https://doi.org/10.1093/brain/awafl51 BRAIN 2025: 148; 3072-3084 | 3072

Structural covariance analysis for
neurodegenerative and neuroinflammatory
brain disorders
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Structural MRI can robustly assess brain tissue alterations related to neurological diseases and ageing. Traditional mor-
phological MRI metrics, such as cortical volume and thickness, only partially relate to functional impairment and dis-
ease trajectories at the individual level. Emerging research has increasingly focused on reconstructing interregional
meso- and macro-structural relationships in the brain by analysing covarying morphometric patterns. These patterns
suggest that structural variations in specific brain regions tend to covary with deviations in other regions across indi-
viduals, a phenomenon termed structural covariance. This concept reflects the idea that physiological and pathological
processes follow an anatomically defined spreading pattern. Advanced computational strategies, particularly those
within the graph-theoretical framework, yield quantifiable properties at both the whole-brain and regional levels,
which correlate more closely with the clinical state or cognitive performance than classical atrophy patterns.

This review highlights cutting-edge methods for evaluating morphometric covariance networks on an individual basis,
with a focus on their utility in characterizing ageing, central nervous system inflammation and neurodegeneration.
Specifically, these methods hold significant potential for quantifying structural alterations in patients with
Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia and multiple sclerosis. By capturing the distinctive
morphometric organization of each individual’s brain, structural covariance network analyses allow the tracking and
prediction of pathology progression and clinical outcomes, information that can be integrated into clinical decision-
making and used as variables in clinical trials. Furthermore, by investigating distinct and cross-diagnostic patterns
of structural covariance, these approaches offer insights into shared mechanistic processes critical to understanding
severe neurological disorders and their therapeutic implications. Such advancements pave the way for more precise
diagnostic tools and targeted therapeutic strategies.
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Brain disorders: a network perspective

Introduction

In the past, the brain was considered to be organized in anatomically
defined cortical regions with well differentiated functions.* However,
it is more accurate to conceptualize it as a hierarchically-organized
system of interacting elements, or ‘networks’,> which provide the
physiological basis for information processing and cognition. This
shift in understanding is supported by studies demonstrating that
brain regions involved in distinct cognitive functions tend to develop
similarly,® are strongly regulated by genes,*> change over one’s life-
span® and exhibit experience-related plasticity,” being collectively
known as the connectome.® Furthermore, distinct pattern changes
have been related to clinical variables or task performance measures
in different neurological disorders,®'° as brain areas that share ana-
tomical and functional properties also appear to deteriorate in a
more coordinated way than non-functionally related regions.”
Morphometric analyses based on structural MRI acquisitions are
the most established tools for exploring in vivo brain alterations re-
lated to ageing and neurological disorders."'? However, morphomet-
ric MRI parameters alone, such as cortical volume or thickness, are
not always sensitive enough to explain particular neurological symp-
toms or disease trajectories.”® Conversely, it is increasingly acknowl-
edged that morphometric parameters from a given region have an
apparent close relation to the structural characteristics of functional-
ly related areas.” This implies that variations in the structure of
certain brain regions across individuals frequently co-vary with struc-
tural variations in other brain regions, a phenomenon referred to as
structural covariance.” The biological significance of this covariation
in grey matter (GM) properties is still under debate, but it has been
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clearly shown that the morphometric covariance partially reflects
brain connectivity itself.***> At first, morphometric covariance ana-
lysis has been employed to detect network changes in neurodegen-
erative disorders and to understand their role in cognitive decline,
as neurodegeneration spreads in well-defined structural patterns re-
lated to proximity and neuroanatomical characteristics.'® However,
focal or disseminated lesions (inflammatory, ischaemic, traumatic,
tumoural) can also impact brain network organization,'*'”-*® leading
to global changes in large-scale brain functionality beyond structural
damage.'® Furthermore, due to the growing recognized association of
neuroinflammation and neurodegeneration across different neuro-
logical diseases,”® covarying morphometric patterns are being pro-
gressively explored to depict the trajectories of neuroinflammatory
conditions.?*

The graph-based analytical framework,®? one of the most com-
monly used approaches to analyse morphometric covariance net-
works, attempts to summarize complex global and regional
covariance patterns into biologically meaningful properties, pro-
viding an abstract but quantifiable representation of their constitu-
ent elements (nodes) and connections (edges) among them.
Accordingly, nodes represent neurons or brain regions, whereas
edges represent synapses or axonal projections.®? (Fig. 1) In add-
ition, graph-based properties of human networks have been linked
directly to brain maturation, cognitive performance (including ver-
bal fluency, memory and intelligence), behaviour and emotions,??
as well as their disruption due to ageing and certain neurodegen-
erative and neuroinflammatory diseases.’ Subsequently, these
conditions could be interpreted as dysfunction of brain networks
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Figure 1 Hierarchical organization of nodes and edges and key graph-based properties. (A) Graph theory allows the categorizing of nodes according to
their connections within a network (motifs, modules),” organizing of nodes and edges in terms of network hierarchy (hubs),”* as well as (B) quanti-
tative evaluation of a wide range of network properties.’® Some of the main properties are: node degree—the number of edges connected to a given
node; cluster coefficient: the probability that any two neighbouring nodes are connected; length path—the average number of links required to traverse
between all pairs of nodes in a network, showing network’s overall connectivity and efficiency in information transfer; betweenness centrality—
defined as the number of shortest paths between any two nodes that passes through an any specific node and identifies those nodes that act as critical
intermediaries in maintaining efficient information flow within the network; and modularity—reflecting the tendency of a network to be organized
into distinct, densely connected groups of nodes or modules. This is related to scale-free network, where a few nodes have a very high node degree
and betweenness centrality (hubs), while the majority of nodes display a lower node degree and the small-world network, where most nodes can
be reached from every other by a small number of steps (short-path length), also exhibiting a high degree of local connections (high clustering coef-
ficient). Studies have shown that the organizational structure of healthy human brains exhibits both non-random small-world and scale-free proper-
ties,?® which confer an optimal balance between local specialization and global segregation, enhancing the efficiency and resilience. Moreover, the role
of hubs within brain networks is crucial for managing the majority of information traffic.>> Healthy brain networks also display a hierarchical modular
structure,® with subnetworks within larger networks. These large-scale modules correspond to recognized functional systems in the brain, including
motor, somatosensory, auditory, visual and association networks.'® Created in BioRender. Groppa, S. (2025) https:/BioRender.com/nptbdOr.
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Figure 2 Schematic representation of the general methodology to assess single-subject grey matter structural covariance networks. (A) Individual
unimodal or (B) multimodal MRI parameters could be used for this purpose. (C) Network matrices are built on pairwise similarity (known as edges
or connections) between regions (known as nodes) on the extracted morphometric features (cortical thickness, volume, diffusion anisotropy, etc.).
(D) The organization of the reconstructed network is commonly evaluated using graph theory and the resulting network parameters used to stratify
phenotypes, associate with cognitive performance or assess their clinical relevance. Image partially created with BioRender.com. CT = cortical
thickness; FA = fractional anisotropy; MD = mean diffusivity; SA = surface area; Vol = volume.

