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Abstract

Background/Objectives: The SARS-CoV-2 and influenza A (HIN1)pdm09 pandemics have
resulted in high numbers of ICU admissions, with high mortality. Identifying risk factors
for ICU mortality at the time of admission can help optimize clinical decision making.
However, the risk factors identified may differ, depending on the type of analysis used.
Our aim is to compare the risk factors and performance of a linear model (multivariable
logistic regression, GLM) with a non-linear model (random forest, RF) in a large national
cohort. Methods: A retrospective analysis was performed on a multicenter database
including 8902 critically ill patients with influenza A (HIN1)pdmo09 or COVID-19 admitted
to 184 Spanish ICUs. Demographic, clinical, laboratory, and microbiological data from the
first 24 h were used. Prediction models were built using GLM and RF. The performance
of the GLM was evaluated by area under the ROC curve (AUC), precision, sensitivity,
and specificity, while the RF by out-of-bag (OOB) error and accuracy. In addition, in
the RF, the im-portance of the variables in terms of accuracy reduction (AR) and Gini
index reduction (GI) was determined. Results: Overall mortality in the ICU was 25.8%.
Model performance was similar, with AUC = 76% for GLM, and AUC = 75.6% for RF.
GLM identified 17 independent risk factors, while RF identified 19 for AR and 23 for GI.
Thirteen variables were found to be important in both models. Laboratory variables such as

J. Clin. Med. 2025, 14, 5383

https://doi.org/10.3390/jcm14155383


https://doi.org/10.3390/jcm14155383
https://doi.org/10.3390/jcm14155383
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0001-7361-7835
https://orcid.org/0000-0001-7392-8617
https://orcid.org/0000-0003-3637-3821
https://orcid.org/0000-0002-6593-5486
https://orcid.org/0000-0002-0573-7621
https://orcid.org/0000-0001-7652-8379
https://orcid.org/0000-0001-8828-5984
https://doi.org/10.3390/jcm14155383
https://www.mdpi.com/article/10.3390/jcm14155383?type=check_update&version=2

J. Clin. Med. 2025, 14, 5383

2of 16

procalcitonin, white blood cells, lactate, or D-dimer levels were not significant in GLM but
were significant in RF. On the contrary, acute kidney injury and the presence of Acinetobacter
spp. were important variables in the GLM but not in the RE. Conclusions: Although
the performance of linear and non-linear models was similar, different risk factors were
determined, depending on the model used. This alerts clinicians to the limitations and
usefulness of studies limited to a single type of model.

Keywords: ICU mortality; pandemic viruses; mortality risk factors; random forest;
generalized linear model

1. Introduction

Pandemics have historically been one of the greatest threats to public health, causing
high mortality and exerting a significant impact on healthcare systems and society in
general. Two recent pandemics have been particularly devastating: the influenza A (HIN1)
virus, which emerged in 2009, and SARS-CoV-2, first identified in 2019. Both caused
millions of deaths worldwide [1-4] and challenged the response capacities of healthcare
systems, the pharmaceutical industry, and governments. They also exhibited ethical,
economic, and social consequences that are still being felt today [5,6].

Despite the knowledge and advances in biomedicine, there are still limitations in the
ability to predict the outcome of patients critically ill with pandemic viral infections. Early
identification of patients at increased risk of mortality is essential to optimize intensive
care unit (ICU) resources and improve clinical outcomes. Several authors [7-11] have
identified a large number of risk factors associated with mortality in patients critically
ill with influenza A (H1N1) and SARS-CoV-2 that differ or overlap, depending on the
population studied, the country, or the method of analysis used. Traditionally, statistical
models such as logistic regression have been used to quantify the association between
confounding variables and the dependent variable in a linear fashion. However, this
approach displays limitations in detecting non-linear relationships (perhaps the most
common in medicine) and the complex interaction between multiple variables, which limits
its predictive power in clinical scenarios with high-dimensional data [12].

In this context, new machine learning techniques have emerged as promising tools for
predicting complex clinical outcomes. Among these, random forest, one of the most widely
used techniques today, has shown significant advantages in identifying complex patterns
in the data, without the need for parametric assumptions. This algorithm, based on the
combination of multiple decision trees, offers greater predictive accuracy and robustness to
the collinearity and heterogeneity of clinical data than those of linear models [13,14].

