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Multiple sclerosis (MS) affects 2.9 million people. Traditional classification
of MSinto distinct subtypes poorly reflects its pathobiology and has
limited value for prognosticating disease evolution and treatment
response, thereby hampering drug discovery. Here we report a data-driven
classification of MS disease evolution by analyzing a large clinical trial
database (approximately 8,000 patients, 118,000 patient visits and more
than 35,000 magnetic resonance imaging scans) using probabilistic
machine learning. Four dimensions define MS disease states: physical
disability, brain damage, relapse and subclinical disease activity. Early/
mild/evolving (EME) MS and advanced MS represent two poles of a disease
severity spectrum. Patients with EME MS show limited clinical impairment
and minor brain damage. Transitions to advanced MS occur via brain
damage accumulation through inflammatory states, with or without
accompanying symptoms. Advanced MS is characterized by moderate

to high disability levels, radiological disease burden and risk of disease
progressionindependent of relapses, with little probability of returning to
earlier MS states. We validated these results in anindependent clinical trial
database and areal-world cohort, totaling more than 4,000 patients with
MS. Our findings support viewing MS as a disease continuum. We propose
astreamlined disease classification to offer a unifying understanding of
the disease, improve patient management and enhance drug discovery
efficiency and precision.

MS is a debilitating disorder of the central nervous system (CNS),
affecting approximately 2.9 million individuals worldwide (one in
3,000 people)'?. MS course descriptors, defined and revised by clini-
cal consensus**, have aided patient—-physician dialogue in the clinic
and the design and recruitment of clinical trials. These clinical disease
course descriptors—relapsing-remitting MS (RRMS), secondary pro-
gressive MS (SPMS) and primary progressive MS (PPMS)—have had a
major impact on drug development, as they were used to delineate

trial populations, and on the practical management of people living
with MS, as they define treatment indications and patient access to
approved MS therapies. However, these traditional course descrip-
tors are based on clinical presentations of the disease rather than
on the underlying disease biology. Their value for prognostication
is limited to the observation that patients with a progressive disease
course (PPMS or SPMS) tend to have a worse prognosis than those
with a relapsing-remitting disease course’, and responsiveness to
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treatments in the progressive spectrum of the disease depends on
the presence of radiological disease activity rather than the subtype
of MS®. Recent evidence from real-world studies and clinical trials
shows that disease progressionindependent of relapse activity (PIRA)
iscommon inRRMS”"* and is associated with poor long-term progno-
sis". Additionally, current MS course descriptors are categorical and
mutually exclusive (with implications for patient access to approved
medications), whereas, in reality, relapsing and progressive disease
features often overlap'’. Pathophysiological differences between
relapsing and progressive MS are more quantitative than qualitative
in nature, with many features associated with disease worsening,
such as slowly expanding lesions, meningeal and compartmentalized
inflammation, neuroaxonalinjury and brain and spinal cord atrophy,
being present from disease onset and shared between subtypes of
MS"> ™, This raises the important question of whether the current MS
categorizationinto distinct subtypesis justified or whether MS would
bebetter described as a disease continuum from afocal inflammatory
to a progressive disease course.

Overthelast three decades, progress hasbeen madeinthe devel-
opment of efficacious therapies, which have markedly improved the
outlook for people living with MS'>'®, Current therapies are predomi-
nantly licensed for the relapsing phase of MS, with demonstrated
benefits in progressive MS (SPMS and PPMS) mostly confined to
patients with recent disease activity. Based on heterogeneous treat-
ment effects observed within progressive subtypes of MS and benefit-
risk considerations, regulators in the United States and Europe have
created complex subclassifications to tailor indications (for example
‘active SPMS’ and ‘early PPMS’) inrecent approvals, thereby deviating
from the original consensus definitions (Extended Data Fig. 1). Such
inconsistent views of MS pose challenges in the drug development
process, especially in the progressive spectrum of the disease where
there remains a high unmet medical need. Differences in definitions
between jurisdictions and deviations from the consensus definitions
also have the potential to create confusionin clinical practicein terms
of patient access to approved treatments”. To address these funda-
mentalissues, itis crucial to reevaluate the current MS categorization
using a data-driven and evidence-based approach™3%,

With the goal of achieving adata-drivenreclassification of MS, we
adopted an Al-based approach, more specifically abespoke probabil-
isticmachine learning method, toreclassify the disease trajectories of
more than 8,000 patients from the Novartis-Oxford MS (NO.MS) data-
base, whichis currently the largest and most comprehensive MS clini-
cal trial database®’. Our methodology—ascalable probabilistic factor
analysis hidden Markov model (FAHMM) agnostic to the traditional MS
subtypes—uses a probabilistic latent factor analysis (PFA) to represent
multimodal clinical and radiological trial data. This approach simplifies
complex databy capturing the correlation between variables into com-
posite scores, whichare then assumed to follow a hidden Markov model
(HMM). By applying this model, we report homogeneous multivariate
disease states and the transition probability matrix between these
states, thus providing quantitative insights into transition pathways
and adata-drivenview of the evolution of MS over time. Drawing from
our findings and existing literature, we propose areclassification of MS,
which offers an opportunity to unify the understanding of this disease
withimplications for drug development and the practical management
of people living with MS.

Results

Discovery and validation

Atotal of 8,023 patients with up to 15 years of follow-up (118,235 vis-
its) from nine phase 2/3 MS clinical trials in the NO.MS database were
included in the main analysis. Diagnoses at trial entry were RRMS
(n=5,761), SPMS (n=1,550) or PPMS (n = 712). Baseline characteris-
tics largely overlapped across studies, with more disabled patientsin
progressive MS trials (Supplementary Fig.1.1). The dataset was split into

discovery (n=6,419) and replication (n =1,604) samples. Results were
externally replicated inanindependent Roche clinical trial dataset®*
(N=2,243; see Extended Data Table1for source studies) and areal-world
cohort, Multiple Sclerosis Partners Advancing Technology and Health
Solutions (MS PATHS)? (N =2,080), based on predefined validation
criteria (Methods). Demographics and MS feature distributions are
compared across datasets in Extended Data Table 2 and Supplemen-
tary Fig.1.2.

Four latent dimensions to characterize MS

The FAHMM model, which uses latent variable modeling, is presented
alongside the validation results in Fig. 1and is illustrated in Fig. 1a.
Probabilistic latent variable modeling of all clinical and radiological
features measured in the clinical trials identified four latent dimen-
sions of MS (Table 1): physical disability, brain damage, relapse and
asymptomatic radiological activity. These were named based on clinical
and radiological features in the loading matrix (Fig. 1b).

MS disease states and evolution over time

Thelongitudinal composite scores of the four latent dimensions (from
the probabilistic model) were used to identify disease states (Fig. 1c).
The number of states was selected using the Bayesian information
criterion (BIC; Extended DataFig.2), which favored models with more
states over simpler alternatives, particularly over the traditional MS
subtypes (RRMS, SPMS and PPMS), which would resemble a three-state
model with asingle one-way transition from RRMS to SPMS and PPMS
as a distinct, static entity. The more complex models revealed over-
lapping feature distributions between states that, in fact, represent
a disease severity gradient in terms of disability and brain damage
and identified distinct states only for relapses and for periods during
which patients have high asymptomatic radiological disease activity
(Extended DataFig.3). Models with eight or more states had similarly
low BIC and adequately represented the data. We present an eight-
state model and its external validation in the main text in Fig. 1 (with
feature distributions in Supplementary Table 2.1), and nine-state and
10-state variants are detailed in Extended Data Fig. 4 and Extended
Data Tables 3 and 4. The disease states were successfully reproduced
inthe holdout data (Supplementary Fig. 3.1).

The FAHMM model provides a data-driven, probabilistic assess-
ment of how individuals with MS transition between disease states
over time. This dynamicaspect of the FAHMM modelis capturedinthe
transition probability matrix (Fig. 1a,d), which allows patients to remain
in or move between states from one visit to the next. Patients may
transition between disease states in any order. We did not restrict the
transitions before fitting the model to the data, allowing the discovery
oftransition patternsinadata-driven manner (see Methods for details).

A key finding is that there is no direct monthly transition from
states 1-3 to states 6-8; patients must first pass through one of the
active states (4 or 5) (Fig. 1a,d). Furthermore, once in states 6-8,
patients do not return to earlier states (1-3). Hence, solely based on
those transition patterns observed in the NO-MS dataset, the eight
states canbe groupedinto four clinical (meta-)states, which we named
by consensus of the co-authors and the disease characteristics of the
patientsinthese states as ‘EME’ (states 1-3), ‘asymptomatic radiologi-
calMSdisease activity’ (state4), ‘relapse’ (state 5) and ‘advanced’ state
of MS (states 6-8). Table 1 provides a clinical characterization of the
patients in each clinical (meta-)state of MS, along with the transition
probabilities. Asummary is as follows:

« EME MS (states 1-3) represents clinically stable, ambulatory
patients with MS with low disability, minimal cognitive impair-
ment and limited brain damage. Patients with EME MS are most
likely to remain in an EME state from one visit to the next. Transi-
tions to active states are possible by developing asymptomatic
radiological activity (state 4) or by experiencing arelapse (state 5).
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Fig. 1| Disease evolution of MS based on the transition probabilities among the diagnosis was self-reported by the patient and was missing for most (53%)

the eight states of MS as proposed by the FAHMM model for NO.MS (main
result), theindependent validation dataset (Roche MS) and the real-world
cohort (MS PATHS). a, Graphical summary of the eight statistical states of MS
and the transition probabilities among them. b, Estimated loading matrices to

identify ‘key dimensions of MS’. Bolded numbers refer to measures significantly
(positively or negatively) associated with the dimensions based on the posterior

probability of belonging to the slab component. Asymptomatic MS disease

and, therefore, not reported here. For amore detailed comparison of baseline

featu
Supp
disea
ofap
(colu

res of the patientsin NO.MS, Roche MS and MS PATHS datasets, see
lementary Fig.1.2 and Extended Data Table 2. d, Transition matrix between
sestates as estimated by FAHMM, where each cellindicates the probability
atient transitioning from their current state (row) to a subsequent state
mn) over the course of 1 month. Patients may transitionin any order

between disease states. The thickness of the arrows inais proportional to

activity is identified based on the presence of Gd* T1 lesions, in the absence

of relapses. ¢, Descriptive summary of the percentage of patients with an MS
subtype diagnosis (RRMS, SPMS or PPMS) and empirical means of the original
variables characterizing the eight states; for more complete summary statistics,
see Supplementary Table 2.1 and Extended Data Fig. 3. Note that, for MS PATHS,

the probability of the transition between states as described in the transition
probability matrix ind. Inall figures, the color code refers to the clinical meta-
states: blue indicates EME MS; yellow indicates asymptomatic MS disease
activity; orange indicates relapse; and red indicates advanced MS. BPF, brain
parenchymal fraction; Gd*, gadolinium-enhancing; s, seconds.