or ‘disconnection syndromes’,*® suggesting that the loss of neurons
and their connections interferes with the structural and functional
connections between brain regions, leading to clinical symptoms.

To date, most network mapping studies in humans have fo-
cused on group-level analysis, neglecting any variability among
subjects, even between individuals with the same diagnosis.
Conversely, several methods to characterize individual structural
covariance networks across neurological disorders have already
arisen. Therefore, in this review, we aimed: (i) to summarize the
main methods of building individual brain networks based on
co-varying morphometric parameters, (ii) to update the available
evidence about its use in characterizing ageing; and (iii) to discuss
its potential role in understanding the underlying pathology of
neurodegenerative and neuroinflammatory processes, specifically
mild cognitive impairment (MCI) and Alzheimer’s disease,
Parkinson’s disease, frontotemporal dementia (FTD) and multiple
sclerosis.

Establishing methodologies

Overall, the common approach of the current methodologies in-
volves constructing a structural covariance network by identifying
statistically interrelated or covarying GM morphometric regions.
This is achieved by transforming each individual’s set of MRI mea-
surements into a similarity matrix of pairwise interregional corre-
lations of morphometric feature vectors, which represents the
implicit strength of these connections.?® This connectivity matrix
can be thresholded and additionally binarized to reduce spurious
or false-positive connections. Subsequently, the network is con-
structed based on the pairwise correlated brain regions, and the

graph properties are computed for each extracted network, provid-
ing insights into the structural relationships and connectivity pat-
terns within the brain (Fig. 2).

Differences among the available methods depend on various
factors, including the cortical parcellation into nodes. This initial
process typically follows a neuroanatomical scheme reflecting
functional specialization. Strategies for node definition are evolv-
ing and constitute an active area of research, as the choice of the
brain parcellation scheme can influence the resulting network
architecture.?

Another aspect is morphometric measurement, as there is a
range of different coupling metrics that can be estimated depend-
ing on the chosen MRI sequences.?” If a 3D T1-weighted image is
used (unimodal MRI), the source of GM measurement is commonly
cortical thickness or volume. Conversely, when employing multi-
modal MRI (i.e. Tl-weighted, T2-weighted, diffusion-weighted
data), a combination of different metrics can be calculated for
each voxel.” Most methods employ Pearson’s correlation to create
the matrix, but alternative approaches, such as assessing the differ-
ence of absolute volumes and the Kullback-Leibler divergence
(KLD) similarity,?® have also been explored. The latter estimates
morphometric covariance between brain regions based on the dif-
ference between two probability distributions of a single morpho-
logical index. The choice of the threshold used to generate a
similarity matrix from pairwise correlations is another relevant
step. Common approaches include using an absolute correlation
value, selecting a top percentile of correlations, applying statistical
significance tests or maintaining a specific sparsity level to balance
network density.?” Thresholds can also be adjusted to preserve im-
portant network properties and compared against random net-
works to ensure biological relevance.
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Table 1 Key characteristics of the main methods for analysing individual structural covariance networks
Method Nodes Morphometric Edges Graph-based properties Particularities
measures
Tijms Cortex segmentation into ~ Local thickness and  Pearson’s correlation Network degree, path Resulting networks
etal.”’ rotating cubes (6 x 6 x folding structure between cube pairs length, clustering are not normalized
6 mm?) coefficient,
betweenness
centrality
Fleischer Cortex segmentation into ~ Local thickness and  Pearson’s correlation Network degree, global =~ Networks with similar
et al?? rotating cubes (6 x 6 x folding structure between cube pairs efficiency, transitivity degrees are used for
6 mm?) the analysis
Seidlitz Cortex parcellation into Ten morphometric Pearson’s correlation Nodal similarity, Potential application
etal® 308 regions features® between each possible density, size and to different
(Desikan-Killiany atlas) generating a pair of morphometric degree neuroimaging
vector vectors modalities
Ciolac Hippocampus parcellation Adjusted volume by  Volumetric similarity Clustering coefficient, Potential applications
et al®? into 12 subfields TIV, age and between each pair of network hub beyond the
(Desikan-Killiany atlas) scanner nodes detection hippocampus

TIV = total intracranial volume.
#Fractional anisotropy, mean diffusivity, magnetization transfer, grey matter volume, surface area, cortical thickness, intrinsic Gaussian curvature, mean curvature, curved

index, folding index.

There are also differences regarding scanner acquisition
strength. A 3T MRI provides higher signal-to-noise (SNR) and
contrast-to-noise ratios between GM and white matter (WM).>
This results in more detailed images compared to 1.5 T scanners,
potentially allowing for more precise analysis of the brain’s struc-
tural connectivity. However, studies have reported a general agree-
ment in structural covariance networks built using both 1.5T and
3T scanners in terms of global network metrics.’® In contrast, there
is poorer consistency when analysing structural connections at an
individual level,** although this improves when accounting for dif-
ferences in network sparsity. Therefore, it is recommended to care-
fully consider the impact of scanner strength, especially when
dealing with high-resolution data or individual connections, to en-
sure the reliability and comparability of structural covariance ana-
lyses across different MRI field strengths.