Our hypothesis is that different risk factors can be identified by applying different
models of analysis. To test our hypothesis, the aim of our study is to identify risk factors
associated with mortality in patients with severe pneumonia due to influenza A (HIN1) and
SARS-CoV-2 infection by comparing the predictive ability of traditional logistic regression
models with advanced machine learning techniques, specifically random forest. Our study
aims to alert clinicians to the limitations of classical models and the need for more complex
or multiple analyses to identify true risk factors and thus optimize decision making in the
management of ICU patients.
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2. Materials and Methods
2.1. Design

We conducted a secondary analysis of two prospective, multicenter cohort studies.
The first dataset came from the GETGAG registry, a voluntary registry established by the
Spanish Society of Intensive Care Medicine (SEMICYUC) in 2009 during the influenza
A(HIN1)pdm09 pandemic. A total of 184 Spanish ICUs contributed data between June 2009
and June 2019 [15]. The Ethics Committee of Joan XXIII University Hospital (CEI no. 11809)
and the ethics committees of all participating centers approved the study protocol. We did
not obtain informed consent from patients because the study was observational, and all
data were anonymized. The second dataset comes from the COVID-19 registry, a voluntary
initiative created by SEMICYUC in 2020 during the SARS-CoV-2 pandemic. Seventy-
four Spanish ICUs contributed data between 1 July 2020 and 31 December 2021 [15]. We
retrospectively registered the study on ClinicalTrials.gov (NCT04948242) on 30 June 2021.
The institution’s Internal Review Committee (Research Ethics Committee on Medicinal
Products (CEIm) at the Pere Virgili Health Research Institute (IISPV), IRB# CEIM /066 /2020)
waived the requirement for informed consent. Local researchers maintained contact with
the study team, and each participating hospital obtained approval from its local ethics
committee. We conducted the study in accordance with the principles of the Declaration
of Helsinki and the European Clinical Trials Directive 2001/20/EC on Good Clinical
Practice [16].

We presented the results following the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) guidelines [17].

2.2. Study Population

We included a total of 8902 consecutive patients who required ICU admission due
to respiratory infections caused by influenza A (HIN1)pdm09, seasonal influenza A or B
(n=3702), or SARS-CoV-2 (n = 5200) during the respective study periods. We confirmed the
presence of each virus by performing real-time polymerase chain reaction (rt-PCR) in each
hospital, according to Infectious Diseases Society of America (IDSA) recommendations
for influenza [18] and World Health Organization (WHO) recommendations for SARS
CoV-2 [19]. We monitored each patient until confirmed ICU discharge or death, whichever
occurred first.

2.3. Definitions

We considered co-infection in patients who presented with lower respiratory tract
infection symptoms and radiographic evidence of pulmonary infiltrates unexplained by
other causes [20]. We confirmed coinfection through laboratory testing based on the
criteria established by the Centers for Disease Control and Prevention (CDC) [20,21]. Only
respiratory infection microbiologically confirmed with a respiratory specimen or serology
obtained within 2 days of ICU admission was considered community-acquired coinfection.
The diagnosis of coinfection was considered “definitive” if respiratory pathogens were
isolated from blood or pleural fluid and if serological tests confirmed a four-fold increase
of atypical pathogens, including Chlamydia spp., Coxiella burnetti, and Moraxella catarrhalis.
Only patients with confirmed microbiologic diagnosis were included in the present analysis.

We diagnosed acute kidney injury (AKI) based on the Acute Kidney Injury Network
(AKIN) criteria, as defined in the international KDIGO guidelines [22].

We defined appropriate empiric antibiotic treatment (AEAT) as the administration
of antibiotics at ICU admission before microbiological results were available, followed by
adjustment according to pathogen susceptibility once results became known. The attending
physician at each center determined whether treatment met these criteria.
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We defined inappropriate empiric antibiotic treatment (IEAT) as antibiotic therapy
started at ICU admission that was not adjusted to the pathogen’s susceptibility once
microbiological results became available. This definition also included the administration
of antibiotics to patients without documented bacterial co-infection.

We defined GAP-UCI as the time elapsed between the diagnosis of the pandemic viral
infection and ICU admission.

We defined GAP-Diagnosis as the time between the onset of clinical symptoms and
the microbiological confirmation of the pandemic viral infection.

2.4. Study Variables

We collected demographic data, comorbidities, and clinical and laboratory findings
within the first 24 h after ICU admission. We also recorded whether patients required
invasive mechanical ventilation and whether they presented with shock upon arrival. We
assessed disease severity using the Acute Physiology and Chronic Health Evaluation II
(APACHE II) score [23] and the level of organ dysfunction using the SOFA score [24]. The
variables included in the study are detailed in Table 1.

Table 1. Baseline characteristics of the 8902 patients included in the analysis, categorized by ICU

outcome and variable cut-off.

