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Summary
Objective. The absolute and relative quantification of tumor cell fraction (TCF) in tissue 
samples for molecular pathology testing is time-consuming and poorly reproducible. 
Methods. Here we report the results of an international survey on non-small cell lung can-
cer (NSCLC), validating the Qupath Analysis of Nuclei from Tumor to Uniform Molecular 
tests (QuANTUM) automated computational pipeline for TCF quantification. 
Results. The TCF obtained with QuANTUM is reliable, as demonstrated by the compari-
son with the manual counting of cells (ground truth, GT) in cell blocks, small biopsies 
and surgical specimens (overall correlation of 0.89). The visual evaluation of QuANTUM-
processed images increased the pathologists’ agreement with GT and QuANTUM of 
+0.16, +0.21, +0.09 and +0.17, +0.29, +0.21 across the three sample types, respectively. 
An overall increase in cases classified as containing ≥100 tumor cells for all sample types 
was noted after QuANTUM (from 75 cases, 63% to 96 cases, 80% among cell blocks, 
p = 0.003). 
Conclusions. QuANTUM is an easy-to-use and reliable tool for the TCF assessment and 
its employment significantly modifies the visual estimation by pathologists, improving the 
assessment of NSCLC cases for molecular analysis. 

Key words: molecular pathology, computational pathology, tumor cell fraction, NGS, non-
small cell lung cancer

Introduction

The molecular analysis of solid tumors is changing the pathology lab 
routine practice 1, even if pre-analytical steps such as tumor cell fraction 
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(TCF) counting may be time-consuming and poorly re-
producible 2-4. The standard morphological evaluation 
of slides by the human eyes gives a semiquantitative 
final score, which is usually part of the report as an 
adequacy parameter of the results of next-generation 
sequencing (NGS) 5-9. Even if conventionally accept-
ed, this method is notoriously affected by a significant 
degree of inter-observer variability 5-8, which can po-
tentially be faced by the adoption of digital patholo-
gy in the diagnostic workflow 9-14. The association of 
artificial intelligence (AI) tools for the simplification of 
repetitive tasks 15,16 has already proved its usefulness 
in the molecular characterization of non-small cell 
lung cancer (NSCLC) 17,18. Recently, a Working Group 
of the Italian Society of Pathology (Gruppo di Pato-
logia Molecolare e Medicina di Precisione - PMMP) 
proposed a computational QuPath-based pipeline to 
obtain the TCF (Qupath Analysis of Nuclei from Tumor 
to Uniform Molecular tests - QuANTUM), demonstrat-
ing its diagnostic reliability and robustness with con-
sequent potential changes in the final NGS report 19. 
Now we validate the QuANTUM computational pipe-
line thanks to an international survey to test the intro-
duction of this digital tool for the routine evaluation of 
TCF in NGS analysis.

Materials and methods

Cases
We randomly extracted 30 samples from the NSCLC 
cases that underwent molecular analysis in 2023 at 
the Oncological Molecular Pathology Unit of Fondazi-
one IRCCS San Gerardo dei Tintori, Università degli 
Studi di Milano-Bicocca (UNIMIB) in Monza, Italy. The 
study was approved by the local Ethics Committee 
(prot. 35859, 24/10/2022). The three types of samples, 
i.e. cell blocks (CB), small biopsies (SB) and surgical 
specimens (SS), were equally represented. The He-
matoxylin and Eosin (H&E) slides retrieved from the 
archives were all already pen-marked by the molecu-
lar pathologist (DS) to delineate the tumor-containing 
regions on which the routine TCF counting and the 
subsequent dissection for molecular analysis were 
performed. These slides were scanned at 20x magni-
fication (0.4416 MPP, Nanozoomer S60, Hamamatsu, 
Shizuoka, Japan) and the obtained whole slide imag-
es (WSIs) were imported in QuPath v0.4.420. On these 
WSIs, one screenshot per case from representative 
areas (magnification x10, 1496x934 pixels static imag-
es) were taken in. jpg format, containing an admixture 
of neoplastic and non neoplastic cells to reproduce as 
well as possible the evaluation of TCF in the real set-
ting. For each picture, a cell-by-cell visual count and 