Direct transition to advanced states of MS (6-8) without going
to anactivity state s highly unlikely (close to zero probability).

Asymptomatic radiological MS disease activity (state 4): a radi-
ologically active but clinically silent state, marked by multiple
gadolinium (Gd)-enhancing lesions in the absence of reported

new or worsening neurological symptoms. Most patients in this
stateare young and have adiagnosis of RRMS, but those with SPMS
or PPMS also reach the asymptomatic radiological activity state,
asrevealed by our clinical trial datasets, in which magnetic reso-
nanceimaging (MRI) scans are collected at set timesirrespective
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Table 1| Four dimensions, eight states and four clinical (meta-)states to characterize MS as identified by probabilistic latent
variable analysis with a description of the patient features and transition probabilities

MS dimensions

Description

Physical disability

Associated with the EDSS score, the T25FWT and the 9HPT, which are objective assessments of physical impairment.

Brain damage (new)

Quantifies cumulative radiological disease burden, assessed by total T2 lesion volume and normalized brain volume on MRI. Brain
damage, although associated with cognitive deficits and physical impairment, provides information about the integrity of the CNS not

captured by the level of disability alone.

Relapse

Describes whether a patient is in a relapse. The relapse can occur at any time; in our database, it was captured in unscheduled visits at
the time patients experienced new or worsening neurological symptoms.

Asymptomatic
radiological disease
activity (new)

Characterized by Gd-enhancing T1 lesions without patient-reported or physician-reported new or worsening symptoms. Our clinical
trial databases (NO-MS and Roche MS) collect MRI scans at set times, regardless of symptoms, which is ideal for identifying and
quantifying subclinical radiological disease activity. Asymptomatic radiological disease activity was frequently observed with varying

levels of intensity across all traditional MS subtypes.

Clinical states of MS

Patient description

Transition probabilities

EME (states 1-3), 59,810
instances observed®

Ambulatory MS patients with no or mild cognitive impairment.
Clinically stable (that is, 100% not in a relapse, no or very

few Gd lesions). Mean brain volume >1.51 and mean T2 lesion
volume <10cm?. Mostly young, two-thirds female, most with
an RRMS diagnosis. Notably, state 3 also comprises older
ambulatory patients with longer-standing disease: 16% with a
diagnosis of PPMS and 31% with a diagnosis of SPMS.

Patients in an EME state usually remain in an EME state with a high
probability (>90%) from one visit to the next. Transition to state 4

or state 5 can occur by developing high disease activity, which can
occur subclinically (state 4) or be accompanied by new or worsening
neurological symptoms (relapse, state 5). Close to zero probability
of direct transitions to advanced states (without going to state 4 or
state 5).

Asymptomatic
radiological MS
activity (state 4), 3,709
instances observed®

Characterized by multiple Gd-enhancing T1 lesions in absence
of any new or worsening clinical symptoms. Detected via
contrast-enhanced MRI indicating blood-brain barrier
breakdown. High subclinical activity is most typically seen

in the youngest patients. Two-thirds female, >90% RRMS
diagnosis. However, also seen in some SPMS (7.4%) and PPMS
(2.4%) patients. Upper age quartile: 43years.

Patients in state 4 typically come from an EME state (states 1-3) or
from a previous inflammatory state (state 4 or state 5). Patients in
state 4 are likely to remain in an inflammatory state (state 4 or state
5) or to recover to an EME MS state (states 1-3). However, direct
transitions from state 4 to advanced MS (states 6-8) are possible
with an 11% probability, indicating that asymptomatic MS disease
activity poses a risk for further disease evolution.

Relapse (state 5), 5,504
instances observed®

State 5 defines the relapse as a distinct state of MS based

on the presence of acute neurological symptoms. Mean of
1.98 Gd lesions during the relapse. Two-thirds were female, and
82% had a diagnosis of RRMS. However, 17% had a diagnosis

of SPMS, and 1% had a diagnosis of PPMS. Although relapses
occur most frequently early in MS in young and ambulatory
patients, they can also happen at older ages (upper quartile

at 47years of age), in more advanced stages (upper quartile at
EDSS 5) and late in the disease (upper quartile of MS disease
duration: 21years of MS).

Patients can experience relapses from any state of MS, most
commonly after a previous relapse (that is, symptoms persist from
one monthly visit to next, 37% probability®) or after asymptomatic
activity (that is, patients who previously had Gd lesions develop
symptoms, 6% probability). Relapses pose a risk for further disease
evolution. Transitions from the relapse to advanced states of the
disease are possible with 18% probability.

Advanced (states 6-8),
25,668 instances
observed®

Characterized by moderate to high physical disability,
cognitive deficits, high levels of brain damage and low focal
inflammation. Mean T2 lesion volume, >10cm?; brain atrophy,
<1.51. On average, patients are 6years older than those in the
EME states with a more balanced sex ratio. Most (72%) have a
diagnosis of progressive MS (either SPMS or PPMS) without

distinction between SPMS and PPMS being made by the model.

Patients in advanced states experience moderate to high disability
and brain damage. Recovery to earlier states is improbable, and
patients usually remain in advanced states.

?Includes repeated counting of patients who were in one of these states on multiple occasions in our longitudinal dataset. °In the NO.MS database, the average physician-reported duration of a
relapse is 47days, with many lasting up to 3months or longer.

of symptoms. Patients often enter from EME states (1-3) or aftera
relapse (state 5). They may remainin this state, return to EME states
(1-3) or relapse by developing acute neurological develop symp-
toms (state5) or transition to advanced MS (states 6-8). Notably,
thereis a measurable risk (approximately 11%) of progressing via
asymptomatic disease activity directly to advanced states (6-8)
of MS, showing that subclinical disease activity is arisk factor for
disease evolution.

Relapse (state 5): characterized by acute new or worsening
neurological symptoms—can occur from any state. Although
relapses are more common early in the disease, they also occur
at older ages and in patients with higher disability; they are
seen most commonly in patients with a diagnosis of RRMS but
are also experienced by patients with a diagnosis of SPMS or
PPMS. Arelapseis arisk factor for further disease evolution, as
direct transitions fromthe relapse state to one of the advanced
MS states (that is, state 5 to states 6-8) are possible with a 18%
probability.

Advanced MS (states 6-8) is defined by higher levels of physical
and cognitive impairment, greater brain atrophy and reduced

focal inflammation. Once in an advanced state, patients are
unlikely toreturnto earlier states. Although relapses and lesions
canstill occur, transitions out of the advanced meta-state are rare;
most patients remain within these states. The model does not dif-
ferentiate between SPMS and PPMSin these advanced stages—that
is, patients with SPMS and patients with PPMS are distributed with
similar frequency across states 6-8.

Demographics and MS disease characteristics from NO.MS are
provided for the four clinical (meta-)statesin Table 2.

The clinical (meta-)states were replicated in the independent
external clinical trial and real-world datasets based on predefined
validation (Methods) criteria as follows:

Validation in the Roche ocrelizumab phase 3 program (Roche
MS) clinical trial dataset (N =2,243) confirmed the four MS dimen-
sions—physical disability, brain damage, relapse and asymptomatic
disease activity—and showed that progression from EME to advanced
MS occurred primarily through active states, despite the absence of
patients with SPMS. The clinical interpretation aligned with the main
findings and met validation criteria (Fig. 1).
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Table 2 | Demographics and disease characteristics for the four clinical (meta-)states of MS based on NO.MS

Variable EME MS Asymptomatic radiological disease activity = Relapse Advanced MS
n=59,810 n=3,709 n=5,594 n=25,668

Demographics, MS subtype and disease duration

Age

Mean (s.d.) 41(10) 37(9) 40 (9) 47(9)

Median (IQR) 41(34-48) 36 (30-43) 40 (33-47) 48 (41-54)

Sex

Female 11,029 (69%) 2,597 (70%) 3,984 (71%) 15,177 (59%)

Male 18,781 (31%) 1,112 (30%) 1,610 (29%) 10,491 (41%)

MS subtype

RRMS 48,416 (80.9%) 3,345 (90.2%) 4,595 (82.1%) 7,215 (281%)

SPMS 7,513 (12.6%) 274 (7.4%) 937 (16.8%) 14,837 (57.8%)

PPMS 3,881(6.5%) 90 (2.4%) 62 (1.1%) 3,616 (14.1%)

Years since first symptom

Mean (s.d.) 12(8) 10 (8) 13(9) 17(9)

Median (IQR) 9(5-21) 8 (4-20) 9(5-21) 20 (9-23)

Original MS measures

EDSS (total score)

Mean (s.d.) 2.44(1.47) 2.32(1.40) 3.88(1.63) 5.26 (1.41)

Median (IQR) 2(1.5-3.5) 2(1.5-3.5) 4(2.5-5) 6(4.5-6.5)

T25FWT (s)

Mean (s.d.) 5.87 (2.38) 6.13 (3.56) 9.49 (11.03) 18.45 (19.43)

Median (IQR) 5.25 (4.40-6.50) 5.20 (4.35-6.55) 6.15 (4.81-9.25) 11.90 (7.95-20.60)

9HPT (s)

Mean (s.d.) 21.03 (4.45) 22.04 (5.45) 25.49 (10.88) 35.72 (18.38)

Median (IQR) 20.25 (18.08-23.18) 21.00 (18.50-24.15) 22.50 (19.52-2712) 30.70 (25.68-39.06)

PASAT (number correct out of maximum 60)

Mean (s.d.) 51.93(9.04) 48.66 (10.88) 47.23 (12.11) 40.96 (14.15)
Median (IQR) 55 (48-59) 52 (43-57) 51(40-57) 43 (30-53)
Volume T2 lesions (ml)

Mean (s.d.) 5.84(7.91) 10.93 (11.00) 9.57 (1.57) 16.18 (14.45)

Median (IQR) 2.92(118-6.98) 7.58 (3.39-14.66) 5.38 (1.89-12.62) 12.07 (6.55-21.62)
Normalized brain volume (1)

Mean (s.d.) 1.52(0.08) 1.53 (0.09) 1.51(0.09) 1.45 (0.09)
Median (IQR) 1.52 (1.46-1.58) 1.53 (1.47-1.58) 1.52 (1.45-1.57) 1.44 (1.38-1.51)

Number of Gd* T1 lesions

Mean (s.d.)