. Whole Population Survival Non-Survival
Variable (n= 81;02) (n = 6608) (n = 2294) p-Value
General
Age, median (Q1-Q3) years 60 (49-70) 58 (48-68) 67 (57-74) <0.001
Age cut-off > 58 years, n (%) 5177(58.1) 3473 (52.6) 1704 (74.3) <0.001
Male sex, n (%) 5855 (65.8) 4248 (64,3) 1607 (70.1) <0.001
APACHE II, median (Q1-Q3) 14 (10-19) 13 (10-17) 17 (13-22) <0.001
APACHE 1I cut-off > 13, n (%) 5309 (59.6) 3536 (53.5) 1773 (77.3) <0.001
SOFA score, median (Q1-Q3) 5(3-7) 4(3-7) 6(4-9) <0.001
SOFA cut-off > 4, n (%) 6274 (70.5) 4299 (65.1) 1975 (86.1) <0.001
GAP UCI, median (Q1-Q3) 1(1-3) 1(1-3) 2 (0-4) <0.001
GAP UCI cut-off > 1 day, n (%) 6804 (76.4) 5085 (77.0) 1719 (74.9) 0.053
GAP diagnosis, median (Q1-Q3) 4 (1-7) 3(1-7) 4 (1-7) 0.012
GAP diagnosis cut-off > 3 days, n (%) 5413 (60.8) 3943 (59.7) 1470 (64.1) <0.001
> 2 fields with infiltrations in chest X-ray, n (%) 5343 (60.0) 3775 (57.1) 1568 (68.4) <0.001
Antiviral vaccine, n (%) 1333 (14.9) 885 (13.4) 448 (19.5) <0.001
Shock at ICU admission, n (%) 3549 (39.9) 2286 (34.6) 1263 (55.1) <0.001
Laboratory

White blood cells count, median (Q1-Q3) x 103 8.6 (5.7-12.5) 8.5 (5.7-12.1) 9.0 (5.8-13.7) <0.001
White blood cells count cut-off < 8.5 x 103, n (%) 4405 (49.5) 3351 (50.7) 1054 (45.9) <0.001
Lactate dehydrogenase, median (Q1-Q3) U/L 542 (403-687) 524 (378-665) 590 (458-749) <0.001
Lactate dehydrogenase cut-off > 500 U/L, n (%) 5157 (57.9) 3593 (54.4) 1564 (68.2) <0.001
C-reactive protein, median (Q1-Q3) mg/dL 19.6 (9.8-34.7) 19.0(9.5-34.4) 21.1 (10.4-35.4) 0.001
C-reactive protein cut-off >20 mg/dL, n (%) 4387 (49.3) 3184 (48.2) 1203 (52.4) <0.001
Procalcitonin, median (Q1-Q3) ng/mL 0.88 (0.20-5.67) 0.83 (0.20-5.08) 1.04 (0.23-8.20) <0.001
Procalcitonin cut-off >0.80 ng/mL, n (%) 4606 (51.7) 3350 (50.7) 1256 (54.8) 0.001
Lactate, median (Q1-Q3) mmol/L 2.0 (1.4-3.3) 2.0(1.3-3.2) 2.2 (1.4-3.8) <0.001
Lactate cut-off > 2 mmol/L, n (%) 4660 (52.3) 3369 (51.0) 1291 (56.3) <0.001
Creatinine, median (Q1-Q3) mg/dL 0.89 (0.7-1.2) 0.85 (0.68-1.12) 1.01 (0.75-1.50) <0.001
Creatinine cut-off >0.85 mg/dL, n (%) 4841 (54.4) 3330 (50.4) 1511 (65.9) <0.001
D-dimer, median (Q1-Q3) ng/mL 3071 (971-6604) 2716 (900-6000) 4180 (1200-8680) <0.001
D-dimer cut-off > 2700 ng/mL, n (%) 4663 (52.4) 3314 (50.2) 1349 (58.8) <0.001
creatine phosphokinase, median (Q1-Q3) U/L 216 (100-420) 210 (97-414) 234 (111-442) 0.001
Creatine phosphokinase cut-off > 200 U/L, n (%) 4707 (52.9) 3433 (52.0) 1274 (55.5) 0.003
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. Whole Population Survival Non-Survival
Variable (n = 8902) (n = 6608) (n = 2294) p-Value
Comorbidities
Diabetes mellitus, n (%) 1196 (13.4) 756 (11.4) 440 (19.2) <0.001
Asthma, n (%) 698 (7.7) 556 (8.4) 142 (6.2) 0.001
COPD, n (%) 1281 (14.4) 936 (14.2) 345 (15.0) 0.32
Chronic heart disease, n (%) 623 (7.0) 418 (6.3) 205 (8.9) <0.001
Chronic liver disease, n (%) 595 (6.7) 357 (5.4) 238 (10.4) <0.001
Pregnancy, n (%) 480 (5.4) 399 (6.0) 81 (3.5) <0.001
Obesity, n (%) 3046 (34.2) 2256 (34.1) 790 (34.4) 0.81
Human immunodeficiency virus, n (%) 144 (1.6) 107 (1.6) 37 (1.6) 1.00
Hematologic disease, n (%) 436 (4.8) 237 (3.6) 199 (8.7) <0.001
Immunosuppression, n (%) 711 (8.0) 401 (6.0) 310 (13.5) <0.001
Treatment
Steroids, n (%) 5275 (59.2) 3746 (56.7) 1529 (66.7) <0.001
Antibiotics (AB) at ICU admission, n (%) 7410 (83.2) 5428 (82.1) 1982 (86.4) <0.001
Appropriate empiric AB treatment, n (%) 951 ((10.7) 671 (10.2) 280 (12.2) 0.007
High flow nasal cannula at admission, n (%) 1438 (16.1) 1138 (17.2) 300 (13.1) <0.001
Invasive mechanical ventilation, n (%) 4252 (47.8) 2751 (41.6) 1501 (65.4) <0.001
Most common aetiology of coinfection
Coinfection, n (%) 1211 (100) 810 (12.3) 401 (17.5) <0.001
Methicillin-sensitive S. aureus (MSSA), n (%) 172 (14.2) 111 (13.7) 61 (15.2) 047
Pseudomonas aeruginosa, n (%) 143 (11.8) 82 (10.1) 61 (15.2) 0.01
Klebsiella spp. N (%) 85 (7.0) 60 (7.4) 25 (6.2)) 0.45
Aspergillus spp., n (%) 78 (6.5) 33 (4.0) 45 (11.2) <0.001
E. coli, n (%) 69 (5.7) 43 (5.3) 26 (6.3) 0.40
Methicillin-resistant S. aureus (MRSA). n (%) 56 (4.6) 33 (4.0) 23 (5.7) 0.19
Acinetobacter spp., n (%) 17 (1.4) 4(0.5) 13 (3.2) <0.001
Outcomes
ICU LOS, median (Q1-Q3) days 13 (6-23) 12 (6-23) 14 (7-24) 0.03
Acute kidney injury, n (%) 1435 (16.1) 855 (12.9) 580 (25.3) <0.001