classification into “Tumor” or “Non-neoplastic”catego-
ries (e.g. immune cells, stromal cells and normal epi-
thelial cells) were obtained by two expert lung pathol-
ogists (FB and FaPa) after consensus for each cell in 
the sample and considered like the reference/ground 
truth (GT), as previously suggested  8. Then, the 
ground truth tumor cell fraction (gtTCF) was calculat-
ed. Subsequently, the recently introduced QuANTUM 
pipeline was applied on each image 19 and additional 
screenshots were taken in the same area at the same 
magnification (post-QuANTUM images,. jpg). The ab-
solute number of total, tumor (red detections) and oth-
er (green detections) cells extracted from the region 
captured were recorded (Supplementary Fig. 1), and 
the computed tumor cell fraction (cTCF) was calculat-
ed as the ratio of tumor and total cells (Supplementary 
Tab. I). The application of QuANTUM was performed 
on a standard workstation equipped with an Intel Core 
i5-8265U processor (1.6 GHz), 8 GB of memory and 
an integrated Intel UHD graphics card.

Survey

The obtained images were used to build two different 
surveys (Google Forms, Mountain View, USA), the 
first containing the original images (H&E slides with-
out detections) and the second with the same images 
post-QuANTUM. In the second survey, post-QuAN-
TUM images were provided to pathologists only as 
visual representations of cell detection results, with 
tumor cells marked in red and other cells in green, 
without displaying the exact cTCF values obtained 
with QuANTUM. This approach was intended primar-
ily to avoid any bias from the cTCF values on the pa-
thologists’ judgment and to assess whether they could 
achieve greater convergence toward a more precise 
TCF even without the exact tumor cell percentage.
For each image, the following information were re-
quested:
1	 pathologist TCF (pTCF, %), in 10% increments 

(from 0 to 100%); 
2	 number of vital tumor cells (<  or ≥100).
Surveys were submitted sequentially, with a 2 weeks 
washout period, to a panel of 12 international expe-
rienced pathologists, who independently scored the 
cases in both the surveys. Results were afterward ex-
tracted in Google Sheets for statistical analysis. 

Statistical analysis

Continuous variables were summarized using 
mean  ±  standard deviation (SD), while qualitative 
variables were presented as counts and relative fre-
quencies. To compare means and qualitative vari-
ables, t-tests, chi square and Fisher’s exact tests were 
employed, depending on the nature of the data. The 
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significance level was set at 0.05. To investigate the 
agreement between QuANTUM and GT in quantifying 
TCF in the 3 different sources, the method of Bland 
and Altman was used and the 95% limits of agreement 
were calculated. For assessing the agreement of the 
pTCF observations pre and post-QuANTUM both the 
Bangdiwala’s B-statistic and Cohen’s kappa have been 
used, with values ranging from 0 (no agreement) to 1 
(perfect agreement). Due to the design of the study 
(multiple images assessed by multiple raters for ordi-
nal/semi-continuous data, e.g. TCF), the former metrics 
was preferred for its higher suitability for multi-observ-
er studies, the capacity to handle agreement beyond 
chance, the better performances with ordinal data and 
the possibility to have visual and intuitive interpretation 
through an agreement chart  21. A TCF ≥ 20% and a 
value of viable tumor cells ≥100 were considered as 
the minimum desirable prerequisite for the reliability of 
the subsequent molecular analysis (clinically relevant 
cutoffs) 22,23. Statistical analyses were performed using 
the open-source R software v.3.6.0 (R Foundation for 
Statistical Computing, Vienna, Austria).