A wide range of graph-based network measures can be calcu-
lated from the extracted networks. Figure 1 illustrates a selection
of graph metrics that are commonly used in studies of human brain
networks. The primary metrics include the cluster coefficient,
modularity and small-worldness; however, there is still no consen-
sus on which metric is the most representative.?®

Among the different methodologies for constructing structural
covariance networks from morphometric GM features, the most
widely used is the one described by Tijms et al.,”” which has been ap-
plied to all the neurological conditions discussed in this review. In
this technique, network reconstruction is conducted by superimpos-
ing a set of precomputed 3 x 3 x 3 voxel cubes onto whole-brain GM
segmentations derived from T1-weighted MRI scans. These cubes
are also rotated to better accommodate the complex 3D structure
of the cortex. Each cube serves as a node in the network, containing
the GM volume within that specific area, while connections (edges)
are established by computing correlation coefficients between pairs
of cubes—the most commonly used measure of similarity.

While this cube-based method effectively accounts for brain
curvature—an essential consideration given the cortex’s intricate
3D structure—it does not fully capture tissue variability in shape
and size across different brain regions or between the cortex and
deep GM structures. Additionally, the rotating cubes may partially
overlap, potentially introducing artificial increases in similarity

that cannot be corrected. Nonetheless, one of the method’s strongest
advantages is its independence from anatomical atlases, which en-
hances reliability. However, this comes at the cost of losing precise
anatomical localization, thereby limiting insights into the cytoarchi-
tectonic and myeloarchitectonic properties of brain tissue.

Other methods have emerged, such as the one described by
Seidlitz et al.,> where they employ multimodal MRI measurements
to construct morphometric networks, demonstrating that any
MRI metric or data from other neuroimaging techniques could be
utilized for this purpose. In addition, the approach described
by Gonzalez-Escamilla et al.*> employs a single morphological
measure—the adjusted cortical volume difference between a pair
of regions—to construct covariance networks.

Each methodology offers distinct ways to quantitatively
characterize morphometric covariance networks and has been ap-
plied in various types of studies (cross-sectional versus longitudin-
al), encompassing different populations and research goals.
Unfortunately, there is a lack of studies comparing the accuracy
and reproducibility of these methods, resulting in an unknown
but potentially significant heterogeneity. The main characteristics
of each method are summarized in Table 1. A more comprehensive
description is provided in the Supplementary material. Despite
considerable methodological heterogeneity, there is an encour-
aging degree of convergence between studies of structural brain
networks describing the fundamental architecture of interregional
connections.®

Studies of ageing and cognitive domains
in healthy subjects

Individual morphometric covariance analysis has revealed consist-
ent hub regions across subjects, including the precuneus, cingulate
gyrus, dorsomedial frontal regions, inferior frontal and parietal
areas, middle temporal gyrus and lateral occipital cortex.?’:?%33
These hubs consistently show high reliability in nodal centrality
measurements across repeated tests, suggesting that the hub
architecture is a stable and fundamental aspect of human brain
organization.
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Morphometric covariance networks seem to display adaptive
structural reorganization through the healthy lifespan, which indi-
cates that they may capture biologically meaningful mechanisms
involved in these developmental processes. Studies based on cor-
tical thickness covariance have shown a linear decline in clustering
coefficient and local efficiency with ageing.?* Similarly, other stud-
ies have reported a negative correlation with age for clustering co-
efficient and local efficiency in morphometric brain networks based
on GM volume.?®* In addition, studies with larger cohorts have re-
vealed a non-linear relationship between morphometric covari-
ance networks and age, showing an inverted U-shaped® and a
cubic age-related trajectory for path length and global efficiency.?*

Widespread sex-effect has also been observed in morphometric
covariance network properties.’” In particular, female subjects
tend to exhibit higher clustering coefficients and lower path lengths
compared to their male counterparts, suggesting greater local effi-
ciency. Besides, structural covariance networks may serve as con-
nectome fingerprints to identify single individuals, with reported
accuracy rates exceeding 98%, even among twin subjects.?”

More intriguingly, morphometric covarying properties of the
connectome appear to correlate with individual differences in cog-
nition. Specifically, it has been demonstrated that the node degree
or hubness is connected to both verbal (vocabulary) and non-verbal
(matrix reasoning) skills,” assessed by the Wechsler Abbreviated
Scale of Intelligence (WASI) intelligence quotient (IQ) scores.
Notably, vocabulary IQ scores were found to be associated with
the node degree in the left-lateralized temporal and bilateral front-
al cortical areas, which are related to language functioning.
Additionally, non-vocabulary IQ scores seemed to be correlated
with the node degree in the bilateral primary sensory cortical areas,
specialized for visual and sensorimotor processing. In a study ex-
ploring individual covarying cortical thickness in a cohort of 650
healthy subjects,®* a correlation was observed between nodal cen-
trality in the left superior frontal gyrus and the superior part of the
precentral sulcus with cognitive performance as assessed by the
Cattell test, which measures cognitive abilities without being influ-
enced by their cultural background, education or language skills.

Tracking brain reorganization in mild
cognitive impairment and Alzheimer’s
disease

The spectrum of Alzheimer’s disease, spanning from MCI to clinical
dementia, is one of the major health problems in ageing popula-
tions.?® Still, the pathophysiological mechanisms driving the accu-
mulation of amyloid-p plaques and tau-related neurofibrillary
tangles® remain poorly understood. Emerging evidence suggests
that this abnormal protein deposition triggers an activation of the
innate immune system and an increase in inflammatory markers
that contribute to structural damage and further propagation of
misfolded proteins,®**° ultimately resulting in neuronal loss and
brain atrophy. While specific cortical atrophy patterns related to
Alzheimer’s disease have been identified, certain clinical pheno-
types with distinct cognitive profiles are not entirely explained by
regional volume changes alone.’® Therefore, Alzheimer’s disease
is increasingly conceptualized as a brain network disruption or dis-
connection syndrome?® secondary to all these mediating factors
that eventually lead to cognitive decline.