APACHE II: Acute Physiology and Chronic Health Evaluation; SOFA: sequential organ failure assessment; GAP-
UCL time from diagnosis to ICU admission; GAP-Diagnosis: time from symptoms onset to diagnosis; ICU:
intensive care unit; LOS: length of stay.

2.5. Missing Data Management

We excluded continuous variables with more than 30% missing data from the database.
For variables with fewer missing values, we applied imputation using the missForest
package in R/CRAN. This method was used to impute missing values for D-dimer (18%),
lactate dehydrogenase (15%), procalcitonin (15%), creatinine (14%), SOFA score (14%),
APACHE II score (10%), and C-reactive protein (5%). Categorical data, including ICU
mortality, were complete for all patients.

2.6. Analysis Plan and Statistical Analysis

Firstly, we calculated the crude ICU mortality rate for the overall population and
compared patient characteristics based on outcomes. We expressed qualitative variables as
percentages and summarized quantitative variables as medians with interquartile ranges
(Q1-Q3). To assess differences between groups, we applied the Chi-square and Fisher’s
exact tests for categorical variables and the Student’s ¢-test or Mann—-Whitney U-test for
quantitative variables.

Secondly, we applied a binary logistic regression model to identify variables inde-
pendently associated with all-cause ICU mortality. We incorporated into the generalized
linear model (GLM) all variables that were statistically significant (p < 0.05) in the bivariate
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analyses. We developed the mortality prediction model using only variables available at
the time of ICU admission. To improve model performance, we categorized continuous
variables, defining cut-off points based on the median values observed in surviving patients.
We expressed the results as odds ratios (OR) with 95% confidence intervals.

To validate the model internally, we randomly divided the population into a devel-
opment set (training data) containing 70% of patients and a validation set (testing data)
with the remaining 30%. We assessed model performance by calculating accuracy, preci-
sion, sensitivity, specificity, and the area under the ROC curve (AUC). We also examined
collinearity among explanatory variables using variance inflation factors (VIF).

