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Structural covariance analysis for 
neurodegenerative and neuroinflammatory 
brain disorders
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Structural MRI can robustly assess brain tissue alterations related to neurological diseases and ageing. Traditional mor
phological MRI metrics, such as cortical volume and thickness, only partially relate to functional impairment and dis
ease trajectories at the individual level. Emerging research has increasingly focused on reconstructing interregional 
meso- and macro-structural relationships in the brain by analysing covarying morphometric patterns. These patterns 
suggest that structural variations in specific brain regions tend to covary with deviations in other regions across indi
viduals, a phenomenon termed structural covariance. This concept reflects the idea that physiological and pathological 
processes follow an anatomically defined spreading pattern. Advanced computational strategies, particularly those 
within the graph-theoretical framework, yield quantifiable properties at both the whole-brain and regional levels, 
which correlate more closely with the clinical state or cognitive performance than classical atrophy patterns.
This review highlights cutting-edge methods for evaluating morphometric covariance networks on an individual basis, 
with a focus on their utility in characterizing ageing, central nervous system inflammation and neurodegeneration. 
Specifically, these methods hold significant potential for quantifying structural alterations in patients with 
Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia and multiple sclerosis. By capturing the distinctive 
morphometric organization of each individual’s brain, structural covariance network analyses allow the tracking and 
prediction of pathology progression and clinical outcomes, information that can be integrated into clinical decision- 
making and used as variables in clinical trials. Furthermore, by investigating distinct and cross-diagnostic patterns 
of structural covariance, these approaches offer insights into shared mechanistic processes critical to understanding 
severe neurological disorders and their therapeutic implications. Such advancements pave the way for more precise 
diagnostic tools and targeted therapeutic strategies.
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Introduction
In the past, the brain was considered to be organized in anatomically 
defined cortical regions with well differentiated functions.1 However, 
it is more accurate to conceptualize it as a hierarchically-organized 
system of interacting elements, or ‘networks’,2 which provide the 
physiological basis for information processing and cognition. This 
shift in understanding is supported by studies demonstrating that 
brain regions involved in distinct cognitive functions tend to develop 
similarly,3 are strongly regulated by genes,4,5 change over one’s life
span6 and exhibit experience-related plasticity,7 being collectively 
known as the connectome.8 Furthermore, distinct pattern changes 
have been related to clinical variables or task performance measures 
in different neurological disorders,9,10 as brain areas that share ana
tomical and functional properties also appear to deteriorate in a 
more coordinated way than non-functionally related regions.7

Morphometric analyses based on structural MRI acquisitions are 
the most established tools for exploring in vivo brain alterations re
lated to ageing and neurological disorders.11,12 However, morphomet
ric MRI parameters alone, such as cortical volume or thickness, are 
not always sensitive enough to explain particular neurological symp
toms or disease trajectories.13 Conversely, it is increasingly acknowl
edged that morphometric parameters from a given region have an 
apparent close relation to the structural characteristics of functional
ly related areas.7 This implies that variations in the structure of 
certain brain regions across individuals frequently co-vary with struc
tural variations in other brain regions, a phenomenon referred to as 
structural covariance.7 The biological significance of this covariation 
in grey matter (GM) properties is still under debate, but it has been 

clearly shown that the morphometric covariance partially reflects 

brain connectivity itself.14,15 At first, morphometric covariance ana

lysis has been employed to detect network changes in neurodegen

erative disorders and to understand their role in cognitive decline, 

as neurodegeneration spreads in well-defined structural patterns re

lated to proximity and neuroanatomical characteristics.16 However, 

focal or disseminated lesions (inflammatory, ischaemic, traumatic, 

tumoural) can also impact brain network organization,13,17,18 leading 

to global changes in large-scale brain functionality beyond structural 

damage.19 Furthermore, due to the growing recognized association of 

neuroinflammation and neurodegeneration across different neuro

logical diseases,20 covarying morphometric patterns are being pro

gressively explored to depict the trajectories of neuroinflammatory 

conditions.21,22

The graph-based analytical framework,8,23 one of the most com
monly used approaches to analyse morphometric covariance net

works, attempts to summarize complex global and regional 

covariance patterns into biologically meaningful properties, pro

viding an abstract but quantifiable representation of their constitu

ent elements (nodes) and connections (edges) among them. 

Accordingly, nodes represent neurons or brain regions, whereas 

edges represent synapses or axonal projections.8,23 (Fig. 1) In add

ition, graph-based properties of human networks have been linked 

directly to brain maturation, cognitive performance (including ver

bal fluency, memory and intelligence), behaviour and emotions,23

as well as their disruption due to ageing and certain neurodegen

erative and neuroinflammatory diseases.9 Subsequently, these 

conditions could be interpreted as dysfunction of brain networks 

Figure 1 Hierarchical organization of nodes and edges and key graph-based properties. (A) Graph theory allows the categorizing of nodes according to 
their connections within a network (motifs, modules),23 organizing of nodes and edges in terms of network hierarchy (hubs),24 as well as (B) quanti
tative evaluation of a wide range of network properties.19 Some of the main properties are: node degree—the number of edges connected to a given 
node; cluster coefficient: the probability that any two neighbouring nodes are connected; length path—the average number of links required to traverse 
between all pairs of nodes in a network, showing network’s overall connectivity and efficiency in information transfer; betweenness centrality— 
defined as the number of shortest paths between any two nodes that passes through an any specific node and identifies those nodes that act as critical 
intermediaries in maintaining efficient information flow within the network; and modularity—reflecting the tendency of a network to be organized 
into distinct, densely connected groups of nodes or modules. This is related to scale-free network, where a few nodes have a very high node degree 
and betweenness centrality (hubs), while the majority of nodes display a lower node degree and the small-world network, where most nodes can 
be reached from every other by a small number of steps (short-path length), also exhibiting a high degree of local connections (high clustering coef
ficient). Studies have shown that the organizational structure of healthy human brains exhibits both non-random small-world and scale-free proper
ties,23 which confer an optimal balance between local specialization and global segregation, enhancing the efficiency and resilience. Moreover, the role 
of hubs within brain networks is crucial for managing the majority of information traffic.25 Healthy brain networks also display a hierarchical modular 
structure,8 with subnetworks within larger networks. These large-scale modules correspond to recognized functional systems in the brain, including 
motor, somatosensory, auditory, visual and association networks.19 Created in BioRender. Groppa, S. (2025) https://BioRender.com/nptbd0r.
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or ‘disconnection syndromes’,26 suggesting that the loss of neurons 
and their connections interferes with the structural and functional 
connections between brain regions, leading to clinical symptoms.