0.00 (0.00)

3.34(5.22)

1.98 (5.05)

0.24(0.97)

Median (IQR)

0(0-0)

2(1-3)

0(0-2)

0(0-0)

Demographic characteristics and MS variables are summarized by clinical disease states across all visits, counting patients each time that they were in a specific state; n represents the number

of such visits to the specific state. Gd*, gadolinium-enhancing; IQR, interquartile range.

Validation in the real-world MS PATHS cohort (V=2,280). Despite
using different measures (for example, new/enlarging T2 lesions,
brain parenchymal fraction and no Expanded Disability Status Scale
(EDSS)), lower-frequency assessments (6-12 monthly visits) and some
patient-reported rather than physician-assessed measurements, the
four MS dimensions and the EME-to-advanced disease gradient were
alsoreproduced inthe MS PATHS cohort. Transitions to advanced MS
typically passed through active states, and direct worsening from early
toadvanced MS was confirmed toberare. Minor differences emerged:
only two advanced states were identified (versus three in NO.MS),
and relapse was split into two relapsing states (one in earlier patients
and one in more advanced patients). This is due to the fact that, in MS

PATHS, which reflects real-world practice, visits were more symptom
drivenrather thanscheduled independently, as is typically the casein
clinical trials (Fig.1).

Sensitivity analyses. An analysis for ‘bout-onset MS’ (RRMS and SPMS)
and PPMS separately revealed similar disease states and transition
patterns (Extended Data Fig. 5). The FAHMM requires complete data
at each visit. Inthe main analysis, missing data were imputed only for
partially observed visits, scheduled clinical visits and unscheduled
relapse visits.

The missing data rates and mean absolute errors for imputed
values on heldout data were as follows: Timed 25-Foot Walking Test
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Fig. 2| Disease progression and effect of treatments based on NO.MS. a, Time
to first 3-month PIRA as a function of the clinical state in which the patient started
at trial baseline. Kaplan-Meier estimates with shaded area representing 95%
confidence intervals. b, Sankey plot of individual patient trajectories among the
four clinical states of MS over a timeframe of 5 years. At year O, patients are shown
inthe disease state in which they entered into a clinical trial: patients wereinan
EME state (blue), in a state of asymptomatic radiological disease activity (yellow),
inarelapse (orange) or in an advanced state of MS (red). From left to right, the
plotillustrates the proportion of patients who remain in the same disease state
or move to another disease state. Please note that, for clarity of the graphic,

only the yearly status of the patients is shown, and transitions between yearly
visits are not displayed to avoid overcrowding the figure. If patients had relapses
orradiological inflammation at these annual visits, this is correctly presented
inorange and yellow, respectively. However, patients may have experienced
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relapses or asymptomatic radiological inflammation states between these
annual points that contributed to their worsening, which cannot appear in this
graphical representation; this explains why the figure displays blue connection
lines between EME and advanced disease states in the figure even though the
probability of a direct transition between EME and advanced states without
passing through the inflammatory states s, in fact, low (see underlying transition
matrix in Fig. 1d). ¢, Effect of (any) DMTs (versus placebo) on the transition
probabilities among the four clinical states of MS. ‘Any DMT’ includes one of

the following: interferon beta-1, glatiramer acetate, teriflunomide, fingolimod,
siponimod or ofatumumab, which were compared to ‘no DMT’ (that is, placebo).
The numbers refer to the percentage risk reduction (1 - HR, where HR refers

to the hazard ratio between treated and untreated (placebo) patients and is
reported with 95% confidence limits).

(T25FWT): 32.3%, 0.14; 9-Hole Peg Test (9HPT): 43.6%, 0.17; Paced
Auditory Serial Addition Test (PASAT): 53.9%, 0.30; T2 lesion volume:
72.5%, 0.08; brain volume: 69.9%, 0.08; and Gd-enhancing lesions:
73.1%, 0.08. These metrics suggest a reasonable level of imputation
accuracy across variables.

EDSS and relapse datawere complete. Results of afurther sensitiv-
ity analysis without dataimputation, mapping available assessments to
annual visits based on the availability of annual brain scans, are given
in Extended Data Fig. 6. It showed an EME MS to advanced MS disease
severity gradient with transitions either via relapses or asymptomatic
radiological disease activity, consistent with the main model despite
a substantial loss of longitudinal information (88.5% of all patient
visits and 87.1% of the relapses were missed due to the remapping to
annual visits).

Progression independent of relapse activity by disease state
The time to the first PIRA event was analyzed by the disease state that
patients were in at the baseline of a clinical trial (Fig. 2a). Patients start-
ing in EME or active states (relapse or asymptomatic activity) had a
lower risk and longer time to PIRA than those starting in advanced
states, indicating that, although progression risk exists early, it
increases markedly in advanced MS.

Prognostication of individual trajectories

Individual patient journeys through the clinical disease states over
Syearsare visualized in aSankey plot (Fig. 2b). At baseline of the clini-
cal trials, most patients are in an EME MS state (blue) or in an active
disease state (yellow or orange); only aminority of patients are already
in an advanced MS disease state (red), reflecting the composition of
the NO.MS database and the eligibility criteria of the various trials.
Patients transition between states annually, with both worsening and
improvement observed. Each visit to aninflammatory state (relapse or
asymptomatic activity) increases the risk of progressing to advanced

MS. Over time, more patients accumulate disease burden and enter
advanced states. Similar patterns were observed across RRMS, SPMS
and PPMS (Supplementary Fig. 4.1), with consistent transition pathways
fromearly to advanced states viainflammatory activity, regardless of
MS subtype.

We evaluated the predictive performance of the proposed classi-
fication for the prognostication of anindividual patient’s risk to transi-
tioninto an advanced state of MS and the effect of disease-modifying
therapies (DMTs) based on the estimated FAHMM model (Methods).
The analysis revealed that, overall, the model predicts individual
patient trajectories with high concordance in independent holdout
data, with a good out-of-sample performance (C-score = 0.82, Brier
score = 0.06).

Impact of DMTs on MS disease evolution

Treating witha DMT significantly reduces the risk of patients with EME
MS transitioning into the highly active asymptomatic MS disease state
as well as their risk of transitioning into a relapse state (Fig. 2c). Com-
paredto placebo, DMTs also lower the chance of remainingin anactive
state across visits. By interrupting the accumulation of damage to the
CNSthroughthese high-risk states, DMTs are associated with a higher
probability of patients staying longer in the EME phase of MS.

Discussion
We developed a data-driven classification of MS by applying bespoke
probabilistic machine learning methodology to the longitudinal mul-
timodal disease trajectories of more than 8,000 patients, covering
all classical subtypes of MS. The main analysis in NO.MS is based on
approximately 120,000 standardized neurological assessments and
more than 35,000 MRl scans.

Our study was conducted in a clinical trial dataset with protocol-
defined eligibility criteria as previously described®, resultinginamore
narrowly defined population than typically encountered in clinical
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Table 3 | A comparison between the MS disease classification as proposed by the FAHMM model and the consensus-based

clinical disease course descriptors

Traditional course descriptors of MS*

FAHMM disease states

Two dimensions
1. Disability progression (mechanism)
2. Relapse

Dimensions to define
MS subtypes/states

Four dimensions

1. Physical disability (absolute level)

2. Brain damage (reserve capacity)

3. Relapse

4. Asymptomatic radiological disease activity

The first two dimensions describe a disease severity gradient; the third and fourth
dimensions can move the patient along on this gradient.

Main classification Distinct subtypes (static model)

1. RRMS

2.SPMS

3. PPMS

The classical subtypes of MS can be denoted as a
static three-state model with only a single transition

from RRMS to SPMS possible.

Disease continuum (dynamic model)

1. EME MS

2. Asymptomatic radiological disease activity

3. Relapse

4. Advanced MS

Patients move in and out of inflammatory disease states, thereby increasing the
disease burden over time.

Modifiers of
phenotypes

To express temporal status of patients

1. Inflammatory activity (MRI lesions or relapse)

2. Clinical progression

No evidence of the quantitative impact of these
disease course modifiers on the disease evolution has
been provided in the consensus definitions”.

No modifiers needed (data-driven dynamic model of MS).

Data from approximately 8,000 patients were used to estimate the transition
pathways and probabilities between disease states in the form of a transition
probability matrix between MS disease states, providing quantitative insights
into MS disease evolution. These probabilities have been validated based on
independent clinical trial data and real-world data from an additional more than
4,000 patients with MS.

practice. We addressed this possible limitation by validating and repro-
ducing our findings not only on a holdout dataset but also in an inde-
pendent clinical trial dataset (Roche MS dataset)”** and inareal-world
cohort (MSPATHS)*. The populationincluded in our analysis is broadly
similar to the NO.MS full dataset and to the real-world cohort based on
reported demographics and disease features (Extended Data Table 2
and Supplementary Fig.1.2). By including MS PATHS and Roche MS, we
markedly expanded the range of treatments used.