Early studies in this field demonstrated a preferential involve-
ment of hubs in brain diseases with cognitive impairment, such
as MCI and Alzheimer’s disease,*™*? which have been studied
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extensively using individual morphometric covariance analysis. It
has been demonstrated consistently that there is a decrease in
the global-network small-world coefficient, clustering coefficient
and path length in those patients, as well as a decrease in between-
ness centrality in medial temporal and association parietal
areas.*"*

Interestingly, these changes appear to be related to cognitive
performance. Patients with a more severe cognitive impairment
have been shown to display more random graph-based morpho-
metric properties,*’ as indicated by correlations between the aver-
age path length, clustering coefficient and the Mini-Mental State
Examination (MMSE) scores, particularly evident in the left frontal
and parietal areas. Additionally, some of these associations were
modified by the age of disease onset and the cognitive domains af-
fected.*? In early-onset Alzheimer’s disease patients (<65 years
old), a worse memory impairment was strongly associated with
low clustering coefficient and path length values, and a worse lan-
guage impairment was strongly associated with a more decreased
betweenness centrality as compared to late-onset Alzheimer’s dis-
ease patients (>65 years old) in the left inferior frontal operculum,
left inferior parietal lobule and left precuneus, which are all integral
parts of the language network. Conversely, late-onset patients
showed a significant relationship between worse visuospatial im-
pairment and decreased betweenness centrality, mainly in the pos-
terior occipital, parietal, temporal and cingulate areas, which are
known to be crucial for visuospatial processing.*? Of note, statistic-
al analyses were usually adjusted for GM volume; therefore, these
findings cannot be solely attributed to differences in regional atro-
phy measurements.***?

Changes in morphometric covariance networks have also been
identified as a useful marker of progressive cognitive worsening.*?
Individuals with MCI and abnormal levels of beta-amyloid in the
CSF displayed lower values for node degree, clustering coefficient,
path length and the small-world property, compared to cognitively
intact subjects.*® MCI individuals displayed more randomly orga-
nized morphometric covariance networks, suggesting a tendency
toward the network dynamics observed in Alzheimer’s disease
and an association with faster clinical progression.** Prognostic
cut-offs for several graph-based morphometric network properties
have been calculated to identify MCI patients who are likely to pro-
gress to dementia over a two-year follow-up. As a result, models in-
tegrating small-world coefficients, CSF tau and hippocampal
volumes showed the best performance to detect progression,
with an accuracy of up to 72%.*°

Furthermore, morphometric covariance properties, compared
to other Alzheimer’s disease biomarkers such as total GM volume,
CSF total tau and MMSE scores, appeared to better predict hippo-
campal atrophy rates.*® Interestingly, the above-mentioned trad-
itional biomarkers showed no association with individual rates of
hippocampal atrophy, suggesting that network properties may bet-
ter capture changes during very early preclinical stages. Notably, in
brain regions where amyloid tends initially to aggregate, such as
the anterior cingulate and precuneus, disrupted network measures
(characterized by low clustering coefficient and high path length
values) not only predicted faster atrophy within those regions,
but also in distant regions connected to the initial sites of amyloid
deposition.”® Therefore, morphometric covariance network
changes may predict disease progression in the early stages, even
before brain atrophy becomes evident.

Moreover, it has been observed that disruption in structural co-
variance networks accelerates with higher tau retention,** as mea-
sured by PET scan, in the preclinical stages and MCI. Besides, a
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negative correlation has been reported between tau-retention,
clustering coefficient and node degree in the posterior cingulate, in-
ferior parietal lobule and precuneus in Alzheimer’s disease patients
compared to cognitively preserved, age-matched healthy con-
trols.*” Additionally, tau-PET retention has been reported to be re-
lated to greater GM network disruption in individuals across the
Alzheimer’s disease continuum,*® more evident with increasing
disease severity and tau load.

Quantifying structural alterations in
Parkinson’s disease

Parkinson’s disease stands as the second most prevalent neurode-
generative disorder,*® affecting 2%-3% of individuals >65 years old.
The neuropathologic hallmark is neuronal loss in the substantia ni-
gra, resulting in a striatal dopamine deficiency, and the presence of
intracellular inclusions containing aggregates of o-synuclein,
which eventually extends to the entire cerebral cortex.*® Initially
considered solely a neurodegenerative disorder, Parkinson’s dis-
ease is now recognized as a multisystem brain disorder marked
by significant neuroinflammation and immune dysfunction,®
both contributing to a-synuclein propagation and neuronal death,®
as well as being implicated in the development of several non-
motor symptoms. In this complex scenario, integrated analysis of
whole brain morphometric covariance networks has revealed in-
sightful findings, enriching the understanding of the disease’s
evolution.

Compared to healthy subjects, Parkinson’s disease patients dis-
played significant changes in the graph-based morphometric net-
works in the early stages of the disease.”® These abnormalities
included increased measures of network segregation, as evidenced
by increased clustering coefficient and local efficiency, reflecting a
loss of global efficiency. Additionally, Parkinson’s disease patients
showed changes in nodal centralities, particularly in the putamen
and temporal-occipital regions.***? Individual network analysis re-
vealed an inverse correlation between nodal centralities in the right
postcentral gyrus and motor disability, assessed using the Unified
Parkinson’s disease Rating Scale (UPDRS) III scores, as well as
disease severity, estimated by the Hoehn and Yahr stage.
Parkinson’s disease patients also showed lower nodal centralities
in the superior occipital gyrus and inferior temporal gyrus, which
comprise the visuoperceptive pathway responsible for represent-
ing complex object features and facial perception.” Altogether,
these findings suggest that, initially, Parkinson’s disease patients
seem to be able to uphold overall information transfer, but as the
disease progresses, the brain networks gradually lose the ability
to maintain global integration, ending up in a disconnection syn-
drome as in Alzheimer’s disease.

