-pig model of fetal growth restriction. Hum Gene Ther. 2016;27: 997-1007.
- 104. Rashnonejad A, Amini Chermahini G, Gündüz C, et al. Fetal gene therapy using a single injection of recombinant AAV9 rescued SMA phenotype in mice. Mol Ther. 2019;27: 2123-2133.
- 105. Niewiesk S. Maternal antibodies: Clinical significance, mechanism of interference with immune responses, and possible vaccination strategies. Front Immunol. 2014;5:446.
- 106. Calcedo R, Morizono H, Wang L, et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol. 2011;18:1586-1588.
- 107. Sabatino DE, Mackenzie TC, Peranteau W, et al. Persistent expression of hF.IX after tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol Ther. 2007;15:1677-1685.
- 108. Davey MG, Riley JS, Andrews A, et al. Induction of immune tolerance to foreign protein via adeno- associated viral vector gene transfer in mid-gestation fetal sheep. PLoS One. 2017;12: e0171132.
- 109. Borges B, Varthaliti A, Schwab M, et al. Prenatal AAV9-GFP administration in fetal lambs results in transduction of female germ cells and maternal exposure to virus. Mol Ther Methods Clin Dev. 2024;32:101263.
- 110. MacKenzie TC, Kobinger GP, Kootstra NA, et al. Efficient transduction of liver and muscle after in utero injection of lentiviral vectors with different pseudotypes. Mol Ther. 2002;6:349-358.
- 111. Coutelle C, Ashcroft R. Risks, benefits and ethical, legal, and societal considerations for translation of prenatal gene therapy to human application. Methods Mol Biol. 2012;891:371-387.
- 112. Cavazzana M, Six E, Lagresle-Peyrou C, André-Schmutz I, Hacein-Bey-Abina S. Gene therapy for X-linked severe combined immunodeficiency: Where do we stand? Hum Gene Ther. 2016;27:108.
- 113. Almeida-Porada G, Waddington SN, Chan JKY, Peranteau WH, MacKenzie T, Porada CD. In utero gene therapy consensus statement from the IFeTIS. Mol Ther. 2019;27:705-707.
- 114. Farrar MA, Park SB, Vucic S, et al. Emerging therapies and challenges in spinal muscular atrophy. Ann Neurol. 2017;81:
- 115. Baptiste C, De Vivo DC. Spinal muscular atrophy: A potential target for in utero therapy. Clin Obstet Gynecol. 2021;64:917-925.
- 116. Depreux FF, Wang L, Jiang H, et al. Antisense oligonucleotides delivered to the amniotic cavity in utero modulate gene expression in the postnatal mouse. Nucleic Acids Res. 2016;44:
- 117. Wang L, Kempton JB, Jiang H, et al. Fetal antisense oligonucleotide therapy for congenital deafness and vestibular dysfunction. Nucleic Acids Res. 2020;48:5065-5080.

- 118. Borges B, Brown SM, Chen WJ, et al. Intra-amniotic antisense oligonucleotide treatment improves phenotypes in preclinical models of spinal muscular atrophy. Sci Transl Med. 2025;17. doi: 10.1126/scitranslmed.adv4656
- 119. Gómez-Montes E, Salcedo Lobato E, Galindo Izquierdo A, et al. Prenatal cystic fibrosis transmembrane conductance regulator modulator therapy: A promising way to change the impact of cystic fibrosis. Fetal Diagn Ther. 2023;50:136-142.
- 120. Finkel RS, Hughes SH, Parker J, et al. Risdiplam for prenatal therapy of spinal muscular atrophy. N Engl J Med. 2025;392: 1138-1140.
- 121. Kamath P, Kamath A, Ullal SD. Liver injury associated with drug intake during pregnancy. World J Hepatol. 2021;13:747-762.
- 122. Peluffo H, Foster E, Ahmed SG, et al. Efficient gene expression from integration-deficient lentiviral vectors in the spinal cord. Gene Ther. 2013;20:645-657.
- 123. Rahim AA, Wong AMS, Howe SJ, et al. Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors. Gene Ther. 2009;16:509-520.
- 124. Ahmed SG, Waddington SN, Boza-Morán MG, Yáñez-Muñoz RJ. High-efficiency transduction of spinal cord motor neurons by intrauterine delivery of integration-deficient lentiviral vectors. J Control Release. 2018;273:99-107.
- 125. Rich KA, Wier CG, Russo J, et al. Premature delivery in the domestic sow in response to in utero delivery of AAV9 to fetal piglets. Gene Ther. 2022;29:513-519.
- 126. Mattar CNZ, Chew WL, Lai PS. Embryo and fetal gene editing: Technical challenges and progress toward clinical applications. Mol Ther Methods Clin Dev. 2024;32:101229.
- 127. De Bie FR, Tate T, Antiel RM. Maternal-fetal surgery as part of pediatric palliative care. Semin Fetal Neonatal Med. 2023;28: 101440.
- 128. Bose SK, Menon P, Peranteau WH. In utero gene therapy: Progress and vhallenges. Trends Mol Med. 2021;27:728-730.
- 129. Wolfe ID, Lillegard JB, Carter BS. Parental request for nonresuscitation in fetal myelomeningocele repair: An analysis of the novel ethical tensions in fetal intervention. J Perinatol. 2022;42:856-859.
- 130. Rovira-Moreno E, Abulí A, Muñoz-Cabello P, et al. The diagnosis communication process in spinal muscular atrophy: A cross-cutting view of the new challenges facing the therapeutic era. Genet Med Open. 2023;1:100825.
- 131. Lederer CW, Koniali L, Buerki-Thurnherr T, et al. Catching them early: Framework parameters and progress for prenatal and childhood application of advanced therapies. Pharmaceutics. 2022;14:793.
- 132. Baranello G; Neurodevelopment in SMA Working Group. The emerging spectrum of neurodevelopmental comorbidities in early-onset spinal muscular atrophy. Eur J Paediatr Neurol. 2024;48:67-68.
- 133. Sheppard M, Spencer RN, Ashcroft R, David AL; EVERREST Consortium. Ethics and social acceptability of a proposed clinical trial using maternal gene therapy to treat severe early-onset fetal growth restriction. Ultrasound Obstet Gynecol. 2016;47:484-491.
- 134. Schwab ME, Shao S, Zhang L, et al. Investigating attitudes toward prenatal diagnosis and fetal therapy for spinal muscular atrophy. Prenat Diagn. 2022;42:1409-1419.