The model is agnostic to the diagnosed clinical subtype of MS,
allowing usto contrast it with the consensus-based MS course descrip-
tors (Table 3). By contextualizing our findings within the traditional
MS classification and existing literature, we propose revisions to the
classification and recommend actions that could positively impact
patient management and clinical trials alike.

Our FAHMM model results are more compatible with the view of
MS as a disease continuum'®*" than with the traditional view of distinct
phenotypes. A three-state model of static MS subtypes (RMS, SPMS
and PPMS) was found to be inferior to more complex and dynamic
models. In these dynamic models, the frequency of disease activity
varies between individuals, explaining some of the individual dif-
ferences in the accumulation of damage to the CNS and the acquisi-
tion of physical and cognitive impairment over time. Based on four
dimensions—physical disability, radiological disease burden (that is,
focal and diffuse brain damage), relapse and subclinical disease activ-
ity—and the transition matrix between disease states, the FAHMM
has good performance for predicting disease course at the individual
level (C-score > 0.8). The model thus enables prognostication of time
toadvanced MS based on the frequency of visits into one of the active
disease states and the accumulation of disease burden. The results
of this approach support the proposal by Lublin® that the time fram-
ing—that is, the frequency of disease activity and progression within
aset time window (for example, within a year)—should be considered
inthe practical management of MS.

The disease continuum was identified by our modeling in the
formof multiple overlapping states that represent agradientin terms
of disease severity as defined by the level of disability and damage to
the brain. Thus, the accumulation of a radiological disease burden is
amanifestation of disease worsening, which can be reduced (or even
prevented) with efficacious DMTs. We identified the meta-states EME
MS (states 1-3) versus advanced MS (states 6-8) as two poles of a dis-
ease severity gradient. Models with more than eight states show greater
resolution of the same gradient with no additional value for the clinical

interpretation. Separate models for ‘bout-onset MS’ (RRMS and SPMS)
versus PPMS were essentially similar.

The FAHMM resultsindicate that focal inflammatory and progres-
sive forms of MS form a continuum in their phenotypic presentation.
The model grouped RRMS, ‘active SPMS’ and ‘early PPMS’ together in
the EME stages of MS without distinction, whereas fully evolved PPMS
was grouped with SPMS in the advanced stages, also without distinc-
tion. The primary transition pathways from EME MS to advanced MS
were through focal inflammatory states, either with accompanying
neurological symptoms or stealthily via clinically silent radiological
disease activity. The FAHMM considers the highly active disease states
(4 and 5) as distinct disease states set apart from all other states by
the occurrence of acute neurological symptoms or the unequivocal
evidence of high levels of inflammation onthe MRIscan (Gd-enhancing
T1lesions mean (s.d.): 3.34 (5.22)), respectively. This differs from the
traditional view of MS that attributes lesions and relapses primarily
toRRMS and isjustified based on abundant evidence that lesions and
relapses are not exclusive to any specific subtype of MS but can occur
across the entire MS spectrum, including in patients with PPMS'°2°,

The finding that ‘early PPMS’—that is, relatively young patients
withlow to moderate levels of disability and/or evidence of radiologi-
cal disease activity—can benefit from anti-inflammatory treatment is
consistent with subgroup results of the first trials of B-cell-depleting
antibodies in PPMS*?°, More recently, ameta-analysis of 12 studies in
the progressive spectrum of the disease (SPMS or PPMS) in a total of
8,659 patients showed that patients with recent disease activity could
benefit from available DMTs, irrespective of whether their disease
course was diagnosed as SPMS or PPMS, whereas patients without such
recent disease activity could not®.

The 2013 revisions by Lublin et al.* to the definition of the MS
disease course introduced disease activity measures (MRIlesions and
relapses) and progression as ‘modifiers’ of the classical static pheno-
types (RRMS, SPMS and PPMS), without substantiating the quantitative
relevance of such modifiers for disease evolution. Our FAHMM results
enhance understanding of MS by offering a data-driven examination of
thelatent dimensions for disease characterization and a probabilistic
quantification of the transition pathways between disease states.
In our analysis, focal inflammation, with or without accompanying
neurological symptoms, is the key driver of worsening. This finding
was validated in the independent clinical trial dataset as well as in the
real-world cohort. Our FAHMM shows that clinical and radiological
assessments provide complementary information that differs from

Nature Medicine | Volume 31| October 2025 | 3414-3424

3420


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-025-03901-6

theinitial consensus-based classification of MS, which focused ononly
two clinical dimensions (relapses and disability progression)°. It also
differs from a more recent data-driven classification of MS that used
only MRI data based on the premise that this would better reflect the
pathophysiology of MS?”. FAHMM results suggest that, in addition to
thelevel of disability and relapse, two MRI-based latent dimensions of
MS arerelevant and should be considered for disease characterization
and disease evolution:

(1) Braindamage:assessedbythetotal T2lesionvolumeandthelevel
of brain atrophy as cumulative measures of focal and diffuse
radiologicaldiseaseburden.Asthediseaseevolves,disease-related
damage to the brain gradually accumulates, progressively
lowering the patient’s chances for disability improvement®
and increasing the risk of further disability worsening® and
progression®®?’, This decreasing ability to compensate and im-
prove as the disease advances will similarly contribute to the
clinical presentation of a progressive disease course, much like
active drivers of worsening would, albeit likely through a differ-
ent pathophysiological mechanism?. Thus, the accumulation
of a radiological disease burden is a form of disease worsening,
associated with poorer long-term outcomes; it should be mini-
mized through the use of efficacious DMTs.

(2) Asymptomatic radiological disease activity was revealed as a
major pathway for patients to worsen, as shown by the FAHMM
transition matrix. Our results from the much larger NO.MS
dataset confirm the finding of a previous report by Thorpe
et al.”>, showing that more than 90% of the MS disease activ-
ity visible on regularly scheduled MRI scans (brain and spinal
cord) is not accompanied by new or worsening neurological
symptoms. High lesion activity is predominantly, but not ex-
clusively, seen in young patients and occurs in all subtypes of
MS* and contributes to neuronal injury®*>> and brain tissue
loss* and, thereby, to the overall accumulation of damage to
the brain. Enhancing lesions contribute to disease worsening
in the same direction as clinical relapses®. Such damage is, in
turn, associated with a lower chance of improvement and an
increased risk of disease worsening and progression* (see the
FAHMM-proposed brain damage-related latent dimension of
MS). Therefore, monitoring and preventing subclinical disease
activity to protect reserve capacities should be a priority in MS
management, considering that brain reserve influences how
structural damage translates into clinical symptoms®. Howev-
er, this approach may require novel strategies considering the
current era of low relapse rates and safety concerns associated
with regular use of Gd*®.

Our FAHMM model confirms that PIRA starts early in MS and
becomes the dominant feature in the advanced disease states when
brainreserveisdepleted, inline with the findings of Kappos et al.” and
Lublin et al.”’. Patients in all states of MS can experience PIRA events,
buttheabsoluterisk of PIRA is higher in the advanced states compared
to the EME states of the disease. Inrelative terms, PIRA is the most fre-
quent manifestation of disability accumulation across the full spectrum
of traditional MS phenotypes, as summarized in a recent literature
review™. Perhaps surprisingly, FAHMM did not identify any direct
pathway from EME to advanced states of the disease without passing
through focalinflammatory states (4-5). Among the various biological
mechanisms for MS evolution that have been proposed*, this finding
supports the view that inflammation is central to the pathogenesis of
MS and that degenerative processes in MS are secondary in nature.
Therisk of PIRA was estimated to be highest in the advanced states of
MS, when the amount of damage to the CNSis typically substantialand
response to currently available treatments is least likely.

Regarding the advanced states of MS, our results do not support
maintaining adistinction between SPMS and PPMS; patients with SPMS

and patients with PPMS were similarly distributed among the advanced
states of the disease, both in the NO.MS dataset and in the real-world
validation set. Once patients reach the advanced states of the disease,
therisk of progressionis high, and the chances of atreatment response
arelow, regardless of whether the previous disease course was charac-
terized by relapses or not. Our results align well with the accumulating
evidence that the apparent evolution from EME states to advanced
states of the disease reflects a partial shift from predominantly local-
ized acute injury towidespread chronicinflammation and secondary
neurodegeneration™**~*¢, Aging has amodulating effect; it decreases
thelikelihood of focal inflammation, increases neural susceptibility to
injury and reduces resilience'>*. Abandoning the distinction between
primary and secondary progressive MS in the advanced spectrum
would acknowledge that these patients likely progress for the same
reasons. Treating advanced PPMS and advanced SPMS as a uniform
population would facilitate trial recruitment and drug discovery and
wouldsimplify drugindications and accessin the progressive spectrum
ofthe disease (thatis, advanced MSis seen as one indication).

One may consider how the classical disease course descriptors (at
presentation) would map to the FAHMM states and how this relates to
current and potentially future disease classification. Radiologically
isolated syndrome (RIS), which, in specific situations, isnow MS*, would
be detected based on asymptomaticlesions (state 4). Clinically isolated
syndrome (CIS) would beidentified based on afirst clinical episode (state
5). Fully ambulatory patients with MS with limited damage to the brain
whoare notinarelapse and notin a highly inflammatory state would be
consideredinone ofthe EME disease states (1-3), irrespective of whether
they have arelapsing or a progressive disease onset. Patients who have
progressed in their disease, are impaired in their walking ability, have
cognitive deficits and/or have accumulated a substantial lesion load or
brain atrophy would likely qualify as being in an advanced disease state
(6-8). It should be noted that, under the FAHMM, the combinations of
physical and cognitiveimpairment and radiological damage to the brain
that determine the classification of patients toaparticular disease state
canvary, reflecting inter-individual differences. Such differences render
itimpossible to provide simple thresholds that would demark movement
between states and be applicable to all patients with MS. For the practical
management of patients with MS and for the conduct of clinical trials, we
proposeit to be adequate and sufficient to consider the two ends of the
disease continuum (EME MS versus advanced MS) while acknowledg-
ing that the shift in pathobiology is gradual rather than sudden, with
considerable overlap of focal inflammatory and degenerative biology.