To date, most network mapping studies in humans have fo
cused on group-level analysis, neglecting any variability among 
subjects, even between individuals with the same diagnosis. 
Conversely, several methods to characterize individual structural 
covariance networks across neurological disorders have already 
arisen. Therefore, in this review, we aimed: (i) to summarize the 
main methods of building individual brain networks based on 
co-varying morphometric parameters, (ii) to update the available 
evidence about its use in characterizing ageing; and (iii) to discuss 
its potential role in understanding the underlying pathology of 
neurodegenerative and neuroinflammatory processes, specifically 
mild cognitive impairment (MCI) and Alzheimer’s disease, 
Parkinson’s disease, frontotemporal dementia (FTD) and multiple 
sclerosis.

Establishing methodologies
Overall, the common approach of the current methodologies in
volves constructing a structural covariance network by identifying 
statistically interrelated or covarying GM morphometric regions. 
This is achieved by transforming each individual’s set of MRI mea
surements into a similarity matrix of pairwise interregional corre
lations of morphometric feature vectors, which represents the 
implicit strength of these connections.26 This connectivity matrix 
can be thresholded and additionally binarized to reduce spurious 
or false-positive connections. Subsequently, the network is con
structed based on the pairwise correlated brain regions, and the 

graph properties are computed for each extracted network, provid
ing insights into the structural relationships and connectivity pat
terns within the brain (Fig. 2).

Differences among the available methods depend on various 
factors, including the cortical parcellation into nodes. This initial 
process typically follows a neuroanatomical scheme reflecting 
functional specialization. Strategies for node definition are evolv
ing and constitute an active area of research, as the choice of the 
brain parcellation scheme can influence the resulting network 
architecture.26

Another aspect is morphometric measurement, as there is a 
range of different coupling metrics that can be estimated depend
ing on the chosen MRI sequences.27 If a 3D T1-weighted image is 
used (unimodal MRI), the source of GM measurement is commonly 
cortical thickness or volume. Conversely, when employing multi
modal MRI (i.e. T1-weighted, T2-weighted, diffusion-weighted 
data), a combination of different metrics can be calculated for 
each voxel.5 Most methods employ Pearson’s correlation to create 
the matrix, but alternative approaches, such as assessing the differ
ence of absolute volumes and the Kullback–Leibler divergence 
(KLD) similarity,28 have also been explored. The latter estimates 
morphometric covariance between brain regions based on the dif
ference between two probability distributions of a single morpho
logical index. The choice of the threshold used to generate a 
similarity matrix from pairwise correlations is another relevant 
step. Common approaches include using an absolute correlation 
value, selecting a top percentile of correlations, applying statistical 
significance tests or maintaining a specific sparsity level to balance 
network density.27 Thresholds can also be adjusted to preserve im
portant network properties and compared against random net
works to ensure biological relevance.

Figure 2 Schematic representation of the general methodology to assess single-subject grey matter structural covariance networks. (A) Individual 
unimodal or (B) multimodal MRI parameters could be used for this purpose. (C) Network matrices are built on pairwise similarity (known as edges 
or connections) between regions (known as nodes) on the extracted morphometric features (cortical thickness, volume, diffusion anisotropy, etc.). 
(D) The organization of the reconstructed network is commonly evaluated using graph theory and the resulting network parameters used to stratify 
phenotypes, associate with cognitive performance or assess their clinical relevance. Image partially created with BioRender.com. CT = cortical 
thickness; FA = fractional anisotropy; MD = mean diffusivity; SA = surface area; Vol = volume.
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There are also differences regarding scanner acquisition 
strength. A 3 T MRI provides higher signal-to-noise (SNR) and 
contrast-to-noise ratios between GM and white matter (WM).29

This results in more detailed images compared to 1.5 T scanners, 
potentially allowing for more precise analysis of the brain’s struc
tural connectivity. However, studies have reported a general agree
ment in structural covariance networks built using both 1.5 T and 
3 T scanners in terms of global network metrics.30 In contrast, there 
is poorer consistency when analysing structural connections at an 
individual level,31 although this improves when accounting for dif
ferences in network sparsity. Therefore, it is recommended to care
fully consider the impact of scanner strength, especially when 
dealing with high-resolution data or individual connections, to en
sure the reliability and comparability of structural covariance ana
lyses across different MRI field strengths.

A wide range of graph-based network measures can be calcu
lated from the extracted networks. Figure 1 illustrates a selection 
of graph metrics that are commonly used in studies of human brain 
networks. The primary metrics include the cluster coefficient, 
modularity and small-worldness; however, there is still no consen
sus on which metric is the most representative.23

Among the different methodologies for constructing structural 
covariance networks from morphometric GM features, the most 
widely used is the one described by Tijms et al.,27 which has been ap
plied to all the neurological conditions discussed in this review. In 
this technique, network reconstruction is conducted by superimpos
ing a set of precomputed 3 × 3 × 3 voxel cubes onto whole-brain GM 
segmentations derived from T1-weighted MRI scans. These cubes 
are also rotated to better accommodate the complex 3D structure 
of the cortex. Each cube serves as a node in the network, containing 
the GM volume within that specific area, while connections (edges) 
are established by computing correlation coefficients between pairs 
of cubes—the most commonly used measure of similarity.

While this cube-based method effectively accounts for brain 
curvature—an essential consideration given the cortex’s intricate 
3D structure—it does not fully capture tissue variability in shape 
and size across different brain regions or between the cortex and 
deep GM structures. Additionally, the rotating cubes may partially 
overlap, potentially introducing artificial increases in similarity 

that cannot be corrected. Nonetheless, one of the method’s strongest 
advantages is its independence from anatomical atlases, which en
hances reliability. However, this comes at the cost of losing precise 
anatomical localization, thereby limiting insights into the cytoarchi
tectonic and myeloarchitectonic properties of brain tissue.