In addition, we performed k-fold cross-validation with k = 10. This approach involved
splitting the original dataset into a training set and a validation set. We further divided the
training data into ten subsets. Each subset served once as the test set, while the remaining
nine subsets were used for model training. After completing all iterations, we calculated
accuracy and error for each model. We then averaged these results across the ten folds to
obtain the final accuracy and error estimates.

Thirdly, because of the significant imbalance between groups, e.g., only 25% of patients
belonged to the deceased group, we considered that this class discrepancy could affect the
model’s performance in predicting mortality. To test whether class imbalance influenced
the linear model’s results, we applied the ROSE (random over-sampling examples) pack-
age. This statistical package generates balanced samples through a smoothed bootstrap
approach, enabling reliable estimates of classifier accuracy when the minority class is rare.
ROSE also provides traditional methods to address class imbalance and includes multiple
metrics for assessing accuracy, which can be estimated via cross-validation, bootstrapping,
or the holdout method [25,26]. We implemented the under option, which subsamples the
majority class without replacement until either the specified sample size (N) is reached
or the positive examples achieve a predefined probability (p). This method reduces the
resulting sample size. We used the ROSE software (version 0.0-4) exclusively on the training
subset, leaving the test subset unchanged. After developing the model on the training data,
we applied it to the test set and evaluated its performance. We reported results as odds
ratios (OR) with 95% confidence intervals, along with accuracy, sensitivity, specificity, and
the area under the ROC curve (AUC).

Fourthly, to test our hypothesis, we developed a non-linear model using a random for-
est classifier (RFc). This technique is a powerful, tree-based machine learning approach. We
configured our model to generate 500 random trees, each considering at least 15 variables.
We evaluated model performance by calculating the out-of-bag (OOB) error, which esti-
mates prediction error through bootstrap aggregation. Additionally, we assessed variable
importance by examining the average loss of accuracy and the Gini index. The Gini index,
reported as “MeanDecreaseGini”, measures the degree of disorder: higher values indicate
greater importance in the model because scores near 0 imply higher disorder, while those
closer to 1 reflect lower disorder and more consistent contribution to the outcome. For
internal validation, we randomly split the population into a training set (70% of patients)
and a test set (30%). We determined model performance by measuring accuracy.

We performed all statistical analyses using R statistical software (version 4.4.1) from
The R Project for Statistical Computing (r-project.org).

3. Results
3.1. Whole Population

We included a total of 8902 ICU patients in the study: 3702 (41.6%) were diagnosed
with influenza, and 5200 (58.4%) with coronavirus disease 2019 (COVID-19). All diagnoses
were confirmed by polymerase chain reaction (PCR). Table 1 shows the general character-
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istics of patients by ICU outcome. The cohort was predominantly male (65.8%), with a
mean age of 60 years. Disease severity was moderate, with mean APACHE II and SOFA
scores of 14 and 5, respectively. The most common comorbidities were obesity, diabetes,
and chronic obstructive pulmonary disease (COPD). The mean ICU stay was 13 days, and
the crude ICU mortality rate reached 25.8%. Compared to survivors, non-survivors were
older and exhibited more severe illness, greater systemic inflammation, more comorbidities,
higher requirements for organ support, and longer ICU stays. Coinfection was also more
frequent among non-survivors, with significant differences observed in pathogens such as
Pseudomonas aeruginosa, Aspergillus spp., and Acinetobacter spp. (Table 1).

3.2. Factors Associated with Crude ICU Mortality According to General Linear Model (GLM)

We used multiple logistic regression to examine the associations between crude ICU
mortality (the dependent variable) and various independent variables. The model included
the following factors: sex (male), age cut-off, APACHE II cut-off, SOFA cut-off, ICU GAP
cut-off, GAP diagnosis cut-off, shock, asthma, COPD, chronic heart disease, chronic kidney
disease, hematological disease, pregnancy, obesity, diabetes, HIV, immunosuppression,
steroid use, and antibiotic treatment at ICU admission. Additional variables included
mechanical ventilation at ICU admission, myocardial dysfunction, acute kidney injury
(AKI), more than two areas of infiltration on chest X-ray, lactate dehydrogenase (LDH)
cut-off, creatine phosphokinase (CPK) cut-off, white blood cell (WBC) cut-off; C-reactive
protein (CRP) cut-off; procalcitonin (PCT) cut-off; lactate cut-off; D-dimer (DD) cut-off;
presence of Klebsiella spp., Acinetobacter spp., Streptococcus pneumoniae, methicillin-sensitive
Staphylococcus aureus (MSSA), E. coli, methicillin-resistant S. aureus (MRSA), Pseudomonas
aeruginosa, and Aspergillus spp.; and administration of an antiviral vaccine. Among these,
17 variables were independently associated with all-cause ICU mortality. The significant
factors are detailed in Figure 1 and Table 2.