Results

GT vs QuANTUM

The GT estimation resulted in an overall average ab-
solute and % tumor cellularity (gtTCF) of 1625 ± 1058 
and 45% ± 19, with values ranging from 170 to 4491 
and from 8% to 84%, respectively. No statistically sig-
nificant differences were observed among the differ-
ent sample types for gtTCF in % (p = 0.995, 0.332 
and 0.345 for CB vs SB, SB vs SS and CB vs SS, 
respectively). None of the specimens were consid-
ered inadequate based on absolute tumor cellularity 
(< 100) and only 2 cases had a gtTCF < 20% (both in 
the SS group: #26 with 8% and #21 with 15%). The 
QuANTUM pipeline required an average of 5 min 
per case (mean time: 308 ± 98 sec) and produced 
an overall average absolute and % tumor cellularity 
(cTCF) of 1260 ± 888 and 39% ± 17%, with values 
ranging from 264 to 3950 and from 7% to 79%, re-
spectively. No statistically significant differences were 
found among the different sample types for cTCF in 
% (p = 0.130, 0.862 and 0.101 for CB vs SB, SB vs 
SS and CB vs SS, respectively). As with GT, none of 
the specimens were inadequate (< 100 tumor cells) 
and only 2 cases had a cTCF < 20% (1 in the SB 
group: #17 with 17% and 1 in the SS group: #26 with 
7%). A comparison of the average TCF values ob-
tained with GT and QuANTUM showed no statisti-
cally significant differences (Tab. I). A strong correla-
tion (0.89, Fig. 1a) was observed between the two 

Table I. Comparison of the average TCF values obtained 
with QuANTUM and GT.

GT (%, mean ± SD)
QuANTUM cTCF 
(%, mean ± SD)

p-value

Cell blocks 48% ± 20% 47% ± 20% 0.9
Small 

biopsies
48% ± 19% 35% ± 14% 0.1

Surgical 
specimens

39% ± 20% 34% ± 15% 0.5

Figure 1. In (a) the Bland-Altman graph showing an strong 
correlation between the GT and QuANTUM (all the points 
converge to the diagonal), with only mild underestimation of 
TCF values by QuANTUM as compared to GT (about -6% in 
average). In (b) graphical representation of the divergence 
of TCF obtained with QuANTUM and GT for each single case 
per sample category. On the X-axis is reported the average 
TCF value between GT and QuANTUM, on the Y-axis the 
QuANTUM-GT TCF difference values. For lower values es-
pecially around the clinically relevant cutoff of 20% (yellow 
bands of the left graphics), the differences are < 10%, as 
demonstrated by exemplificative cases reported on the right 
columns (blue circles).
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methods, with good overall accuracy (-6.42, 95%CI 
10.76, -23.61) and similar accuracy within the CB, 
SB and SS groups (CB: -0.81, 95%CI 13.33, -14.95; 
SB: -12.98, 95%CI -2.02, -23.93; SS: -5.48, 95%CI 
12.13, -23.09). Analysis at the individual case level 
revealed slight discrepancies in TCF values between 
GT and QuANTUM, with differences of up to 20% in 
a minority of cases. However, the results remained 
comparable around the clinically relevant 20% TCF 
cutoff (Fig. 1b).

Comparison of pathologist evaluations pre- and post- 
quantum

The average pTCF values assigned by the pathol-
ogists before (pre) and after (post) QuANTUM pro-
cessing are reported in Supplementary Table II. In-
dividual pathologist evaluations for each case are 
graphically represented in Figure 2, while the overall 
trend is shown in Figure 3. A general trend of pTCF 

overestimation is evident in the pre-QuANTUM 
phase (red line), with greater variability among pa-
thologists compared to the post-QuANTUM assess-
ment (green line). Post-QuANTUM evaluations gen-
erally align more closely with both GT and QuAN-
TUM values, particularly for SS and CB, and show 
a reduction in inter-pathologist variability. The joint 
distribution of values obtained pre and post-QuAN-
TUM, compared with QuANTUM itself, is reported 
in Supplementary Table III. The agreement between 
pathologists’ pre-QuANTUM assessments and refer-
ence values (GT and QuANTUM) was generally poor 
across all sample types (0.25 and 0.48, respectively, 
see Tab.  II and Fig. 4 for the B-statistic values and 
Supplementary Tab. IV for Cohen’s kappa). However, 
Bangdiwala’s B index improved in the post-QuAN-
TUM phase, reaching substantial agreement, often 
exceeding 0.50. 