EME MS would include RIS, CIS and RRMS as well as ambulatory
and cognitively functional patients with SPMS or PPMS who had recent
imaging features characteristic of inflammatory activity. The primary
goal would be to prevent relapses and asymptomatic disease activ-
ity by addressing the evolving disease pathology®. Meta-analyses
suggest that such patients can benefit from currently available
anti-inflammatory drugs®'**%,

Advanced MS would include SPMS and PPMS (without distinc-
tion) and patients with RRMS who progressed in absence of relapse
activity (PIRA) and who have moderate to high levels of disability with
evidence of brain damage asshown by T2 lesion burden or evidence of
disease-related brainatrophy. The primary goal would be to minimize
the risk of further progression and to maintain or restore function.
Secondary goals could be to minimize the risk of lesion expansion
and brain atrophy. Developing treatments for advanced MS remains
anurgent unmet medical need.

We summarized our recommendations for clinical practice and
for clinical trials based on our findings and the literature in Table 4.

We acknowledge the limitationsin our dataset in terms of imaging
frequency (typically only availablein annual visits) and lack of advanced
MRIfeatures, including spinal cord imaging, cortical lesions and slowly
expanding and paramagnetic rim lesions, which mightaccount for some
discordance between MRI disease activity and clinical outcomes. The
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Table 4 | Summary of recommendations for clinical practice and for clinical trials

Recommendation

Explanation

Define maintenance of brain integrity as a treatment
goalin MS.

Our analysis identified focal and diffuse damage to the brain as a key dimension of MS. The analysis
revealed that accumulating radiological disease burden is an aspect of disease worsening. As the
disease evolves, disease-related damage to the brain gradually accumulates, progressively lowering the
patient’s chances for disability improvement® and increasing the risk of further disability worsening®
and progression®®®', Maintaining brain integrity by use of efficacious medications should be a treatment
target.

Prioritize monitoring for subclinical disease activity.

Subclinical radiological disease activity was identified by our analysis as a dimension to characterize

MS and as a major pathway by which patients worsen from EME MS states to advanced MS, both in our
dataset and in real-world data. Monitoring for and prevention of such subclinical disease activity should
be a priority in the treatment of MS. Effective monitoring of subclinical disease activity may require novel
strategies given that the frequent use of contrast-enhancing MR is discouraged for safety reasons®.

Consider MS as a disease continuum rather than
distinct clinical subtypes, with EME MS and advanced
MS as the two poles of this continuum.

This approach aligns with our results and the cumulative evidence indicating a gradual shift in
pathobiology from predominantly focal inflammatory states to chronic inflammatory and degenerative
conditions' ™.

EME MS would include RIS, CIS and RRMS as well
as ambulatory patients with SPMS or PPMS who
had recent imaging features characteristic of
inflammatory activity.

Current DMTs reduce the probability of inflammatory events and slow disease worsening in EME states.
Evidence suggests that patients with recent disease activity imaging features, including patients with
SPMS with recent activity and patients with early PPMS, benefit from DMTs®®".

Advanced MS would include SPMS and PPMS
(without distinction) and patients with RRMS

who progressed in absence of relapsing disease
activity (PIRA) and who have moderate to high
levels of disability with evidence of damage to the
brain as shown by T2 lesion burden or evidence of
disease-related brain atrophy.

We recommend discontinuing the distinction between primary and secondary progressive disease

in the advanced spectrum of MS. We discovered that patients with SPMS and patients with PPMS

are similarly distributed through the advanced disease states in clinical trial and real-world datasets.
Pathophysiological evidence suggests that SPMS and PPMS are more alike than different and that
progression, as a pathophysiological process, may be seen as a homogenous target for new medications
focusing on the progressive aspects of MS. This could simplify drug discovery and the conduct of trials
and facilitate drug access in an indication with a high unmet medical need.

overall limited data from spinal cord MRl in our database do not allow
for definite or generalizable conclusions regarding its added value as
adisease descriptor. Although there is evidence to show that spinal
cord volume loss is significantly associated with present and future
disability**~*, its potential added value over brain atrophy has not been
studied or demonstrated. Regarding spinal cord lesions, based on a
recent review® systematic assessment of such lesions for monitoring of
disease activity seems to have limited added value over monitoring of
brainlesionsandis considered optional based on current guidelines®.

To conclude, our modelis a potentiallyimportant stepping stone
toadata-driven disease characterization of MS. Although more com-
prehensive clinical information, such as spinal cord abnormalities or
biological data, will be required before it can be considered definite,
wethink that if more advanced MRI measures and fluid biomarker data,
suchas proteomic or metabolomic datafrom banked samples, could
be made available in this or any other large MS database, the FAHMM
model would be suitable for a more in-depth pathophysiological
description of MS and, provided availability of respective data, of any
other diseases with similar complexities. With this comprehensive
analysis, we hope to contribute to amore unified understanding of MS.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41591-025-03901-6.
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Methods

Analysis set from the NO.MS database

The NO.MS database was previously described®. In brief, it comprises
39 clinical trials from 2003 to April 2021, approved by institutional
review boards (IRBs) or ethics committees (‘Ethics’ subsection and
Supplementary Table 5.2) and conducted following the principles of
the Declaration of Helsinki and Good Clinical Practice. All patients
from all 39 trials provided written informed consent. Trial proto-
cols prospectively defined the objectives, eligibility, endpoints,
assessments and statistical analyses. The individual study results
were previously published. Data were deidentified in a risk-based
approach asreported elsewhere’*”’, For this analysis, all phase 2 and
3 studies conducted in RRMS, SPMS or PPMS and their correspond-
ing open-label extensions were selected based on the availability
of protocol-defined standardized clinical assessments and regular
MRI acquisitions. Studies contributing to the analysis are listed in
Extended Data Table 1. In addition, an analysis of the wider NO.MS
database, including all patients with clinical assessments of relapses
and EDSS, investigated the risk of relapses and progression from
pediatric MS to adult MS and from RRMS to SPMS and PPMS and iden-
tified a decreasing gradient of focal inflammation and anincreasing

gradient of the risk of progression™.

Ethics

The ethics committees and IRBs used in the nine NO.MS source stud-
ies included: Alta Bates Summit IRB; Asahikawa Medical Center IRB;
Ascension Wisconsin IRB; Aurora IRB; Baltimore IRB; Biomedical IRB;
CentraState IRB; Central Ethics Committee; Chiba University Hospital
IRB; Christiana Care IRB Helen F.; Copernicus Group IRB; Crescent
City IRB; Dean IRB; Ebara Hospital IRB; Ehime University Hospital
IRB; Georgetown University IRB; Health Sciences Institutional Review
Boards; Health Sciences Campus IRB; Health System IRB; Healthcare
-IRB; Henry Ford Hospital IRB; Hospital IRB; IRB University of California
Davis; IRB of Beijing Hospital; IRB of West China Hospital; IRB-WB2; IRB/
OSA; IRBMED:; Institutional Ethics Committee, Bakirkoy; Institutional
Ethics Committee, Dokuz Eylul; Institutional Ethics Committee, Ege;
Institutional Ethics Committee, Gazi; Institutional Ethics Committee,
Gaziantep; Institutional Ethics Committee, Hacettepe; Institutional
Ethics Committee, Istanbul; Institutional Ethics Committee, Mersin;
Institutional Ethics Committee, Uludag; Iwate Medical University Hos-
pital IRB N/A;Johns Hopkins IRB; Keio University Hospital IRB; Kyoto
Min-iren Chuo Hospital IRB; Lifespan IRB; Local Ethics Committee of
AHEPA; Multicentric Ethics Committee IKEM; NIMS Institutional Ethics
Committee; National Ethics Committee; Network IRB; Osaka Univer-
sity Hospital IRB; Pro Health Care IRB Research; Providence Health &
Service IRB; Providence Health & Services IRB; Psychiatry IRB; Quorum
Review IRB; Research Ethics Committee; Saitama Medical Center IRB;
Schulman Associates, IRB; Sone Clinic IRB; The Ethics Committee of Sri;
University IRB; University of Colorado Health IRB; University of Utah
IRB; WIRB; WakeMed IRB; Wayne State University IRB; and Wheaton
Franciscan Healthcare IRB N/A (see Supplementary Table 5.2 for full
list and further details).

Clinical assessments in NO.MS
Forallthetrialsincluded in the NO.MS analysis set, the following clini-
cal assessments, which are commonly used in MS clinical trials, have
been regularly monitored (typically every 3 months or 6 months; for
details, see the individual protocols and study designs) by specifically
trained healthcare professionals:

EDSS***: a standard tool for assessing the neurological disability
status and disability progression, ranging from O (neurologically
normal) to 10 (death due to MS).

T25FWT*: an objective quantitative measure of neurological func-
tion (patient’s walking speed).

9HPT*®: an objective quantitative measure of upper extremity (arm
and hand) function.

PASAT®: an objective measure of cognitive function that specifically
assesses auditory information processing speed and flexibility as
well as calculation ability.

Relapse occurrence: defined as the appearance of a new neurologi-
cal abnormality or worsening®’, as experienced by the patients and
reported by the study investigator. Patients who experienced new or
worsening symptoms were instructed to come for an unscheduled
visit where symptoms were assessed (with an EDSS assessment
performed), and onset as well as end date were recorded by the
physician. Patients were transferred to an EDSS rater (in phase 3
trials) and anindependent physician for the EDSS assessment.Inthe
present analysis, all patient-experienced and physician-reported
new or worsening symptoms are considered, irrespective of the
EDSS confirmation.