Other methods have emerged, such as the one described by 
Seidlitz et al.,5 where they employ multimodal MRI measurements 
to construct morphometric networks, demonstrating that any 
MRI metric or data from other neuroimaging techniques could be 
utilized for this purpose. In addition, the approach described 
by Gonzalez-Escamilla et al.32 employs a single morphological 
measure—the adjusted cortical volume difference between a pair 
of regions—to construct covariance networks.

Each methodology offers distinct ways to quantitatively 
characterize morphometric covariance networks and has been ap
plied in various types of studies (cross-sectional versus longitudin
al), encompassing different populations and research goals. 
Unfortunately, there is a lack of studies comparing the accuracy 
and reproducibility of these methods, resulting in an unknown 
but potentially significant heterogeneity. The main characteristics 
of each method are summarized in Table 1. A more comprehensive 
description is provided in the Supplementary material. Despite 
considerable methodological heterogeneity, there is an encour
aging degree of convergence between studies of structural brain 
networks describing the fundamental architecture of interregional 
connections.19

Studies of ageing and cognitive domains 
in healthy subjects
Individual morphometric covariance analysis has revealed consist
ent hub regions across subjects, including the precuneus, cingulate 
gyrus, dorsomedial frontal regions, inferior frontal and parietal 
areas, middle temporal gyrus and lateral occipital cortex.27,28,33

These hubs consistently show high reliability in nodal centrality 
measurements across repeated tests, suggesting that the hub 
architecture is a stable and fundamental aspect of human brain 
organization.

Table 1 Key characteristics of the main methods for analysing individual structural covariance networks

Method Nodes Morphometric 
measures

Edges Graph-based properties Particularities

Tijms 
et al.27

Cortex segmentation into 
rotating cubes (6 × 6 ×  
6 mm3)

Local thickness and 
folding structure

Pearson’s correlation 
between cube pairs

Network degree, path 
length, clustering 
coefficient, 
betweenness 
centrality

Resulting networks 
are not normalized

Fleischer 
et al.22

Cortex segmentation into 
rotating cubes (6 × 6 ×  
6 mm3)

Local thickness and 
folding structure

Pearson’s correlation 
between cube pairs

Network degree, global 
efficiency, transitivity

Networks with similar 
degrees are used for 
the analysis

Seidlitz 
et al.5

Cortex parcellation into 
308 regions 
(Desikan-Killiany atlas)

Ten morphometric 
featuresa

generating a 
vector

Pearson’s correlation 
between each possible 
pair of morphometric 
vectors

Nodal similarity, 
density, size and 
degree

Potential application 
to different 
neuroimaging 
modalities

Ciolac 
et al.32

Hippocampus parcellation 
into 12 subfields 
(Desikan–Killiany atlas)

Adjusted volume by 
TIV, age and 
scanner

Volumetric similarity 
between each pair of 
nodes

Clustering coefficient, 
network hub 
detection

Potential applications 
beyond the 
hippocampus

TIV = total intracranial volume.
aFractional anisotropy, mean diffusivity, magnetization transfer, grey matter volume, surface area, cortical thickness, intrinsic Gaussian curvature, mean curvature, curved 

index, folding index.
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Morphometric covariance networks seem to display adaptive 
structural reorganization through the healthy lifespan, which indi
cates that they may capture biologically meaningful mechanisms 
involved in these developmental processes. Studies based on cor
tical thickness covariance have shown a linear decline in clustering 
coefficient and local efficiency with ageing.34 Similarly, other stud
ies have reported a negative correlation with age for clustering co
efficient and local efficiency in morphometric brain networks based 
on GM volume.28,35 In addition, studies with larger cohorts have re
vealed a non-linear relationship between morphometric covari
ance networks and age, showing an inverted U-shaped36 and a 
cubic age-related trajectory for path length and global efficiency.34

Widespread sex-effect has also been observed in morphometric 
covariance network properties.37 In particular, female subjects 
tend to exhibit higher clustering coefficients and lower path lengths 
compared to their male counterparts, suggesting greater local effi
ciency. Besides, structural covariance networks may serve as con
nectome fingerprints to identify single individuals, with reported 
accuracy rates exceeding 98%, even among twin subjects.37

More intriguingly, morphometric covarying properties of the 
connectome appear to correlate with individual differences in cog
nition. Specifically, it has been demonstrated that the node degree 
or hubness is connected to both verbal (vocabulary) and non-verbal 
(matrix reasoning) skills,5 assessed by the Wechsler Abbreviated 
Scale of Intelligence (WASI) intelligence quotient (IQ) scores. 
Notably, vocabulary IQ scores were found to be associated with 
the node degree in the left-lateralized temporal and bilateral front
al cortical areas, which are related to language functioning. 
Additionally, non-vocabulary IQ scores seemed to be correlated 
with the node degree in the bilateral primary sensory cortical areas, 
specialized for visual and sensorimotor processing. In a study ex
ploring individual covarying cortical thickness in a cohort of 650 
healthy subjects,34 a correlation was observed between nodal cen
trality in the left superior frontal gyrus and the superior part of the 
precentral sulcus with cognitive performance as assessed by the 
Cattell test, which measures cognitive abilities without being influ
enced by their cultural background, education or language skills.

Tracking brain reorganization in mild 
cognitive impairment and Alzheimer’s 
disease
The spectrum of Alzheimer’s disease, spanning from MCI to clinical 
dementia, is one of the major health problems in ageing popula
tions.38 Still, the pathophysiological mechanisms driving the accu
mulation of amyloid-β plaques and tau-related neurofibrillary 
tangles38 remain poorly understood. Emerging evidence suggests 
that this abnormal protein deposition triggers an activation of the 
innate immune system and an increase in inflammatory markers 
that contribute to structural damage and further propagation of 
misfolded proteins,39,40 ultimately resulting in neuronal loss and 
brain atrophy. While specific cortical atrophy patterns related to 
Alzheimer’s disease have been identified, certain clinical pheno
types with distinct cognitive profiles are not entirely explained by 
regional volume changes alone.13 Therefore, Alzheimer’s disease 
is increasingly conceptualized as a brain network disruption or dis
connection syndrome26 secondary to all these mediating factors 
that eventually lead to cognitive decline.