Table 2. Variables associated with ICU mortality in the linear multivariate analysis (GLM) and
non-linear multivariate analysis (random forest). Significant variables in the linear model and those
with a significance greater than 10% for the decrease in accuracy or greater than 50% for the decrease
in Gini in the non-linear model are shown.

GLM Model Random Forest Model
Variable OR 95%CI Decreased Accuracy Decreased Gini

Age > 58 years 2.03 1.74-2.36 34.9% 79.2%
APACHEII > 13 points 1.72 1.48-2.02 19.1% 88.1%
SOFA > 4 points 1.47 1.23-1.76 26.0% 65.1%
Shock 1.27 1.09-1.47 16.4% 77.4%
Hematologic disease 1.67 1.26-2.22 19.5% 39.4%
Obesity 1.16 1.01-132 92.4%
Diabetes 1.37 1.14-1.65 16.5% 60.6%
Immunosuppression 1.92 1.53-2.42 18.9% 53.0%
Steroids 1.54 1.34-1.77 12.7% 81.6%
Mechanical ventilation 1.94 1.67-2.25 33.0% 88.1%
Myocardial dysfunction 3.27 2.53-4.28 47.2% 63.6%

Acute kidney injury 1.29 1.07-1.55 —— e
>2 fields with infiltrations in chest X-ray 1.54 1.34-1.77 16.8% 81.3%
LDH > 500 U/L 1.41 1.22-1.63 11.5% 79.7%
Creatinine > 0.85 mg/dL 1.33 1.14-1.55 13.3% 73.8%

Acinetobacter spp. 9.95 2.61-47.8 -—-- -—--

Aspergillus spp. 2.45 1.39-4.33 11.2% -
Procalcitonin >2 ng/mL —- —- 23.0% 68.1%

D-dimer > 2700 ng/mL - - 21.7% 75.9%
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Table 2. Cont.

GLM Model Random Forest Model

Variable

OR 95%CI Decreased Accuracy Decreased Gini

Lactate > 2 mmol/L — —

COrD

CPK >200U/L — —
GAP-Diagnosis > 3 days — — —
WBC count < 8.5 x 103 — — —

Male

GAP-ICU < 1 day — — —

18.1%
17.4%
13.1%

79.5%
61.3%
90.6%
96.9%
93.3%
81.3%
77.1%

Abbreviations: OR: odds ratio; CI: confidence interval; APACHE II: Acute Physiology and Chronic Health
Evaluation; SOFA: sequential organ failure assessment; LDH: lactate dehydrogenase; GAP-ICU: time from
diagnosis to ICU admission; GAP-Diagnosis: time from symptoms onset to diagnosis; ICU: intensive care unit;
COPD: chronic obstructive pulmonary disease; CPK: creatine phosphokinase; WBC: white blood cells.

Variable N Odds ratio P

Gender 02151 || Reference
14081 el 1.12 (0.96, 1.30) 0.154
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APACHEII_cut 02490 | | Reference
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SOFA_cut 01825 - Reference
14407 ;. —— 1.47 (1.23,1.77) <0.001