Furthermore, morphometric covariance networks exhibited
promising potential for accurately distinguishing Parkinson’s dis-
ease patients from healthy subjects (73.1% and 72.7% accuracy, re-
spectively). Additionally, they showed good efficacy in classifying
tremor-dominant and akinetic-rigid motor subtypes with a signifi-
cant accuracy of 67%.>*

Although age significantly influences the clinical features of
Parkinson’s disease patients, its role remains controversial in terms
of GM covariance networks. One study found that the individual
network connectivity patterns of these patients change with
age,>® while another did not observe significant changes.>*

Despite these findings, most studies use only a limited set of
morphometric parameters and are conducted in small cohorts.
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Therefore, further research is needed to validate and expand
upon the current observations.

Brain alterations in patients with
frontotemporal dementia

The behavioural variant of FTD is the second most common
early-onset dementia,> after Alzheimer’s disease. The primary clin-
ical manifestations of bvFTD involve alterations in the regulation of
personal and social cognition, reward processing and language, ac-
companied by prominent executive dysfunction and, in some cases,
memory impairment.>® Histopathological features are heteroge-
neous, including the presence of the tau-protein, the transactive re-
sponse DNA-binding protein 43 or the fused in sarcoma protein in
the brain.*® Concurrently, there is chronic neuroinflammation and
prolonged activation of microglia and astrocytes,”” leading to an al-
teration of neuronal homeostasis and uncontrolled production of
pro-inflammatory factors, perpetuating ongoing neurodegenerative
processes.®® Despite sharing some atrophy patterns with
Alzheimer’s disease, bvFTD is characterized by predominant pre-
frontal and/or anterior temporal cortex atrophy.>® Nevertheless,
clinical symptoms cannot be solely attributed to the volume loss in
these areas.™

Individual morphometric covariance networks have also re-
vealed interesting disease-related characteristics. Compared to
healthy subjects, bvFTD demonstrated a lower degree of connect-
ivity density, clustering coefficient, path length, betweenness
centrality and small-worldness®® values using the Tijms and cow-
orkers method.?” Other studies constructing networks based on
cortical thickness confirmed these findings.> In comparison to
Alzheimer’s disease patients, bvFTD exhibited a lower clustering
coefficient in the left angular gyrus and less GM volume in the
left thalamus.>®> Additionally, cognitive impairment, as measured
by the MMSE score, showed the strongest correlation with mor-
phometric network changes in the left angular gyrus, right precu-
neus and insula.>>*° These affected heteromodal association
areas are known to play a crucial role in executive control, working
memory and emotion processing, which are usually disrupted in
bvFTD.>®

As illustrated, bvFTD shows anatomically distinct morphomet-
ric network abnormalities, which may be linked to the underlying
pathology and correlate with the cognitive performance of these
patients.

Structural network alterations in
multiple sclerosis

Multiple sclerosis is the most prevalent neuroinflammatory disease
of the central nervous system.® It is a chronic inflammatory de-
myelinating disorder that results in focal and disseminated lesions
in both GM and WM.®® Additionally, growing evidence suggests
that, even from disease onset,®’ diffuse neurodegenerative pro-
cesses throughout the brain and spinal cord coexist within a con-
text of acute inflammation, contributing to irreversible and
long-term disability accumulation, leading to both cognitive and
physical impairment.®? This impairment arises from disrupted
neuronal conduction due to WM lesions in key white matter
tracts,®® which compromise the functional integrity of widely dis-
tributed brain regions,®* alongside the progressive accumulation
of widespread grey matter abnormalities, causing axonal loss
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even in areas that appear normal on conventional MRI. Therefore,
multiple sclerosis can also be conceptualized as a disconnection
syndrome.?*%2

Although traditional MRI metrics, such as WM lesion volumes
and global and regional atrophy, are associated with cognitive de-
cline, they only account for part of the variability in cognitive per-
formance.®? This limitation likely arises because, among other
factors, these measurements do not consider the inherent interre-
gional structural relationship of the brain.®? In this context, mor-
phometric covariance networks have been also used to explore
the cognitive dysfunction in multiple sclerosis at the individual
level.

Multiple sclerosis patients with cognitive impairment were re-
ported to exhibit lower values of clustering coefficient and path
length, indicating a more random network topology.®®> These find-
ings were associated with poorer global cognitive functioning, as
well as with deficits in executive function, verbal memory, informa-
tion processing speed, working memory and attention.

At a regional level, network abnormalities were most promin-
ently linked to impaired global cognition in the right frontal super-
ior gyrus, right amygdala, left middle cingulate and left paracentral
lobule—areas implicated in visual, categorical and semantic recog-
nition.®? Therefore, the presence of a more random network top-
ology in multiple sclerosis patients appears to be related to
cognitive impairment, explaining the variance beyond convention-
al MRI and volumetric measures.

Interestingly, patients classified as having clinically isolated
syndrome (CIS) already displayed distinct changes in individual
structural networks. In particular, CIS patients demonstrated a
higher small-world coefficient compared to healthy controls,® in-
dicating a more regular network. This suggests a tendency towards
possessing dense local connections (high clustering coefficient) be-
tween nodes at the expense of long-distance connections (low path
length), which may compromise the efficient balance between
short and long-range information transfer.®®

The hippocampus, crucial for cognitive functions, operates with-
in interconnected networks. In multiple sclerosis, focal damage dis-
rupts these networks leading to cognitive impairment.? Analysing a
large cohort of multiple sclerosis patients and healthy subjects, indi-
vidual hippocampal networks based on volumetric variations re-
vealed significant differences in hippocampal subfield integrity
between the two groups and also among male and female patients.*
Specifically, multiple sclerosis patients exhibited a more clustered
hippocampal network topology compared to healthy controls and
this difference was more pronounced in female patients. Over
time, multiple sclerosis patients developed an even more clustered
network architecture along with widespread regional subfield atro-
phy, notably also more extensive in female patients. Additionally,
the described hippocampal network and anatomical organization
correlated with cognitive performance, assessed using the Paced
Auditory Serial Addition Test and the Multiple Sclerosis Inventory
of Cognition test. Intriguingly, these correlations were also stronger
in females than in male multiple sclerosis patients.*?