It should be noted that such visits could happen at any time and
would typically occurinunscheduled visits between the regular sched-
uled visits. For thisreason, to capture the timing of events adequately,
amonthly grid was used for modeling purposes.

Radiological assessments in NO.MS

InNO.MS, allimages obtained according to study-specific standardized
protocols were reanalyzed centrally by the Big Data Institute in Oxford,
United Kingdom, using a harmonized MRI pipeline on standard MRI
outcomes in MS (normalized brain volume using SIENAX®, part of FSL
6.0; percentage brain volume change using SIENA®*, part of FSL 6.0).
Gd-enhancing lesions and T2 lesion volume were used as reported in
the original trials.

Variables in NO.MS

The clinical and radiological variables used in our modeling are pre-
sented in Table 2, and their assessment is described in the previous
two Methods subsections. Demographic and disease-related features
areupdated longitudinally. For each visit, the patient’s age isupdated,
and the normalized brain volume is calculated based on the normalized
brainvolume measured at baseline (using SIEENAX®*) and the percentage
change from baseline measured at post-baseline visits (using SIENA®*).
Lesion assessments were done centrally as previously reported for
each ofthe original trials.

Demographicfeatures and the diagnosed phenotype of MS (RRMS,
SPMS or PPMS) were not used in the modeling but are reported across
visits for the disease states newly identified by the model to character-
ize the patientsin aspecific state and to help establish the link between
the newly proposed FAHMM states and the traditional classification
of MS. PIRA was derived as a 3-month EDSS-confirmed irreversible
worsening of disability in the absence of relapses’.

FAHMM
The proposed hierarchical model uses a PFA® model to find a parsimo-
nious representation of data. It exploits the shared informationamong
elements of observed data to find MS dimensions (loading matrix) and
corresponding composite scores (latent variables) that are continuous
and a posteriori following a normal distribution. The spike and slab
prior with Laplace components on the loading matrix favors sparsity
that helps with the interpretation of MS dimensions. The number of MS
dimensionsis determined inadata-driven manner by putting an Indian
buffet process prior on the inclusion/exclusion binary variables of spike
and slab prior. Moreover, it helps with assigning observed variables to
the MS dimensions by using a posterior probability of inclusionto the
slab component greater than 0.5.

Next, our model assumes that the composite scores follow an
HMM with multivariate normal emission distribution®. For modeling
purposes, only the time gap between two consecutive visitsisassumed
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tobelmonth (except for MSPATHS where itis assumed to be 6 months;
see Supplementary Information Section 5 for more details). The HMM
models MS evolution over time by (1) finding homogeneous disease
states (latent unobserved) where the distribution of longitudinal com-
posite scores is similar in terms of mean and covariance and (2) char-
acterizing the progression between states by a transition probability
matrix where all transitions are a priori possible (we are not restricting
the transition probability matrix or assuming any structure). The num-
ber of states is determined by using the BIC.

Our proposed probabilistic multivariate model for disease evolu-
tion using longitudinal datais capable of handling mixed data modali-
ties (binary, count and continuous) and missing data. The allocation
of'the observed variables to the MS dimensions does not change over
time, which translatesinto afixed loading matrix across visits. However,
the composite scores are changing over time. The PFA uses baseline
data where there are no missing data to estimate the loading matrix,
andthenthe rest of the model parameters are estimated conditionally
onthe estimated loading matrix.

Themodel parameters are estimated using an expectation-maxi-
mization algorithm®. To evaluate the proposed classification’s predic-
tive performance for the prognostication of an individual patient’s risk
to transition into an advanced state of MS, the effect of DMTs and the
characterization of individual states, the estimated FAHMM model is
used toassign eachvisit to the corresponding disease and clinical states
using the Viterbi algorithm®. The states are characterized by calculat-
ingthemeanands.d. of the corresponding variables. The disease states
and transition probabilities are illustrated in Supplementary Fig. 5.1.

Adiscrete time-to-event analysis using Bayesian Additive Regres-
sion Trees (BART)®® was used to evaluate the prognostication perfor-
mance of the clinical (meta-)states (Results). Time to first transition to
one of the advanced states for patients who arein the early, relapse or
asymptomatic states at baseline was predicted using baseline radiologi-
cal and clinical features and demographic characteristics, including
age, sex, treatment, relapses and number of relapses before entering
the trial.

A continuous-time Markov model was used to assess the associa-
tion between the use versus non-use of a DMT on the transition prob-
abilities between clinical (meta-)states (msm package®’).

Replication in holdout data from NO.MS
The analysis was based on a total dataset of 8,023 patients that was
randomly divided into a discovery set (6,419 patients) for analysis
purposes and a holdout set (1,604 patients) for validation purposes.
The k-means clustering method was used to identify a homogene-
ous group of patients using the average of longitudinal composite
scores per patient. The clustering method found five different groups
using the elbow approach, where 80% of patients in each group are
randomly assigned to the discovery set and the remaining 20% to the
validation set.

More methodological details can be found in Supplementary
Information Section 5.

Sensitivity analysis

Asensitivity analysis was conducted to check whether the disease states
and transition pattern for ‘bout-onset MS’ (RRMS and SPMS) is similar
to that of PPMS. A separate model was fit to RRMS/SPMS (excluding
patients with PPMS) and to patients with PPMS alone.

Another sensitivity analysis was conducted without data impu-
tation. This approach presents inherent complexities as the model
requires complete data for all visits, whereas relapses can occur at any
time, and other assessments are often unavailable at these timepoints.
To conduct an analysis without data imputation, it was, therefore,
necessary to remap all available data to annual visits based on the avail-
ability of MRIscans. This approach has the limitation that all data points
collected between these annual visits are either ignored or shifted in

time. After remapping the data to annual visits, the model was fit to
these ‘complete case’ data.

External validation on independent datasets

After submitting the initial version of this paper to Nature Medicine
based on the NO.MS data, we sought to ensure the reproducibility and
generalizability of our findings through validation using independ-
ent external datasets where we established predefined validation
criteria prior to accessing these datasets. The model was thenfitted to
each external dataset, including an independent clinical trial dataset
(Roche MS dataset) and a real-world cohort (MS PATHS), confirming
thereproducibility of our results following the data preparatory steps
described further in this section.

Validation step 1: replication of MS dimensions

The PFA part of FAHMM® uses baseline data to find MS dimensions
(loading matrix) and corresponding composite scores (latent vari-
ables). The FAHMM model was fitted to all datasets where validation
was evaluated by examining whether the same disease dimensions
would emerge in the external datasets. Specifically, we determined
whether the same or similar sets of variables from the primary analysis
were assigned to the corresponding latent variables in the valida-
tion datasets. The validation of the latent dimensions of MS would be
considered successful (validation criterion 1) if we could re-identify
four dimensions related to (1) physical disability, (2) brain damage,
(3) relapse and (4) asymptomatic MS disease activity.

Validation step 2: replication of disease evolution modeling
Inthe mainanalysis, the MS evolution modeling using FAHMM discov-
ered eight states that were grouped in four meta-states based solely
onthe patterns of the transition probability matrix using NO.MS data:
EME MS, asymptomatic radiological MS disease activity, relapse and
advanced MS. Toreplicate the main findings from the NO.MS dataset,
we fit the FAHMM to either the Roche MS or the MS PATHS data with
eight states as in the main model. A successful validation would entail
finding meta-states with similar clinical interpretation and similar
transition probability to NO.MS (validation criterion 2): the validation
would be considered successful if we could re-identify an EME MS
versus an advanced state of MS with a disease severity gradient and if
the transition from the first to the second would primarily be through
focal inflammatory disease states—that is, through a relapse or an
asymptomatic radiological disease state—with little to no probability
for patients to worsen from EME MS to advanced states without passing
through these focal inflammatory states.

Asdescribed above, the validation focused on the qualitative simi-
larity of the clinical interpretability rather than on numerical thresh-
olds. By applying these predefined validation criteria to unseen data,
we aimed to show the generalizability and robustness of our findings
across independent datasets, including real-world data.

Variables in external datasets

In the Roche MS dataset, the same clinical and radiological variables
asin the NO.MS dataset were available. As in the NO.MS dataset, the
clinical measurements were collected by trained neurologists, and
MRI assessments (lesions and brain volume change) were measured
by a central reading center. All assessments were used as reported in
the original trials.

For thereal-world dataset from MS PATHS, data assertation was dif-
ferentthaninNO.MSandin Roche MS. Specifically, no EDSS assessments
were available (patient determined disease steps (PDDS) measurements
were collected rather than EDSS, but this was not used in the modeling).
For most other variablesin NO.MS, corresponding similar measuresin
MS PATHS could beidentified: aniPad version of the 9OHPT test was used
(labeled as ‘manual dexterity test’); the walking test (noted as ‘walking
speedtest’) was found to be similarto the T25FWT; and aniPad version of
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acognitive text (noted as ‘processing speed test’) similar to the Symbol
Digit Modality Test (SDMT) was used. In MS PATHS, brain parenchymal
fraction” was calculated instead of normalized brain volume, and the
number of new/enlarging T2 lesions was used instead of the number of
Gd-enhancing T1lesions. Other differences between MS PATHS and the
clinical trial datasets were a lower frequency of visits (typically every
6-12 months) and the fact that visit occurrence was not independent
of the occurrence of clinical symptoms (scanning frequency seemed
to depend on the occurrence of relapses). Therefore, whereas, in the
NO.MS and the Roche MS datasets, the transition probabilities refer
to the probability of changing from one disease state to another one
withina period of 1 month, in MS PATHS they refer to the probability of
changing from one disease states to another within 6 months.