Figure 2. The graphical representation illustrates the pTCF values (% and absolute values around the 100 cutoff) for each 
pathologist across all cases, both before (a and c) and after (b and d) QuANTUM processing. In the figure, TCF% values are 
ordered by ascending gtTCF, while absolute values are arranged by progressive case ID. This figure highlights the systematic 
overestimation of pTCF% by certain pathologists (e.g., Path #6) and demonstrates the convergence of pTCF% from the pre- 
to post-QuANTUM assessment toward the QuANTUM and gtTCF values (e.g., cases 3, 11, and 22, as further detailed in Figure 
3). Additionally, the application of QuANTUM-processed images reduced the number of pTCF < 100 (e.g. for cases 5, 6, 9, 
and 10), aiding some pathologists in significantly decreasing the number of cases deemed inadequate for molecular analysis 
(e.g., Path #10 and #12).
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Figure 3. Distribution of the TCF pre (red), post (green) as compared to GT (yellow) and QuANTUM (blue) values divided per 
sample type and distributed in order of rising % (Y-axis), with ID case reported in the X-axis. Examples of significant changes 
in the attributed TCF value after QuANTUM are reported for each sample type (red rectangles).

Figure 4. Concordance plots of the different comparisons (pre/post vs GT and QuANTUM) divided per sample type. The in-
crease in agreement post-QuANTUM with both GT and QuANTUM is demonstrated by the higher proximity of the boxes to the 
red diagonal. White rectangles are determined by the marginal totals, and in the case of perfect agreement, they are all perfect 
squares, and the area of the blackened squares completely corresponds to the area of the rectangles. Black squares corre-
spond to the exact observed agreement, and lesser agreement is visualized by comparing the areas of the blackened squares 
to the rectangles. Gray squares indicate partial agreement by including a weighted contribution from off-diagonal cells.
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Impact of Quantum on ptcf at clinically relevant 
cutoffs

A comparison of the pre- and post-QuANTUM aver-
age pTCF values showed an overall increase in cas-
es classified as containing ≥100 tumor cells across 
all sample types. The most notable and statistically 
significant difference was observed in the CB group 
(from 75 cases, 63%, to 96 cases, 80%, p = 0.003, 
Tab. III). Conversely, a slight decrease in cases clas-

sified above the ≥20% cutoff was noted in the post-
QuANTUM assessment across all sample types, 
although none of these changes reached statistical 
significance.

Discussion

AI reduces pathologists’ effort for tedious and time-con-
suming tasks, and this is relevant especially for those 
evaluations still affected by relatively low interobserver 
reproducibility 24, as already well established for spe-
cific use cases (e.g. in breast cancer for the immuno-
histochemical staining assessment of Ki-67, ER, PR 
and HER2, as well as for grading) 25. This progressive 
shift did not spare the lung pathology domain, in which 
the application of AI tools already proved the capa-
bility of differentiating cancer histotypes 26, assessing 
the tumor grade of adenocarcinomas 27, and quantify-
ing the expression of PD-L1 28. The recent description 
of QuANTUM as a computational assistant to quantify 
the absolute and relative tumor cellularity in biopsy 
and surgical NSCLC samples further filled the gap of 
adequacy assessment for molecular analysis, which 
is paramount in the precision medicine era  19. This 
tool already showed significant differences between 
the pTCF of molecular and general pathologists and 
a good user-friendliness due to its implementability 
within the open-access software QuPath 19. 
In the current paper, we examined its impact on the 
visual assessment of real cases by a panel of experi-
enced international pathologists to test its introduction 
in routine daily practice. This confirmed the reliability 
of QuANTUM, demonstrating substantial overlap with 
the GT on the different sample types (strong correla-
tion of 0.89), with minor fluctuations of the percent-
age, still irrelevant around the clinically used cutoff of 
20%. Moreover, the comparative analysis of patholo-
gists evaluations pre and post-QuANTUM showed a 
progressive approximation of the pTCF values on the 
computationally processed image, as demonstrated 
by the increase in the agreement measures and al-
ready described in the literature  29. This experience 
confirms the overestimation of TCF by pathologists 
in the pre-QuANTUM images, even more relevant for 
high percentages of tumor cells, which reinforces the 
hypothesis that human eyes can be influenced by the 
surface area occupied by the tumor more than by the 
actual number of tumor cells in the sample 6,7,30. The 
introduction of QuANTUM processed images also re-
duced the inter-observer variability, as shown by the 
post-QuANTUM curves vs the GT and QuANTUM 
ones (pathologists’ agreement with GT and QuAN-
TUM of +0.16, +0.21, +0.09 and +0.17, +0.29, +0.21 
across the three sample types), allowing a standard-
ization of TCF quantification. Finally, the application 
of QuANTUM increases the number of cases eligible 
for the molecular analysis as per absolute tumor cel-
lularity ≥100 23 in all sample types, with a statistically 
significant improvement in the cell block group (from 

Table II. Agreement measured with B-statistic of the differ-
ent correlations (pre and post vs GT and QuANTUM) of the 
assessment by pathologists divided in the different sample 
type group.