Network reorganization is a dynamic process that can be cap-
tured by GM structural network metrics. Cognitive rehabilitation
has been shown to improve local efficiency in multiple sclerosis pa-
tients with advanced disease,?* evidenced by a significant increase
in the clustering coefficient in frontal and temporal areas. This is
accompanied by a significant decrease in path length in the right
parietal lobe and global betweenness centrality.?* These structural
connectivity changes following cognitive training support the posi-
tive effects of rehabilitation across all stages of the disease.

N. Mongay-Ochoa et al.

Beyond T1-weighted MRI for
connectivity network mapping

The main scope of this review was to assess individual structural
covariance networks using graph theory applied to T1-weighted
imaging.”® However, different neuroimaging modalities have also
been employed to characterize network organization in terms of
structural and functional connectivity within a graph-theoretical
framework.®

Structural connectivity refers to the physical (i.e. anatomical)
interconnections between brain regions, primarily represented by
WM tracts. Diffusion-weighted MRI (DWI) maps these axonal path-
ways by capturing microstructural tissue properties and fibre orien-
tation.?® In DWI-based networks, nodes represent regions from an
atlas, and edges correspond to streamlines between these re-
gions.®® Noteworthy, similar to T1-weighted imaging, several
methodologies have been proposed to model covariance networks
based on microstructural properties derived from DWI.®¢¢°
However, most studies construct group-level networks rather
than individual ones. DWI-derived networks consistently reveal
highly clustered cortical organization, with pathways primarily
linking spatially related regions through hub nodes, facilitating ef-
ficient global communication.?® Conversely, DWI cannot determine
connection directionality, resulting in undirected graphs®® and
struggles to accurately resolve fibre crossings, mergers and diver-
gences, as well as small U-shaped fibres.*® Consequently, this can
lead to incomplete connectivity profiles in certain brain regions or
restrict analyses to larger WM tracts. Higher-resolution scans im-
prove white matter representation but reduce the signal-to-noise
ratio (SNR), affecting fibre tracking reliability.®®’° More important-
ly, DWI only infers anatomical connections without confirming
functional activity,”* requiring functional neuroimaging or electro-
physiology for a complete connectome analysis.

Functional connectivity is inferred from statistical dependen-
cies between neuronal activity patterns in distinct brain regions
and can be assessed using both spontaneous (resting-state) and
task-evoked fluctuations measured by functional MRI (fMRI).”?
Models derived from fMRI reveal large-scale functional networks
that exhibit fundamental graph-theoretical properties,”* such as
small-world organization and scale-free degree distribution.?® In
functional networks, nodes represent brain regions, typically de-
fined using an atlas, while edges correspond to the correlations in
time-series signals between regions, commonly measured through
blood oxygen level-dependent (BOLD) signals.”®> Constructing
fMRI-based networks requires careful methodological choices, in-
cluding fMRI pre-processing pipelines, parcellation schemes, pre-
processing steps and frequency band selection, all of which
impact network topology.”* Moreover, the interpretability of these
networks remains constrained by the still poorly understood
physiological underpinnings of the BOLD signal.

The conditions under which fMRI data are acquired are also
relevant. Recent research using a two-stage analysis approach
that integrates inter-subject and intra-subject correlation analyses
has revealed distinct connectivity dynamics across brain regions
during natural auditory stimulation.””> While the primary auditory
cortex exhibited stable connectivity patterns, higher-order net-
works, such as the stress modulation and auditory language net-
works, showed greater inter-individual variability.”> Moreover,
the visuomotor control network was influenced by eyes-open ver-
sus eyes-closed conditions, highlighting the interaction between
auditory and visual processing.”> Additionally, physiological fac-
tors, such as cerebral blood flow, metabolic rate of oxygen and
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blood volume, modulate the BOLD signal,’® ultimately affecting

functional connectivity estimates. External influences, including
drug use, can also induce changes in the BOLD signal; for instance,
ketamine has been shown to reduce connectivity in key networks
like the salience, auditory and default mode networks.”’

In the field of molecular imaging, PET has been employed to as-
sess functional—or metabolic’®>—connectivity using graph theory,
both at the group and individual levels.”>®° This approach has
been applied to tracers such as '®F-FDG (glucose metabolism),
8F-FDOPA (dopamine synthesis) and 'C-SB217045 (serotonin
S5HT4 receptor density). The method involves identifying molecu-
larly interconnected brain regions by analysing correlations in tra-
cer uptake, assuming that stronger correlations indicate stronger
shared molecular properties. PET connectivity has been used at
both regional and voxel levels to study neurotransmitter systems
and enzymatic activity, offering a deeper understanding of the
brain’s structural-functional architecture and biological alterations
inbrain diseases.®>®2 While fMRI offers higher spatial and temporal
resolution and eliminates radiation exposure,”® PET provides es-
sential information for receptor imaging and clinical applications,
providing unique insights into molecular and metabolic brain func-
tion. Of note, the reconstruction of covariance networks from PET
data follows the same methodology as that used for T1-weighted
imaging morphometric and DWI-derived microstructural features.

Overall, DWI tractography and fMRI are the most commonly
used techniques for constructing brain networks. Conversely,
structural MRI has gained increasing attention due to its
high SNR, a relative insensitivity to artefacts, an increased spatial
sensitivity and accessibility in clinical settings.?® Early studies pri-
marily focused on group-level structural covariance networks,?*%°
which assess morphometric correlations across participants,
thereby reducing the influence of outliers and anatomical variabil-
ity. While this approach provides insights into shared network
properties, it inherently assumes a homogeneous covariance
structure within each group, potentially overlooking subject-
specific variations. This limitation has driven a methodological
shift toward individual-level network analyses,****** which en-
able a more granular characterization of structural connectivity
patterns.