Data preparatory steps

Ineach oftherespectiveindependent external validation datasets, visits
were mapped to aregular grid to capture the timing of regularly sched-
uled visits as well as of unscheduled visits (for example, due to new or
worsening neurological symptoms). For the Roche MS dataset, thiswas
amonthly grid, similar to that of NO.MS, whereas, for MS PATHS, due to
thelower visit frequency, this was asix-monthly visit grid (subsequently,
probabilities in the transition matrix refer to monthly versus six-monthly
transitions, respectively). Toaccount forincomplete records and miss-
ing post-baseline data, the observed variable’s trajectory over time was
used toimpute missing values using generalized additive models. Such
data imputation was done only at scheduled or unscheduled patient
visits where partial patient data were available (Supplementary Infor-
mation Section 5). The percentage of imputed values overall and for
eachvariableisreported together with the mean absolute error for the
imputation. In the clinical trial dataset, baseline was defined as the last
assessment prior to randomization, whereas, in MS PATHS, baseline was
defined as the first timepoint that patients had all the necessary meas-
urements required for modeling; furthermore, the availability of serial
post-baseline assessments was required for inclusion into the analysis
set, whichled to the total sample size 0f 2,080 patients from MS PATHS.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

For NO.MS, thereaderisabletorequest the raw data (anonymized) and
related documents (for example, protocol, reporting and analysis plan
and clinical study report) of all the studies that underlie the modeling
results reported in this article by connecting to CSDR (https://www.
clinicalstudydatarequest.com) and signing a data-sharing agreement
with Novartis. The data will be made available to researchers, with
requests reviewed and approved by an independent review panel of
CSDR. For Roche MS, including phase 3 ocrelizumab trial data used for
the clinical trial validation, qualified researchers can request access
to patient-level data by making a request via https://vivli.org/. The
anonymized MS PATHS dataset used for the real-world validation can
be obtained for purposes of replicating the findings of this study by
contacting HW. at heinz.wiendl@uniklinik-freiburg.de.

Code availability

SIENA/X, part of FSL 6.0, available at https://fsl.fmrib.ox.ac.uk/fsl/, was
used to derive normalized brain volume and percentage of brain vol-
ume change. The FAHHM code used in this workis available at https://
github.com/habib61/FAHMM.
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Consensus definition 1996
The «2013 revisions»

FDA 2019 US Pl implementation

EMA implementation

MS scientific community

Extended DataFig. 1| Disease classification of multiple sclerosis. Consensus
definitions from1996 and inits 2013 revisions’ and variants of it as used in
indication statements in US packet inserts, summaries of product characteristics
by the European Medicines Agency and in scientific publications. Relapsing
forms of multiple MS include CIS, RRMS, and aSPMS in adults. aRRMS, active
RRMS; aSPMS, active SPMS; CIS, clinically isolated syndrome; haRRMS,

RRMS
early
aRRMS aSPMS naSPMS PPMS IPPMS
haRRMS2

«Progressive MS» (PMS)

«Progression in MS» starts in RRMS

highly active RRMS; IPPMS, late PPMS (as opposed to ‘early PPMS’); MS,

multiple sclerosis; naSPMS, non-active SPMS (as opposed to ‘active SPMS’);

PMS progressive MS (SPMS + PPMS); PPMS, primary progressive MS; PRMS,
progressive relapsing MS; RRMS relapsing remitting MS; SPMS, secondary
progressive MS; «progression in MS » refers to the process of progression, which
occursinall subtypes of MS.

Nature Medicine


http://www.nature.com/naturemedicine

Article https://doi.org/10.1038/s41591-025-03901-6

5e+05 —
[ J
4e+05 —
[ ]
3e+05 — hd
1)
[11]
2e+05 — ®
[
[}
[ J
1e+05 — [ )
L °
PY [ J
I I I I I I I I I I I I
2 3 4 5 6 7 8 9 10 1 12 13
Number of States
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Information Criterion. A local minimum would indicate the optimal number Extended Data Fig. 3) - representing a gradient in disease severity features - were
of states. However, no single best number of states was identified. Models found tobe abetter representation of the data than simpler models.
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Extended Data Fig. 3| Graphicalillustration of disease states and MS as
agradient. The states represent agradient of disease severity based on
physical disability and brain damage with distinct inflammatory states without
accompanying symptoms (state 4) or with such symptoms, that is relapse
(state 5).a, Density plotsin the eight-state model: Latent factor distributionin
the eight states. Overlapping distributions form a gradient of disease severity

Number of T1 Gd+ lesions

Relapse occurence

based on physical disability and brain damage. Distinct inflammatory states for
the clinical relapse (state 5), and for asymptomatic lesions (state 4) b, Endpoint
distribution of the original clinical and radiological variables in the eight states.
EDSS, Expanded Disability Status Scale; Gd, gadolinium-enhancing; MS, multiple
sclerosis; PASAT, Paced Auditory Serial Addition Test.
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Extended Data Fig. 4 | Alternative models with nine or ten states. a, b, model
with nine states. ¢, d, model with 10 states. Composite score of MS dimensions
and empirical means of the original variables characterising the states (aand c).

Transition probability matrix from FAHMM (b and d). The transition probabilities

refer to the probability of changing from one disease state to another one
within a period of 1 month; the colour code refers to the clinical disease states
asdescribed in Fig. 1. Asympt., asymptomatic; EDSS, Expanded Disability Status
Scale; Gd +, gadolinium-enhancing; PASAT, Paced Auditory Serial Addition Test.
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Extended Data Fig. 5| Eight-state modelling by MS subtypes. Clinical states
(a) and transition matrices between states (b) for bout-onset MS (RRMS, SPMS)

and PPMS separately. The disease severity gradient from EME to advanced states

of MS, as well as the relapse and asymptomatic disease activity states, were re-

discovered for PPMS, and similar to those observed for bout-onset MS. As aminor

difference, only one EME state and several advanced states were discovered when
fitting the model only to PPMS patients. This is expected, as studies in PPMS
systematically excluded patients with an EDSS < 3.5. Overall, disease states and
transition patterns were similar between RRMS-SPMS and PPMS patients.
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Extended Data Fig. 6 | Eight-state modelling with no imputation of missing The frequency of subclinical disease activity is underestimated in this model
data. Analysis based on non-missing data, that is analysis without data due to the remapping of relapses from other timepoints were they occurred to
imputation performed by mapping data to annual visits (based onthe availability ~ the annual visits where MRIscans are available. Overall, the disease states and
of annual MRIscans): (a) clinical states and (b) transition matrix between states. transition patterns observed were similar to those in the main model.
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Extended Data Table 1| Number of participants and timepoints per study in NO.MS and Roche MS

Numk B .
NCT number Study phase Number of of gl at study

Study identifier (Novartis)

(Study name) participants visits entry

CBAF312A2304 NCT01665144 Phase 3 1429 22,258 1429 SPMS
(EXPAND)

CFTY720D2201 NCT00333138 Phase 2 244 4907 215 RRMS,
(ACROSS) 29 SPMS

CFTY720D2301 NCT00289978 Phase 3 1125 24,819 1125 RRMS
(FREEDOMS)

CFTY720D2302 NCTO00340834 Phase 3 1053 20,472 1053 RRMS
(TRANSFORMS)

CFTY720D2306 NCT00731692 Phase 3 712 9398 712 PPMS
(INFORMS)

CFTY720D2309 NCT00355134 Phase 3 949 11,875 949 RRMS
(FREEDOMS Il)

CFTY720D2312 NCT01633112 Phase 3b 848 2640 848 RRMS
(ASSESS)

COMB157G2301 NCT02792218 Phase 3 817 10,904 768 RRMS,
(ASCLEPIOS I) 49 SPMS

COMB157G2302 NCT02792231 Phase 3 846 10,962 803 RRMS,
(ASCLEPIOS 1) 43 SPMS

Total 8023 118,235

Study identifier (Roche) NCT number Study phase Number of Number of Diag is at study
Study name participants visits entry

WA21092 NCT01247324 Phase 3 768 15,737 RMS
(OPERA 1)

WA21093 NCT01412333 Phase 3 765 14,714 RMS
(OPERA 1)

WA25046 NCT01194570 Phase 3 710 19,599 PPMS
(ORATORIO)

Total 2243 50,050

For NO.MS, all longitudinal data from the same participants in corresponding extension studies are also included in the analysis. For Roche MS, all longitudinal data from the same participants
in corresponding extension studies were also included in the analysis for ORATORIO. For OPERA | and I, the Multiple Sclerosis Functional Composite (MSFC) with its components T25FWT,
9HPT and PASAT were collected only in the core study but not the extension studies. Therefore, only the core phase from OPERA | and Il could be used for the validation.
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Extended Data Table 2 | Demographics and baseline MS variables for the different datasets

NO.MS NO.MS (full) Roche MS MS PATHS
N = 8023 N = 27,328 N = 2243 N = 2280
Age
Mean (SD) 40.9 (10.0) 40.3 (10.6) 39.5(9.4) 46 (11)
Median (IQR) 41 (33-48) 41 (33-48) 40 (32-47) 46 (39-54)
a
Sex Female 67% 70% 61% 74%
Male 33% 30% 39% 26%
Not reported - 0.01% - 0.1%
MS type®
RRMS 2% 90% 68% 20%
SPMS 19% 7% 6.6%
PPMS 9% 4% 32% 1.6%
Not reported - - - 53%
EDSS (total score)
Mean (SD) 3.2(1.7) 3.0(1.7) 3.4(1.6) N/A
Median (IQR) 3 (24.5) 2.5(1.5-4) 3.5(2.04.5) N/A
Timed 25-Foot Walking test (s)
Mean (SD) 8.5(9.9) 8.7 (11.7) 9.6 (13.6) 6.39 (3.68)
Median (IQR) 5.8 (4.7-8.2) 5.8 (4.7-8.3) 6.0 (4.8-8.7) 5.50 (4.60-6.95)
9-Hole Peg Test (s)
Mean (SD) 25.5(12.1) 25.6 (12.9) 26.5(15.1) 26 (7)
Median (IQR) 22.5(19.5-27.4) 22.4 (19.4-27.5) 23.5(20.3-28.7) 24 (21-29)
PASAT® (correct answers)
Mean (SD) 44.7 (12.9) 44.9 (13.0) 41.6 (13.2) 54 (13)
Median (IQR) 48 (37-55) 49 (37-55) 44 (32-53) 54 (45-63)
Volume T2 lesions (mL)
Mean (SD) 9.7 (12.1) 10.0 (12.5) 10.9 (13.5) 9 (10)
Median (IQR) 5.3 (1.9-12.9) 5.4 (1.9-13.2) 6.1(2.1-14.2) 6 (3-12)
Normalised brain volume (L/BPF)?
Mean (SD) 1.5 (0.1) 1.5 (0.1) 1.5 (0.09) 0.9 (0.0)
Median (IQR) 1.5 (1.5-1.6) 1.5 (1.4-1.5) 1.5 (1.4-1.6) 0.9 (0.8-0.9)
Gd+ T1 lesions®
Mean (SD) 1.3 (4.4) 1.2(3.5) 1.6 (4.7) 2(4)
Median (IQR) 0 (0-1) 0 (0-1) 0 (0-1) 0 (0-1)