B-statistic Weighted
PRE vs 

GT
POST vs 

GT
PRE vs 

QuANTUM
POST vs 

QuANTUM
Cell blocks 0.41 0.57 0.48 0.65

Small 
biopsies

0.25 0.46 0.38 0.67

Surgical 
specimens

0.46 0.55 0.27 0.48

Table III. Comparison of the distribution of the patholo-
gists observations (absolute tumoral cell counts and pTCF) 
around clinically relevant cutoffs pre- and post-QuANTUM in 
the different sample types, with relative p-values.

Tumor cells (n, %) TCF (n, %)
 < 100 ≥100 p-value < 20% ≥20% p-value

Cell blocks 
(Pre)

45 
(38%)

75 
(63%)

0.003 7 
(5.8%)

113 
(94%)

0.11

Cell blocks 
(Post)

24 
(20%)

96 
(80%)

14 
(12%)

106 
(88%)

Small 
biopsies 

(Pre)

12 
(10%)

108 
(90%)

0.14 11 
(9.2%)

109 
(91%)

0.7

Small 
biopsies 
(Post)

6 
(5.0%)

114 
(95%)

13 
(11%)

107 
(89%)

Surgical 
specimens 

(Pre)

4 
(3.3%)

116 
(97%)

0.12 14 
(12%)

106 
(88%)

0.2

Surgical 
specimens 

(Post)

0 (0%) 120 
(100%)

21 
(18%)

99 
(83%)
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75 cases, 63% to 96 cases, 80%, p = 0.003), which 
is paramount in the assessment of advanced NSCLC 
cases, representing a potential barrier criterion for the 
access to life-saving molecular analysis. On the other 
hand, a slight but not significant reduction of cases 
above the 20% cutoff 22 was noted post-QuANTUM in 
all categories, suggesting the need to define more ap-
propriate TCF adequacy values with the introduction 
of these computational tools.
This study aimed to analyze the impact of introduc-
ing a computational tool to help pathologists converge 
on a more reliable TCF value for molecular analysis, 
providing valuable insights into the reliability of this 
tool in a survey scenario designed to closely resemble 
the clinical setting. However, certain limitations re-
main to be addressed, such as the selection of static 
regions/images within the pen-marked areas of the 
WSIs for each case. This approach simplified analysis 
while still retaining sufficient detail for a reliable TCF 
assessment by pathologists, providing them with ac-
cess to the entire WSI – or at least the pen-marked 
area for molecular analysis – with the ability to freely 
navigate the slide at different magnifications would of-
fer an even more realistic representation of how the 
tool would function in a clinical setting. Furthermore, 
the enrollment of cases/images and the number of 
pathologists involved in the present survey were not 
determined by a statistical power analysis but rather 
aimed to strike a balance between assembling a ro-
bust cohort of international colleagues and selecting 
a diverse set of images that could be easily submitted 
for analysis within the survey.
This approach may limit the statistical significance of 
some analyses performed, and with a larger cohort 
of cases, some non-significant trends observed here 
could potentially reveal more meaningful insights into 
the differences identified. Finally, involving special-
ists from different international centers represents a 
crucial first step in assessing the generalizability of 
QuANTUM. However, a larger cohort of cases and im-
ages from multiple centers is still needed to account 
for potential pre-analytical variability and to evaluate 
its impact on the reliability of cTCF assessment as 
future perspective.

Conclusions 

QuANTUM is an easy-to-use and reliable tool for the 
TCF assessment and its employment significantly 
modifies visual estimation by pathologists, improving 
the agreement on TCF assessment of NSCLC cas-
es for molecular analysis. Further studies are needed 
to unveil the impact of cTCF on the final molecular 

results (e.g. copy number variation, CNV) and to es-
tablish whether tumor cellularity cutoffs need to be re-
vised in the digital and computational pathology era.
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