The next advancement in network-based analyses is the intro-
duction of multimodal image covariance approaches, which offer
a comprehensive framework for studying brain connectivity by in-
tegrating structural and functional neuroimaging data.”® Graph
theory serves as a unifying framework, providing common network
measures that facilitate comparisons between structural and func-
tional connectivity.®® Research has shown that structural connect-
ivity strength is moderately predictive of functional connectivity
patterns,® as white matter pathways tend to connect neuronal po-
pulations with synchronized activation patterns. Structurally con-
nected cortical regions exhibit stronger and more consistent
functional connectivity than unconnected regions. In addition,
studies reveal moderate coupling of age-related changes in struc-
tural and functional connectivity across the lifespan,®” as well as al-
tered structural and functional connectivity patterns in
neuropsychiatric disorders,®°° highlighting their relevance in
both normal ageing and disease. Beyond structure-function rela-
tionships, brain metabolic covariances observed in PET imaging
align with neural networks identified through resting-state fMRI
analyses.”" Furthermore, nearly 50% of PET covariance connections
are associated with underlying white matter tracts assessed by
DWI,? and 80% of intralobar PET covariance connections appear
to have a structural substrate.®?
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This expanding field holds promise for novel insights into brain
diseases that cannot be fully understood through single-modality
imaging alone. Integrating multi-modal neuroimaging could pro-
vide a more comprehensive understanding of how structural dis-
ruptions in brain networks contribute to functional deficits,”®
with significant implications for neurological disorders.

Neuroinflammation, neurodegeneration
and connectivity loss

Neurodegenerative diseases are characterized by a complex inter-
play between GM atrophy, connectivity loss, disease progression
and neuroinflammation,”® which together drive cognitive and
functional decline. Atrophy, particularly in subcortical and associa-
tive cortical regions, reflects irreversible neuronal loss and is a hall-
mark of disease progression in disorders such as multiple sclerosis,
Alzheimer’s disease, Parkinson’s disease and FTD. However, con-
nectivity loss often precedes significant atrophy, disrupting
large-scale brain networks and accelerating disease progression.”

Network-based analyses have demonstrated that neurodegen-
eration spreads along intrinsic connectivity pathways,’* leading
to progressive network disintegration. For instance, in multiple
sclerosis, WM lesions disrupt key connections between subcortical
and cortical regions, particularly in the putamen and occipital-
parietal networks,” impairing processing speed. Similarly, in
Parkinson’s disease, cortical thinning follows connectivity pat-
terns, with disease progression being more pronounced in regions
highly connected to early atrophy sites.”® In Alzheimer’s disease,
functional connectivity loss within the default mode network cor-
relates more strongly with cognitive decline than atrophy alone,
highlighting its predictive value. In FTD, subtype-specific atrophy
patterns drive distinct clinical symptoms®®: bvFTD affects the
frontal and anterior temporal lobes, disrupting executive function
and personality; semantic variant of primary progressive aphasia
(PPA) impairs semantic memory via anterior temporal lobe atrophy;
and non-fluent variant of PPA affects frontal-insular circuits, lead-
ing to speech deficits.”” Structural and functional connectivity loss
in WM tracts such as the uncinate and superior longitudinal fascic-
uli further exacerbates language and cognitive dysfunction.®°”

Neuroinflammation plays a dual role, both contributing to dis-
ease progression and triggering compensatory mechanisms.
While inflammatory processes in multiple sclerosis accelerate
neuronal damage and demyelination,” they may also transiently
increase functional connectivity as a compensatory response in
early disease stages.?®®? Similarly, in Alzheimer’s disease, neuroin-
flammation driven by amyloid and tau pathology influences both
structural atrophy and synaptic dysfunction, further exacerbating
network disruption.®® Taken together, these findings suggest that
atrophy and connectivity loss are interconnected processes shaped
by disease-specific mechanisms, with neuroinflammation acting as
a key modulator of disease progression.

Final remarks and future directions

Despite the distinct pathophysiological mechanisms of neurode-
generation and neuroinflammation, these processes share overlap-
ping molecular pathways,®® including stress,
mitochondrial dysfunction, excitotoxicity and blood-brain barrier
disruption.®®'®° Moreover, while the specific causes of neuronal
damage—ranging from misfolded protein accumulation in neuro-
degenerative diseases to autoimmune-mediated attacks in

oxidative
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neuroinflammatory conditions—differ substantially, network
analysis consistently captures common alterations in large-scale
>% interregional interactions and connectivity,
which robustly correlate with cognitive and physical decline.”’
Therefore, the study of neuroinflammatory and neurodegenera-
tive disorders from a network perspective provides a unifying
framework to identify common structural alterations, reflected
in the topographical spread of pathology across different neuro-
logical diseases.*®

In many brain disorders, atrophy patterns and lesion load alone
do not fully explain clinical manifestations,™ as cognitive impair-
ment and functional decline depend not only on localized neuronal
loss, but also on how different brain areas interact and reorganise
functionally to compensate for damage.” Thus, progressive neuronal
loss—typically more pronounced in specific brain regions whose vul-
nerability is determined by disease pathology—leads to observable
volume reductions and morphological changes. These changes, cap-
tured by T1-weighted imaging, contribute to disruptions in brain
network architecture. This highlights the need for substantial efforts
to better understand how network dynamics evolve in response to
disease and how the brain compensates to maintain global function
despite progressive injury.