Early studies in this field demonstrated a preferential involve
ment of hubs in brain diseases with cognitive impairment, such 
as MCI and Alzheimer’s disease,41,42 which have been studied 

extensively using individual morphometric covariance analysis. It 
has been demonstrated consistently that there is a decrease in 
the global-network small-world coefficient, clustering coefficient 
and path length in those patients, as well as a decrease in between
ness centrality in medial temporal and association parietal 
areas.41,42

Interestingly, these changes appear to be related to cognitive 
performance. Patients with a more severe cognitive impairment 
have been shown to display more random graph-based morpho
metric properties,41 as indicated by correlations between the aver
age path length, clustering coefficient and the Mini-Mental State 
Examination (MMSE) scores, particularly evident in the left frontal 
and parietal areas. Additionally, some of these associations were 
modified by the age of disease onset and the cognitive domains af
fected.42 In early-onset Alzheimer’s disease patients (<65 years 
old), a worse memory impairment was strongly associated with 
low clustering coefficient and path length values, and a worse lan
guage impairment was strongly associated with a more decreased 
betweenness centrality as compared to late-onset Alzheimer’s dis
ease patients (>65 years old) in the left inferior frontal operculum, 
left inferior parietal lobule and left precuneus, which are all integral 
parts of the language network. Conversely, late-onset patients 
showed a significant relationship between worse visuospatial im
pairment and decreased betweenness centrality, mainly in the pos
terior occipital, parietal, temporal and cingulate areas, which are 
known to be crucial for visuospatial processing.42 Of note, statistic
al analyses were usually adjusted for GM volume; therefore, these 
findings cannot be solely attributed to differences in regional atro
phy measurements.41,42

Changes in morphometric covariance networks have also been 
identified as a useful marker of progressive cognitive worsening.43

Individuals with MCI and abnormal levels of beta-amyloid in the 
CSF displayed lower values for node degree, clustering coefficient, 
path length and the small-world property, compared to cognitively 
intact subjects.43 MCI individuals displayed more randomly orga
nized morphometric covariance networks, suggesting a tendency 
toward the network dynamics observed in Alzheimer’s disease 
and an association with faster clinical progression.44 Prognostic 
cut-offs for several graph-based morphometric network properties 
have been calculated to identify MCI patients who are likely to pro
gress to dementia over a two-year follow-up. As a result, models in
tegrating small-world coefficients, CSF tau and hippocampal 
volumes showed the best performance to detect progression, 
with an accuracy of up to 72%.45

Furthermore, morphometric covariance properties, compared 
to other Alzheimer’s disease biomarkers such as total GM volume, 
CSF total tau and MMSE scores, appeared to better predict hippo
campal atrophy rates.46 Interestingly, the above-mentioned trad
itional biomarkers showed no association with individual rates of 
hippocampal atrophy, suggesting that network properties may bet
ter capture changes during very early preclinical stages. Notably, in 
brain regions where amyloid tends initially to aggregate, such as 
the anterior cingulate and precuneus, disrupted network measures 
(characterized by low clustering coefficient and high path length 
values) not only predicted faster atrophy within those regions, 
but also in distant regions connected to the initial sites of amyloid 
deposition.46 Therefore, morphometric covariance network 
changes may predict disease progression in the early stages, even 
before brain atrophy becomes evident.

Moreover, it has been observed that disruption in structural co
variance networks accelerates with higher tau retention,44 as mea
sured by PET scan, in the preclinical stages and MCI. Besides, a 
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negative correlation has been reported between tau-retention, 
clustering coefficient and node degree in the posterior cingulate, in
ferior parietal lobule and precuneus in Alzheimer’s disease patients 
compared to cognitively preserved, age-matched healthy con
trols.47 Additionally, tau-PET retention has been reported to be re
lated to greater GM network disruption in individuals across the 
Alzheimer’s disease continuum,48 more evident with increasing 
disease severity and tau load.

Quantifying structural alterations in 
Parkinson’s disease
Parkinson’s disease stands as the second most prevalent neurode
generative disorder,49 affecting 2%–3% of individuals ≥65 years old. 
The neuropathologic hallmark is neuronal loss in the substantia ni
gra, resulting in a striatal dopamine deficiency, and the presence of 
intracellular inclusions containing aggregates of α-synuclein, 
which eventually extends to the entire cerebral cortex.49 Initially 
considered solely a neurodegenerative disorder, Parkinson’s dis
ease is now recognized as a multisystem brain disorder marked 
by significant neuroinflammation and immune dysfunction,50

both contributing to α-synuclein propagation and neuronal death,16

as well as being implicated in the development of several non- 
motor symptoms. In this complex scenario, integrated analysis of 
whole brain morphometric covariance networks has revealed in
sightful findings, enriching the understanding of the disease’s 
evolution.

Compared to healthy subjects, Parkinson’s disease patients dis
played significant changes in the graph-based morphometric net
works in the early stages of the disease.51 These abnormalities 
included increased measures of network segregation, as evidenced 
by increased clustering coefficient and local efficiency, reflecting a 
loss of global efficiency. Additionally, Parkinson’s disease patients 
showed changes in nodal centralities, particularly in the putamen 
and temporal-occipital regions.51,52 Individual network analysis re
vealed an inverse correlation between nodal centralities in the right 
postcentral gyrus and motor disability, assessed using the Unified 
Parkinson’s disease Rating Scale (UPDRS) III scores, as well as 
disease severity, estimated by the Hoehn and Yahr stage. 
Parkinson’s disease patients also showed lower nodal centralities 
in the superior occipital gyrus and inferior temporal gyrus, which 
comprise the visuoperceptive pathway responsible for represent
ing complex object features and facial perception.51 Altogether, 
these findings suggest that, initially, Parkinson’s disease patients 
seem to be able to uphold overall information transfer, but as the 
disease progresses, the brain networks gradually lose the ability 
to maintain global integration, ending up in a disconnection syn
drome as in Alzheimer’s disease.