GAP_ICU_cut 01467 | | Reference
14765 — 1.09 (0.93. 1.27) 0277

GAP_diagnosis_cut 02423 = Reference
13809 1.02 (0.90, 1.17) 0718

shock 03769 | ] Reference
12463 . 1.27 (1.10, 1.47) 0.001

asthma 05751 = Reference
1 481 1.02 (0.78. 1.31) 0910

coPp 05318 | ] Reference
1 914 —_— 0.81(0.67, 0.98) 0.029

chr_card_dis 05798 Reference
1 433 1.02 (0.80. 1.30) 0873

chr_renal_dis 05810 Reference
1 422 — 1.17 (0.91, 1.49) 0223

hematol_dis 05909 | | Reference
1 323 H— — 1.68(1.27.222) <0.001

pregnancy 05893 [ ] Reference
1 339 e 0.79 (0.56. 1.10) 0.168

obesity 04075 | | Reference
12157 —— 1.16 (1.01, 1.33) 0032

diabetes 05395 [ ] Reference
1 837 ;. —— 137 (1.14.165)  <0.001

HIV 06167 | ] Reference
1 65 — . 1.46 (0.80, 2.59) 0.205

) 05718 Reference
1 514 i —_— 193(1.53,243) <0001

steroids 02544 | | Reference
13688 ' B 1.55 (1.35, 1.78) <0.001

AB_admission 01056 n Reference
15176 — 1.12(0.93,. 1.34) 0236

MV_admission 03248 | ] Reference
12084 } - 1.94 (1.68, 2.25) <0.001

miocardial_dis 05942 | | Reference
1 200 H —— 327 (2.51.4.28) <0.001

AKI 05214 - Reference
11018 . — 1.29 (1.07, 1.56) 0.008

Rx_cutoff 02483 | | Reference
13749 : —-— 154(135.1.77)  <0.001

LDH_cut 02616 - Reference
13616 i 141(122,163) <0001

CPK_cut 02936 | J Reference
13206 I 0.98 (0.85, 1.13) 0776

WBC_cut 03172 Reference
13060 0.96 (0.84. 1.09) 0513

Creatinine_cut 02838 [ ] Reference
13394 . 1.33 (1.15, 1.55) <0.001

CRP_cut 03143 = Reference
13089 1.03 (0.89. 1.19) 0727

PCT_cut 02997 | ] Reference
13235 —_— 0.97 (0.82, 1.16) 0777

lactate_cut 02081 Reference
13251 1.05 (0.90, 1.23) 0536

DD_cut 02970 Reference
13262 — 1.05 (0.89. 1.24) 0.542

Kklebsiella 06171 | ] Reference
1 61 0.69 (0.36. 1.26) 0241

Acinetobacter 06220 | Reference
112 ¢ = 996 (269, 47.86)  0.001

S.pneumoniae 05937 | Reference
1 205 —.— 0.93 (0.68, 1.25) 0622

MS_SA 06114 [ ] Reference
1 118 — 1.24 (0.80, 1.88) 0.327

E.coll 06187 | | Reference
1 45 e —__ — 1.58 (0.81. 3.04) 0.173

MR_SA 06197 [ | Reference
135 — 1.47 (0.69. 3.06) 0.308

Pseudomonas 06124 | | Reference
1 108 —— 1.43 (0.93,2.19) 0.104

aspergillus 06172 | | Reference
H 245 (1.40. 4.33) 0002

|

Figure 1. Odds ratio (OR) plot of variables associated with ICU crude mortality in linear multivariate
analysis (GLM). Abbreviations: cut: cut-off; APACHE II: Acute Physiology and Chronic Health
Evaluation; SOFA: sequential organ failure assessment; AB: antibiotics; CPK: creatine phosphokinase;
DD: D-dimer; MR_SA: methicillin-resistant S. aureus; MV: invasive mechanical ventilation;, WBC:
white blood cells; COPD: chronic obstructive pulmonary disease; dis: disfunction; Chr_Card_dis;
chronic cardiac disease; HIV: human immunodeficiency virus; AKI: acute kidney injury; CRP: C-
reactive protein; GAP_ICU_cut: time elapsed between diagnosing pandemic viral infection and
admission to ICU; Chr_renal_dis: chronic renal disease; ID: immunosuppression; Rx-cutoff: > 2
fields with infiltrations in chest X-ray; PCT: procalcitonin; MS_SA: methicillin-sensitive S. aureus;
GAP_diagnsosis_cut: time from symptoms onset to diagnosis; hematol_dis: hematologic disease;
LDH: lactate dehydrogenase.
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3.3. Linear Model (GLM) Validation

When we applied the developed model to the test subset, it performed accept-
ably, achieving an accuracy of 76%, a sensitivity of 61%, and a specificity of 79% (see
Supplementary Table S1). The area under the curve (AUC) was 0.76 (95% CI, 0.74-0.78; see
Supplementary Figure S1). We did not detect collinearity among the included variables (see
Supplementary Table S2). Cross-validation with k = 10 did not improve overall accuracy
(which remained at 76%) but increased sensitivity to 94% while reducing specificity to 26%
(see Supplementary Table S3).

3.4. Development of the GLM Model with Correction of Class Imbalance

When we applied the ROSE package to the training set, the number of patients
decreased from 6232 to 3152. Among these, 1606 died, resulting in an estimated mortality
rate of 50.9%, which was double the actual rate of 25%. Developing the linear GLM model
with this balanced dataset did not improve performance, yielding an AUC-ROC of 76%
(95% Cl, 74-78%) and an accuracy of 68%. Supplementary Figures S2 and S3 and Table S4
provide details of the model development. Because this approach did not optimize results
and reduced the sample size substantially, we decided to retain the original GLM model
despite the class imbalance, as it did not appear to affect performance.

3.5. Factors Associated with ICU Mortality According to No-Linear Model (Random Forest)

We developed a random forest classifier (RFc) model to analyze the impact of con-
founding variables on ICU mortality in a non-linear manner. To enable comparison, we
included the same independent variables used in the GLM. The RFc model yielded an
out-of-bag (OOB) error rate of 25.3%.