Neurodegenerative disorders are now widely known to exhibit
chronic neuroinflammation, which accelerates protein aggregation
and neuronal loss,?® thereby exacerbating disease progression.
Conversely, in neuroinflammatory conditions such as multiple
sclerosis,'® growing evidence suggests that neurodegenerative
processes begin as early as the first demyelinating attack. These in-
terconnected processes, including axonal damage, synaptic dys-
function and microglia activation (Fig. 3), lead to progressive
motor and cognitive impairment.®® Despite their differences, both
disease types disrupt central nervous system homeostasis, contrib-
uting to a self-perpetuating cycle of neurodegeneration marked by

brain structure,

Tau = phorsphorylated tau; T-tau = total tau.

abnormal protein deposition, inflammatory responses and pro-
gressive neuronal death.?°

In this context, we focused on the main available methods to
construct individual morphometric covariance networks based on
structural MRI due to its availability in clinical settings, high
signal-to-noise ratio and reduced susceptibility to artefacts.®
Mapping in vivo GM morphometric networks has proven to offer a
quantitative description of brain structural changes across the hu-
man lifespan,® as well as to unravel underlying reorganization fol-
lowing neuronal loss due to neurodegenerative or
neuroinflammatory disorders.’ Despite the relevant differences
among the methodologies, findings from each approach have pro-
vided insightful observations on structural network reorganization,
converging toward a consistent direction and providing comple-
mentary support for this morphometric covariance network-based
framework. However, standardized methods are needed to facili-
tate the reproducibility of results across studies and validate poten-
tial clinical applications of network fingerprints for therapeutic
interventional trials.

Interestingly, morphometric covariance network changes ob-
served in both neuroinflammatory and neurodegenerative
disorders seem to share many similarities (Fig. 4), which may reflect
the shared molecular pathways between these processes (Fig. 3).
Broadly, structural network analysis offers valuable insights into dis-
ease progression, demonstrating that—independent of etiology—
structural connectivity alterations follow characteristic patterns,
which consist of hub overload and failure and a disruption of the
hierarchical modular organization.” This disruption is evidenced
by loss of the characteristic non-random small-world and scale-free
properties observed in healthy human brain networks.”* Eventually,
this results in an imbalance between local processing and global
efficiency, a hub overload, and ultimately, a network collapse,
resulting in inefficient information flow.
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Figure 4 Overview of the main morphometric covariance network changes in specific brain areas across different diseases and physiological ageing.
Lateralized changes have not been considered in this figure (see main text for further details). Amy = amygdala; Ant = anterior; Cent = centrality; Cin =
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Age-related network changes are understood as a physiological
and dynamic process throughout the lifespan.’ This phenomenon
is represented by changes in morphometric structural covariance
networks,?” based upon the fact that GM organization undergoes
significant structural changes with age, including synaptic prolif-
eration, pruning and eventual atrophy. In late adulthood, the
graph-based properties of structural covariance networks reveal
a shift in the organization of cognitive networks from a more dis-
tributed to a more localized topological arrangement.®**? This shift
is attributed to the nonlinear reduction in structural associations,
aligning with the disconnection syndrome hypothesis.? It suggests
that long-range connections may be more vulnerable to ageing ef-
fects than short-range connections,’® which seem to reflect indi-
vidual changes in cognitive and executive functions in elderly
subjects.3*

Despite the fact that structural covariance network analysis at
the individual level may capture dynamic network reorganization
due to ageing, disease worsening and cognitive impairment, these
methodologies have inherent limitations that should be considered
when interpreting results. First, they rely heavily on accurate GM
segmentation, making it susceptible to segmentation errors, par-
ticularly at tissue boundaries. While cube-based approaches?*?’
duce biases from traditional anatomical parcellation, they may still
introduce arbitrary boundaries that do not necessarily align with
functional or anatomical regions. Furthermore, the definition of
network nodes, selection of morphometric features and threshold-
ing strategies for binarizing similarity matrices can all lead to dif-
ferent network topologies,® further contributing to variability in
results across cohorts or studies. In addition, the methodology,

re-

similar to functional connectivity, assumes that morphometric
similarity reflects shared properties between regions. Unlike
DWI, which directly maps WM fibre tracts, structural covariance
networks infer that when two regions exhibit similar structural
properties, they likely share molecular or functional characteris-
tics, which enables the quantification of pathology spread across
different regions or their parallel involvement in the eloquent pro-
cessing of the same brain functions.®* Noteworthy, while evidence
suggests that structural similarity aligns with characteristic cyto-
architectonic and morphometric features, as well as aspects of
axonal connectivity,® the precise biological mechanisms under-
lying morphometric similarity remain incompletely understood.

Biological traits, including individual variability in brain anat-
omy or disease presentation, can also contribute to heterogeneity
in network estimations. In fact, recent research has shown
that the human brain exhibits an anterior-posterior gradient of
microstructural asymmetry,’®> with superficial layers displaying
anterior-posterior asymmetry, while deeper layers follow an
inferior-superior pattern. However, despite the regional nature of
structural covariance networks, which allows them to capture
asymmetry by inferring the presence or absence of corresponding
regions across hemispheres, most studies do not explicitly analyse
left-right differences. To address this limitation, asymmetry indi-
ces can be incorporated into network analyses to investigate how
individual differences in hemispheric specialization influence
network-level structural relationships.’®*'%* These key methodo-
logical issues emphasize the need for standardization, rigorous val-
idation and complementary analytical approaches to enhance the
robustness and interpretability of SCN findings.
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In conclusion, the structural covariance network emerges as a
valuable complementary tool to better characterize various aspects
of the healthy brain. Moreover, it represents a promising approach
for elucidating the neural substrates underlying diverse neuro-
logical conditions. Furthermore, it offers an avenue for jointly
evaluating brain reorganization resulting from the interplay of
both neurodegenerative and neuroinflammatory mechanisms.
Although there is currently no standardized method for construct-
ing morphometric covariance networks, findings from available
methodologies help expand our understanding of how different
pathological neurological diseases affect global brain functioning.
As we gain deeper insights into the network’s dynamics during age-
ing and brain disorders using network science, graph-based mea-
sures would presumably serve as biomarkers for tracking disease
evolution and provide a window into adaptive and maladaptive re-
organization processes, which could be leveraged to develop tar-
geted interventions aimed at preserving functional integrity
despite ongoing neurodegeneration.
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