Furthermore, morphometric covariance networks exhibited 
promising potential for accurately distinguishing Parkinson’s dis
ease patients from healthy subjects (73.1% and 72.7% accuracy, re
spectively). Additionally, they showed good efficacy in classifying 
tremor-dominant and akinetic–rigid motor subtypes with a signifi
cant accuracy of 67%.51

Although age significantly influences the clinical features of 
Parkinson’s disease patients, its role remains controversial in terms 
of GM covariance networks. One study found that the individual 
network connectivity patterns of these patients change with 
age,53 while another did not observe significant changes.54

Despite these findings, most studies use only a limited set of 
morphometric parameters and are conducted in small cohorts. 

Therefore, further research is needed to validate and expand 
upon the current observations.

Brain alterations in patients with 
frontotemporal dementia
The behavioural variant of FTD is the second most common 
early-onset dementia,55 after Alzheimer’s disease. The primary clin
ical manifestations of bvFTD involve alterations in the regulation of 
personal and social cognition, reward processing and language, ac
companied by prominent executive dysfunction and, in some cases, 
memory impairment.56 Histopathological features are heteroge
neous, including the presence of the tau-protein, the transactive re
sponse DNA-binding protein 43 or the fused in sarcoma protein in 
the brain.56 Concurrently, there is chronic neuroinflammation and 
prolonged activation of microglia and astrocytes,57 leading to an al
teration of neuronal homeostasis and uncontrolled production of 
pro-inflammatory factors, perpetuating ongoing neurodegenerative 
processes.58 Despite sharing some atrophy patterns with 
Alzheimer’s disease, bvFTD is characterized by predominant pre
frontal and/or anterior temporal cortex atrophy.55 Nevertheless, 
clinical symptoms cannot be solely attributed to the volume loss in 
these areas.13

Individual morphometric covariance networks have also re
vealed interesting disease-related characteristics. Compared to 
healthy subjects, bvFTD demonstrated a lower degree of connect
ivity density, clustering coefficient, path length, betweenness 
centrality and small-worldness55 values using the Tijms and cow
orkers method.27 Other studies constructing networks based on 
cortical thickness confirmed these findings.59 In comparison to 
Alzheimer’s disease patients, bvFTD exhibited a lower clustering 
coefficient in the left angular gyrus and less GM volume in the 
left thalamus.55 Additionally, cognitive impairment, as measured 
by the MMSE score, showed the strongest correlation with mor
phometric network changes in the left angular gyrus, right precu
neus and insula.55,59 These affected heteromodal association 
areas are known to play a crucial role in executive control, working 
memory and emotion processing, which are usually disrupted in 
bvFTD.56

As illustrated, bvFTD shows anatomically distinct morphomet
ric network abnormalities, which may be linked to the underlying 
pathology and correlate with the cognitive performance of these 
patients.

Structural network alterations in 
multiple sclerosis
Multiple sclerosis is the most prevalent neuroinflammatory disease 
of the central nervous system.60 It is a chronic inflammatory de
myelinating disorder that results in focal and disseminated lesions 
in both GM and WM.60 Additionally, growing evidence suggests 
that, even from disease onset,61 diffuse neurodegenerative pro
cesses throughout the brain and spinal cord coexist within a con
text of acute inflammation, contributing to irreversible and 
long-term disability accumulation, leading to both cognitive and 
physical impairment.62 This impairment arises from disrupted 
neuronal conduction due to WM lesions in key white matter 
tracts,63 which compromise the functional integrity of widely dis
tributed brain regions,64 alongside the progressive accumulation 
of widespread grey matter abnormalities, causing axonal loss 
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even in areas that appear normal on conventional MRI. Therefore, 
multiple sclerosis can also be conceptualized as a disconnection 
syndrome.26,63

Although traditional MRI metrics, such as WM lesion volumes 
and global and regional atrophy, are associated with cognitive de
cline, they only account for part of the variability in cognitive per
formance.62 This limitation likely arises because, among other 
factors, these measurements do not consider the inherent interre
gional structural relationship of the brain.62 In this context, mor
phometric covariance networks have been also used to explore 
the cognitive dysfunction in multiple sclerosis at the individual 
level.

Multiple sclerosis patients with cognitive impairment were re
ported to exhibit lower values of clustering coefficient and path 
length, indicating a more random network topology.62 These find
ings were associated with poorer global cognitive functioning, as 
well as with deficits in executive function, verbal memory, informa
tion processing speed, working memory and attention.

At a regional level, network abnormalities were most promin
ently linked to impaired global cognition in the right frontal super
ior gyrus, right amygdala, left middle cingulate and left paracentral 
lobule—areas implicated in visual, categorical and semantic recog
nition.62 Therefore, the presence of a more random network top
ology in multiple sclerosis patients appears to be related to 
cognitive impairment, explaining the variance beyond convention
al MRI and volumetric measures.

Interestingly, patients classified as having clinically isolated 
syndrome (CIS) already displayed distinct changes in individual 
structural networks. In particular, CIS patients demonstrated a 
higher small-world coefficient compared to healthy controls,65 in
dicating a more regular network. This suggests a tendency towards 
possessing dense local connections (high clustering coefficient) be
tween nodes at the expense of long-distance connections (low path 
length), which may compromise the efficient balance between 
short and long-range information transfer.65

The hippocampus, crucial for cognitive functions, operates with
in interconnected networks. In multiple sclerosis, focal damage dis
rupts these networks leading to cognitive impairment.32 Analysing a 
large cohort of multiple sclerosis patients and healthy subjects, indi
vidual hippocampal networks based on volumetric variations re
vealed significant differences in hippocampal subfield integrity 
between the two groups and also among male and female patients.32

Specifically, multiple sclerosis patients exhibited a more clustered 
hippocampal network topology compared to healthy controls and 
this difference was more pronounced in female patients. Over 
time, multiple sclerosis patients developed an even more clustered 
network architecture along with widespread regional subfield atro
phy, notably also more extensive in female patients. Additionally, 
the described hippocampal network and anatomical organization 
correlated with cognitive performance, assessed using the Paced 
Auditory Serial Addition Test and the Multiple Sclerosis Inventory 
of Cognition test. Intriguingly, these correlations were also stronger 
in females than in male multiple sclerosis patients.32

Network reorganization is a dynamic process that can be cap
tured by GM structural network metrics. Cognitive rehabilitation 
has been shown to improve local efficiency in multiple sclerosis pa
tients with advanced disease,24 evidenced by a significant increase 
in the clustering coefficient in frontal and temporal areas. This is 
accompanied by a significant decrease in path length in the right 
parietal lobe and global betweenness centrality.24 These structural 
connectivity changes following cognitive training support the posi
tive effects of rehabilitation across all stages of the disease.