MS treatments’

Alemtuzumab, azathioprine, cladribine, cyclophosphamide, cyclosporine A, daclizumab, dimethyl fumarate,
diroximel fumarate, fingolimod, glatiramer acetate, I1gG, interferon beta-1a, interferon beta-1b, methotrexate,
mitoxantrone, monomethyl fumarate, mycophenolate mofetil, natalizumab, ocrelizumab, ofatumumab,

ozanimod, peginterferon beta-1a, placebo, rituximab, siponimod, teriflunomide

aTwo patients have missing data on sex in NO.MS (full) and three patients in MS PATHS. °"MS PATHS also includes patients with CIS (16%) and patients with progressive relapsing MS (2.5%). The
RRMS value for Roche MS here is reported as RMS. °PASAT was used in NO.MS and Roche MS (maximum of 60 correct answers); the cognitive test used for MS PATHS was similar to the SDMT.
dFor MS PATHS, brain parenchymal fraction was calculated instead of the normalized brain volume. *Number of Gd* T1 lesions is not reported in MS PATHS, so the number of new/enlarging T2
lesions is used for this dataset instead. fFingolimod, glatiramer acetate, interferon beta-1, ofatumumab, siponimod, teriflunomide and placebo were used in NO.MS. Interferon beta-1a, placebo
and ocrelizumab were used in the Roche MS dataset based on the ocrelizumab phase 3 program. All the active treatments listed were used in MS PATHS. BPF, brain parenchymal fraction; Gd*,
gadolinium-enhancing; IQR, interquartile range.
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Extended Data Table 3 | Demographics and disease characteristics for the nine-state model

Variable Early/mild/evolving MS Asymptomatic Relapse Advanced MS
radiological disease
activity
n=27,795 n=3819 n=5594 n=57,573
Demographics, MS subtype and disease duration
Age
Mean (SD) 42 (9) 37(9) 40 (9) 43 (10)
Median (IQR) 42 (35-49) 36 (30-43) 40 (33-47) 44 (36-51)
Sex
Female 19,487 (70%) 2676 (70%) 3984 (71%) 36,640 (64%)
Male 8308 (30%) 1143 (30%) 1610 (29%) 20,933 (36%)
MS type
RRMS 21,832 (78.6%) 3424 (89.7%) 4595 (82.1%) 33,720 (58.6%)
SPMS 3925 (14.1%) 295 (7.7%) 937 (16.8%) 18,404 (32.0%)
PPMS 2038 (7.3%) 100 (2.6%) 62 (1.1%) 5449 (9.4%)
Years since the first symptom
Mean (SD) 12 (8) 10 (8) 13 (9) 14 (9)
Median (IQR) 9 (5-20) 8 (4-20) 9 (5-21) 11 (7-22)
Original MS measures
EDSS (total score)
Mean (SD) 2.50 (1.63) 2.36 (1.39) 3.88 (1.63) 3.67 (1.97)
Median (IQR) 2.5(1.5-3.5) 2 (1.5-3.5) 4 (2.5-5) 3.5(2-5.5)
Timed 25-Foot Walking Test (s)
Mean (SD) 6.11 (2.65) 6.27 (3.74) 9.49 (11.03) 11.84 (15.04)
Median (IQR) 5.30 (4.40-6.95) 5.25 (4.35-6.65) 6.15 (4.81-9.25) 6.80 (5.05-12.00)
9-Hole Peg Test (s)
Mean (SD) 20.55 (4.44) 22.25 (5.74) 25.49 (10.88) 27.89 (14.61)
Median (IQR) 19.70 (17.65-21.45) 21.10 (18.58-24.48) 22.50 (19.53-27.13) 23.98 (20.08-30.45)
PASAT (correct out of max 60)
Mean (SD) 53.60 (7.53) 48.20 (11.19) 47.23 (12.11) 46.13 (12.87)
Median (IQR) 56 (51-59) 52 (43-57) 51 (40-57) 50 (38-57)
Volume T2 lesions (mL)
Mean (SD) 1.38 (0.97) 11.42 (11.38) 9.57 (11.57) 12.84 (12.24)
Median (IQR) 1.19 (0.59-2.01) 8.07 (3.50-15.22) 5.38 (1.89-12.62) 8.75 (4.71-16.80)
Normalised brain volume (L)
Mean (SD) 1.53 (0.08) 1.52 (0.09) 1.51 (0.09) 1.48 (0.09)
Median (IQR) 1.54 (1.48-1.58) 1.53 (1.47-1.58) 1.52 (1.45-1.57) 1.48 (1.42-1.54)
Gd+ T1 lesions
Mean (SD) 0.00 (0.00) 3.34 (5.20) 1.98 (5.05) 0.09 (0.58)
Median (IQR) 0 (0-0) 2(1-3) 0(0-2) 0 (0-0)

Demographic characteristics and MS variables are summarized by clinical disease states across all visits, counting patients each time that they were in a specific clinical state; n represents

the number of such visits to the specific state. Gd*, gadolinium-enhancing; IQR, interquartile range.
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Extended Data Table 4 | Demographics and disease characteristics for the 10-state model

Variable Early/mild/evolving MS Asymptomatic Relapse Advanced MS
radiological disease
activity
n=35,980 n=4413 n=5594 n=48,794
Demographics, MS subtype and disease duration
Age
Mean (SD) 38(9) 37(9) 40 (9) 46 (9)
Median (IQR) 38 (32-45) 36 (30-43) 40 (33-47) 47 (40-53)
Sex
Female 25,286 (70%) 3079 (70%) 3984 (71%) 30,438 (62%)
Male 10,694 (30%) 1334 (30%) 1610 (29%) 18,356 (38%)
MS type
RRMS 33,825 (94.0%) 4009 (90.8%) 4595 (82.1%) 21,142 (43.3%)
SPMS 1356 (3.8%) 305 (6.9%) 937 (16.8%) 20,963 (43.0%)
PPMS 799 (2.2%) 99 (2.3%) 62 (1.1%) 6689 (13.7%)
Years since the first symptom
Mean (SD) 10 (8) 10 (8) 13(9) 16 (9)
Median (IQR) 8 (4-14) 8 (4-20) 9 (5-21) 20 (8-22)
Original MS measures
EDSS (total score)
Mean (SD) 1.71(0.97) 2.06 (1.38) 3.88 (1.63) 4.49 (1.61)
Median (IQR) 1.5 (1.0-2.0) 2(1.0-3.0) 4 (2.5-5) 4.5 (3.5-6)
Timed 25-Foot Walking Test (s)
Mean (SD) 4.84 (1.14) 7.08 (5.16) 9.49 (11.03) 13.17 (15.43)
Median (IQR) 4.70 (4.05-5.38) 5.45 (4.40-7.30) 6.15 (4.81-9.25) 8.15 (6.05-13.35)
9-hole Peg Test (s)
Mean (SD) 18.95 (2.66) 22.33 (5.84) 25.49 (10.88) 29.96 (14.75)
Median (IQR) 18.75 (17.20-20.50) 21.15 (18.60-24.50) 22.50 (19.53-27.13) 26.03 (22.40-32.18)
PASAT (correct out of max 60)
Mean (SD) 54.05 (7.06) 49.14 (10.42) 47.23 (12.11) 44.79 (13.11)
Median (IQR) 57 (52-59) 52 (44-57) 51 (40-57) 48 (36-56)
Volume T2 lesions (mL)
Mean (SD) 3.79 (4.17) 10.10 (10.21) 9.57 (11.57) 12.87 (13.41)
Median (IQR) 2.37 (0.97-5.02) 7.04 (3.13-13.45) 5.38 (1.89-12.62) 8.67 (3.12-18.42)
Normalised brain volume (L)
Mean (SD) 1.55 (0.07) 1.52 (0.09) 1.51 (0.09) 1.46 (0.09)
Median (IQR) 1.55 (1.50-1.59) 1.53 (1.47-1.58) 1.52 (1.45-1.57) 1.46 (1.40-1.52)
Gd+ T1 lesions
Mean (SD) 0.00 (0.00) 2.34 (2.51) 1.98 (5.05) 0.43 (2.92)
Median (IQR) 0 (0-0) 1(1-3) 0(0-2) 0 (0-0)

Demographic characteristics and MS variables are summarized by clinical disease states across all visits, counting patients each time that they were in a specific clinical state; n represents
the number of such visits to the specific state. Gd*, gadolinium-enhancing; IQR, interquartile range.
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existing data that uses unsupervised learning to define a new classification for MS.The method clusters MS patient’s radiological and clinical
features trajectories that have similar pattern without using any labels. Also, the method doesn’t use treatment to find the proposed
classification and we did not perform intend to treat analysis, hence blinding is not applicable.
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Outcomes This is a multivariate modeling of all available standard clinical and radiological outcomes in MS clinical trials as described in Extended
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