Beyond T1-weighted MRI for 
connectivity network mapping
The main scope of this review was to assess individual structural 
covariance networks using graph theory applied to T1-weighted 
imaging.23 However, different neuroimaging modalities have also 
been employed to characterize network organization in terms of 
structural and functional connectivity within a graph-theoretical 
framework.19

Structural connectivity refers to the physical (i.e. anatomical) 
interconnections between brain regions, primarily represented by 
WM tracts. Diffusion-weighted MRI (DWI) maps these axonal path
ways by capturing microstructural tissue properties and fibre orien
tation.25 In DWI-based networks, nodes represent regions from an 
atlas, and edges correspond to streamlines between these re
gions.66 Noteworthy, similar to T1-weighted imaging, several 
methodologies have been proposed to model covariance networks 
based on microstructural properties derived from DWI.66-69

However, most studies construct group-level networks rather 
than individual ones. DWI-derived networks consistently reveal 
highly clustered cortical organization, with pathways primarily 
linking spatially related regions through hub nodes, facilitating ef
ficient global communication.23 Conversely, DWI cannot determine 
connection directionality, resulting in undirected graphs66 and 
struggles to accurately resolve fibre crossings, mergers and diver
gences, as well as small U-shaped fibres.69 Consequently, this can 
lead to incomplete connectivity profiles in certain brain regions or 
restrict analyses to larger WM tracts. Higher-resolution scans im
prove white matter representation but reduce the signal-to-noise 
ratio (SNR), affecting fibre tracking reliability.66,70 More important
ly, DWI only infers anatomical connections without confirming 
functional activity,71 requiring functional neuroimaging or electro
physiology for a complete connectome analysis.

Functional connectivity is inferred from statistical dependen
cies between neuronal activity patterns in distinct brain regions 
and can be assessed using both spontaneous (resting-state) and 
task-evoked fluctuations measured by functional MRI (fMRI).72

Models derived from fMRI reveal large-scale functional networks 
that exhibit fundamental graph-theoretical properties,73 such as 
small-world organization and scale-free degree distribution.23 In 
functional networks, nodes represent brain regions, typically de
fined using an atlas, while edges correspond to the correlations in 
time-series signals between regions, commonly measured through 
blood oxygen level-dependent (BOLD) signals.73 Constructing 
fMRI-based networks requires careful methodological choices, in
cluding fMRI pre-processing pipelines, parcellation schemes, pre
processing steps and frequency band selection, all of which 
impact network topology.74 Moreover, the interpretability of these 
networks remains constrained by the still poorly understood 
physiological underpinnings of the BOLD signal.

The conditions under which fMRI data are acquired are also 
relevant. Recent research using a two-stage analysis approach 
that integrates inter-subject and intra-subject correlation analyses 
has revealed distinct connectivity dynamics across brain regions 
during natural auditory stimulation.75 While the primary auditory 
cortex exhibited stable connectivity patterns, higher-order net
works, such as the stress modulation and auditory language net
works, showed greater inter-individual variability.75 Moreover, 
the visuomotor control network was influenced by eyes-open ver
sus eyes-closed conditions, highlighting the interaction between 
auditory and visual processing.75 Additionally, physiological fac
tors, such as cerebral blood flow, metabolic rate of oxygen and 
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blood volume, modulate the BOLD signal,76 ultimately affecting 
functional connectivity estimates. External influences, including 
drug use, can also induce changes in the BOLD signal; for instance, 
ketamine has been shown to reduce connectivity in key networks 
like the salience, auditory and default mode networks.77

In the field of molecular imaging, PET has been employed to as
sess functional—or metabolic78—connectivity using graph theory, 
both at the group and individual levels.79,80 This approach has 
been applied to tracers such as 18F-FDG (glucose metabolism), 
18F-FDOPA (dopamine synthesis) and 11C-SB217045 (serotonin 
5HT4 receptor density). The method involves identifying molecu
larly interconnected brain regions by analysing correlations in tra
cer uptake, assuming that stronger correlations indicate stronger 
shared molecular properties. PET connectivity has been used at 
both regional and voxel levels to study neurotransmitter systems 
and enzymatic activity, offering a deeper understanding of the 
brain’s structural-functional architecture and biological alterations 
in brain diseases.81-83 While fMRI offers higher spatial and temporal 
resolution and eliminates radiation exposure,76 PET provides es
sential information for receptor imaging and clinical applications, 
providing unique insights into molecular and metabolic brain func
tion. Of note, the reconstruction of covariance networks from PET 
data follows the same methodology as that used for T1-weighted 
imaging morphometric and DWI-derived microstructural features.

Overall, DWI tractography and fMRI are the most commonly 
used techniques for constructing brain networks. Conversely, 
structural MRI has gained increasing attention due to its 
high SNR, a relative insensitivity to artefacts, an increased spatial 
sensitivity and accessibility in clinical settings.33 Early studies pri
marily focused on group-level structural covariance networks,84,85

which assess morphometric correlations across participants, 
thereby reducing the influence of outliers and anatomical variabil
ity. While this approach provides insights into shared network 
properties, it inherently assumes a homogeneous covariance 
structure within each group, potentially overlooking subject- 
specific variations. This limitation has driven a methodological 
shift toward individual-level network analyses,33,34,44 which en
able a more granular characterization of structural connectivity 
patterns.

The next advancement in network-based analyses is the intro
duction of multimodal image covariance approaches, which offer 
a comprehensive framework for studying brain connectivity by in
tegrating structural and functional neuroimaging data.79 Graph 
theory serves as a unifying framework, providing common network 
measures that facilitate comparisons between structural and func
tional connectivity.86 Research has shown that structural connect
ivity strength is moderately predictive of functional connectivity 
patterns,86 as white matter pathways tend to connect neuronal po
pulations with synchronized activation patterns. Structurally con
nected cortical regions exhibit stronger and more consistent 
functional connectivity than unconnected regions. In addition, 
studies reveal moderate coupling of age-related changes in struc
tural and functional connectivity across the lifespan,87 as well as al
tered structural and functional connectivity patterns in 
neuropsychiatric disorders,88-90 highlighting their relevance in 
both normal ageing and disease. Beyond structure-function rela
tionships, brain metabolic covariances observed in PET imaging 
align with neural networks identified through resting-state fMRI 
analyses.91 Furthermore, nearly 50% of PET covariance connections 
are associated with underlying white matter tracts assessed by 
DWI,92 and 80% of intralobar PET covariance connections appear 
to have a structural substrate.92

This expanding field holds promise for novel insights into brain 
diseases that cannot be fully understood through single-modality 
imaging alone. Integrating multi-modal neuroimaging could pro
vide a more comprehensive understanding of how structural dis
ruptions in brain networks contribute to functional deficits,79

with significant implications for neurological disorders.

Neuroinflammation, neurodegeneration 
and connectivity loss
Neurodegenerative diseases are characterized by a complex inter
play between GM atrophy, connectivity loss, disease progression 
and neuroinflammation,20 which together drive cognitive and 
functional decline. Atrophy, particularly in subcortical and associa
tive cortical regions, reflects irreversible neuronal loss and is a hall
mark of disease progression in disorders such as multiple sclerosis, 
Alzheimer’s disease, Parkinson’s disease and FTD. However, con
nectivity loss often precedes significant atrophy, disrupting 
large-scale brain networks and accelerating disease progression.93

Network-based analyses have demonstrated that neurodegen
eration spreads along intrinsic connectivity pathways,94 leading 
to progressive network disintegration. For instance, in multiple 
sclerosis, WM lesions disrupt key connections between subcortical 
and cortical regions, particularly in the putamen and occipital- 
parietal networks,95 impairing processing speed. Similarly, in 
Parkinson’s disease, cortical thinning follows connectivity pat
terns, with disease progression being more pronounced in regions 
highly connected to early atrophy sites.94 In Alzheimer’s disease, 
functional connectivity loss within the default mode network cor
relates more strongly with cognitive decline than atrophy alone, 
highlighting its predictive value. In FTD, subtype-specific atrophy 
patterns drive distinct clinical symptoms96: bvFTD affects the 
frontal and anterior temporal lobes, disrupting executive function 
and personality; semantic variant of primary progressive aphasia 
(PPA) impairs semantic memory via anterior temporal lobe atrophy; 
and non-fluent variant of PPA affects frontal-insular circuits, lead
ing to speech deficits.97 Structural and functional connectivity loss 
in WM tracts such as the uncinate and superior longitudinal fascic
uli further exacerbates language and cognitive dysfunction.96,97

Neuroinflammation plays a dual role, both contributing to dis
ease progression and triggering compensatory mechanisms. 
While inflammatory processes in multiple sclerosis accelerate 
neuronal damage and demyelination,95 they may also transiently 
increase functional connectivity as a compensatory response in 
early disease stages.26,62 Similarly, in Alzheimer’s disease, neuroin
flammation driven by amyloid and tau pathology influences both 
structural atrophy and synaptic dysfunction, further exacerbating 
network disruption.98 Taken together, these findings suggest that 
atrophy and connectivity loss are interconnected processes shaped 
by disease-specific mechanisms, with neuroinflammation acting as 
a key modulator of disease progression.

Final remarks and future directions
Despite the distinct pathophysiological mechanisms of neurode
generation and neuroinflammation, these processes share overlap
ping molecular pathways,20 including oxidative stress, 
mitochondrial dysfunction, excitotoxicity and blood–brain barrier 
disruption.99,100 Moreover, while the specific causes of neuronal 
damage—ranging from misfolded protein accumulation in neuro
degenerative diseases to autoimmune-mediated attacks in 
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neuroinflammatory conditions—differ substantially, network 
analysis consistently captures common alterations in large-scale 
brain structure,5,15 interregional interactions and connectivity, 
which robustly correlate with cognitive and physical decline.7,9

Therefore, the study of neuroinflammatory and neurodegenera
tive disorders from a network perspective provides a unifying 
framework to identify common structural alterations, reflected 
in the topographical spread of pathology across different neuro
logical diseases.16

In many brain disorders, atrophy patterns and lesion load alone 
do not fully explain clinical manifestations,13 as cognitive impair
ment and functional decline depend not only on localized neuronal 
loss, but also on how different brain areas interact and reorganise 
functionally to compensate for damage.7 Thus, progressive neuronal 
loss—typically more pronounced in specific brain regions whose vul
nerability is determined by disease pathology—leads to observable 
volume reductions and morphological changes. These changes, cap
tured by T1-weighted imaging, contribute to disruptions in brain 
network architecture. This highlights the need for substantial efforts 
to better understand how network dynamics evolve in response to 
disease and how the brain compensates to maintain global function 
despite progressive injury.

Neurodegenerative disorders are now widely known to exhibit 
chronic neuroinflammation, which accelerates protein aggregation 
and neuronal loss,20 thereby exacerbating disease progression. 
Conversely, in neuroinflammatory conditions such as multiple 
sclerosis,10,17 growing evidence suggests that neurodegenerative 
processes begin as early as the first demyelinating attack. These in
terconnected processes, including axonal damage, synaptic dys
function and microglia activation (Fig. 3), lead to progressive 
motor and cognitive impairment.62 Despite their differences, both 
disease types disrupt central nervous system homeostasis, contrib
uting to a self-perpetuating cycle of neurodegeneration marked by 

abnormal protein deposition, inflammatory responses and pro
gressive neuronal death.20

In this context, we focused on the main available methods to 
construct individual morphometric covariance networks based on 
structural MRI due to its availability in clinical settings, high 
signal-to-noise ratio and reduced susceptibility to artefacts.33

Mapping in vivo GM morphometric networks has proven to offer a 
quantitative description of brain structural changes across the hu
man lifespan,34 as well as to unravel underlying reorganization fol
lowing neuronal loss due to neurodegenerative or 
neuroinflammatory disorders.9 Despite the relevant differences 
among the methodologies, findings from each approach have pro
vided insightful observations on structural network reorganization, 
converging toward a consistent direction and providing comple
mentary support for this morphometric covariance network-based 
framework. However, standardized methods are needed to facili
tate the reproducibility of results across studies and validate poten
tial clinical applications of network fingerprints for therapeutic 
interventional trials.

Interestingly, morphometric covariance network changes ob
served in both neuroinflammatory and neurodegenerative 
disorders seem to share many similarities (Fig. 4), which may reflect 
the shared molecular pathways between these processes (Fig. 3). 
Broadly, structural network analysis offers valuable insights into dis
ease progression, demonstrating that—independent of etiology— 
structural connectivity alterations follow characteristic patterns, 
which consist of hub overload and failure and a disruption of the 
hierarchical modular organization.19 This disruption is evidenced 
by loss of the characteristic non-random small-world and scale-free 
properties observed in healthy human brain networks.23 Eventually, 
this results in an imbalance between local processing and global 
efficiency, a hub overload, and ultimately, a network collapse, 
resulting in inefficient information flow.

Figure 3 Conceptual diagram illustrating that, in the context of brain diseases, an abnormal interplay occurs between neurons, astrocytes and micro
glia, driven by a self-amplifying detrimental feedback loop through the release of cytokines and neurotransmitters. This interaction underpins the 
distinct yet interdependent mechanisms of neuroinflammation and neurodegeneration, which trigger and sustain misfolded protein accumulation 
and/or autoimmune-mediated attacks, ultimately leading to neuronal damage, network dysfunction and connectivity loss. NSE = neuron-specific en
olase; RNS = reactive nitrogen species; ROS = reactive oxygen species; p-Tau = phorsphorylated tau; T-tau = total tau.
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Age-related network changes are understood as a physiological 
and dynamic process throughout the lifespan.9 This phenomenon 
is represented by changes in morphometric structural covariance 
networks,27 based upon the fact that GM organization undergoes 
significant structural changes with age, including synaptic prolif
eration, pruning and eventual atrophy. In late adulthood, the 
graph-based properties of structural covariance networks reveal 
a shift in the organization of cognitive networks from a more dis
tributed to a more localized topological arrangement.30,33 This shift 
is attributed to the nonlinear reduction in structural associations, 
aligning with the disconnection syndrome hypothesis.2 It suggests 
that long-range connections may be more vulnerable to ageing ef
fects than short-range connections,101 which seem to reflect indi
vidual changes in cognitive and executive functions in elderly 
subjects.34

Despite the fact that structural covariance network analysis at 
the individual level may capture dynamic network reorganization 
due to ageing, disease worsening and cognitive impairment, these 
methodologies have inherent limitations that should be considered 
when interpreting results. First, they rely heavily on accurate GM 
segmentation, making it susceptible to segmentation errors, par
ticularly at tissue boundaries. While cube-based approaches22,27 re
duce biases from traditional anatomical parcellation, they may still 
introduce arbitrary boundaries that do not necessarily align with 
functional or anatomical regions. Furthermore, the definition of 
network nodes, selection of morphometric features and threshold
ing strategies for binarizing similarity matrices can all lead to dif
ferent network topologies,26 further contributing to variability in 
results across cohorts or studies. In addition, the methodology, 

similar to functional connectivity, assumes that morphometric 
similarity reflects shared properties between regions. Unlike 
DWI, which directly maps WM fibre tracts, structural covariance 
networks infer that when two regions exhibit similar structural 
properties, they likely share molecular or functional characteris
tics, which enables the quantification of pathology spread across 
different regions or their parallel involvement in the eloquent pro
cessing of the same brain functions.64 Noteworthy, while evidence 
suggests that structural similarity aligns with characteristic cyto
architectonic and morphometric features, as well as aspects of 
axonal connectivity,5 the precise biological mechanisms under
lying morphometric similarity remain incompletely understood.

Biological traits, including individual variability in brain anat
omy or disease presentation, can also contribute to heterogeneity 
in network estimations. In fact, recent research has shown 
that the human brain exhibits an anterior-posterior gradient of 
microstructural asymmetry,102 with superficial layers displaying 
anterior-posterior asymmetry, while deeper layers follow an 
inferior-superior pattern. However, despite the regional nature of 
structural covariance networks, which allows them to capture 
asymmetry by inferring the presence or absence of corresponding 
regions across hemispheres, most studies do not explicitly analyse 
left-right differences. To address this limitation, asymmetry indi
ces can be incorporated into network analyses to investigate how 
individual differences in hemispheric specialization influence 
network-level structural relationships.103,104 These key methodo
logical issues emphasize the need for standardization, rigorous val
idation and complementary analytical approaches to enhance the 
robustness and interpretability of SCN findings.

Figure 4 Overview of the main morphometric covariance network changes in specific brain areas across different diseases and physiological ageing. 
Lateralized changes have not been considered in this figure (see main text for further details). Amy = amygdala; Ant = anterior; Cent = centrality; Cin =  
cingulate; Hip = hippocampus; SMA = supplementary motor area; Th = thalamus.

Brain disorders: a network perspective                                                                                  BRAIN 2025: 148; 3072–3084 | 3081

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/148/9/3072/8133552 by H

ospital vall d'H
ebron user on 21 O

ctober 2025



In conclusion, the structural covariance network emerges as a 
valuable complementary tool to better characterize various aspects 
of the healthy brain. Moreover, it represents a promising approach 
for elucidating the neural substrates underlying diverse neuro
logical conditions. Furthermore, it offers an avenue for jointly 
evaluating brain reorganization resulting from the interplay of 
both neurodegenerative and neuroinflammatory mechanisms. 
Although there is currently no standardized method for construct
ing morphometric covariance networks, findings from available 
methodologies help expand our understanding of how different 
pathological neurological diseases affect global brain functioning. 
As we gain deeper insights into the network’s dynamics during age
ing and brain disorders using network science, graph-based mea
sures would presumably serve as biomarkers for tracking disease 
evolution and provide a window into adaptive and maladaptive re
organization processes, which could be leveraged to develop tar
geted interventions aimed at preserving functional integrity 
despite ongoing neurodegeneration.
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