Nineteen variables reduced model precision by more than 10% (Table 2 and Figure 2).
Notably, obesity, acute kidney injury (AKI), and the presence of Acinetobacter spp. were
important predictors in the GLM but did not contribute significantly to precision in the
RFc model. In contrast, COPD, lactate, procalcitonin, D-dimer, and CPK were relevant for
accuracy in the RFc model but not in the GLM.

Additionally, twenty-three variables were associated with a reduction in Gini greater
than 50% in the non-linear analysis. AKI, Acinetobacter spp. and Aspergillus spp. were
significant in the GLM but not relevant to Gini reduction. Conversely, GAP diagnosis, GAP
ICU, male sex, and WBC count were important contributors to Gini decrease in the RF
model (see Table 2 and Figure 2).

3.6. Non-Linear Model (RFc) Validation

We applied the developed model to the test subset, where it achieved an acceptable
accuracy of 75.6%. This performance closely matched that of the linear GLM model, despite
differences in the covariates used.

3.7. Patient Classification by Model

Of the 2670 patients in the test set, the GLM correctly classified 2035 (76.2%), and
the random forest (RF) correctly classified 2018 (75.6%) (see Figure 3 and Supplementary
Figure S4A,B). Both models agreed on the classification of 1872 patients (70.1%), and
489 patients were misclassified (18.3%). Figure 4 illustrates the probability distributions
generated by each model (Class) compared to the actual outcomes (Real).
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Figure 2. Contribution of each confounding variable according to the random forest (RF) model
for variables associated with all-cause ICU mortality. Abbreviations: cut: cut-off; APACHE II:
Acute Physiology and Chronic Health Evaluation; SOFA: sequential organ failure assessment; AB:
antibiotics; CPK: creatine phosphokinase; DD: D-dimer; MR_SA: methicillin-resistant S. aureus; MV:
invasive mechanical ventilation; WBC: white blood cells; COPD: chronic obstructive pulmonary

disease; dis: disfunction; Chr_Card_dis; chronic cardiac disease; HIV: human immunodeficiency
virus; AKI: acute kidney injury; CRP:C-reactive protein; GAP_ICU_cut: time elapsed between
diagnosing pandemic viral infection and admission to ICU; Chr_renal_dis: chronic renal disease;

ID: immunosuppression; Rx-cutoff: > 2 fields with infiltrations in chest X-ray; PCT: procalcitonin;

MS_SA: methicillin-sensitive S. aureus; GAP_diagnsosis_cut: time from symptoms onset to diagnosis;

hematol_dis: hematologic disease; LDH: lactate dehydrogenase).
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Figure 3. Classification of patients according to the linear (generalized linear model—GLM) and

non-linear (random forest—RF) models.
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Figure 4. Distribution of the probability generated by each model (Class) with respect to the observed
results (Real); (0 = survivors; 1 = non-survivors).

4. Discussion

To the best of our knowledge, this is the first study to use machine learning techniques
for a large number of critically ill patients affected by pandemic viruses. Our main finding
was that generating mortality prediction models using either a linear technique (GLM) or a
non-linear technique (RF) was associated with similar performance, with an accuracy close
to 80%.

However, the risk factors identified differed according to the type of analysis used.
While factors such as age, severity, degree of organ dysfunction, and need for mechanical
ventilation were important in both models (major determinants), other laboratory variables
such as procalcitonin, D-dimer, and lactate levels were only identified in the RF model
(minor determinants). Conversely, acute kidney injury (AKI) and the presence of Acineto-
bacter spp. were significant only in the GLM (minor determinants). These findings should
alert clinicians to the limitations and implications of studies that rely exclusively on one
methodological approach to identify prognostic factors.

The influenza A (HIN1) and SARS-CoV-2 pandemics have put enormous pressure on
healthcare systems around the world, highlighting the urgent need for reliable and accurate
methods to predict patient outcomes in order to manage resources appropriately. Although
pandemics may seem to be a thing of the past, each winter, hospitals are overwhelmed by
patients with respiratory failure due to viral infections, generating seasonal surges in ICU
admissions and demand for resources.

The early identification of high-risk patients with viral infections is essential. It allows
for rapid triage, targeted intensive care, and optimized resource allocation, all of which can
ultimately improve patient outcomes. Against this backdrop, our study sought to evaluate
and compare the performance of traditional statistical and machine learning models in
predicting mortality, as well as exploring how each method identifies different clinical
predictors of outcome.
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Several authors have used different types of machine learning (ML) analysis to identify
risk factors and develop predictive models for patients with SARS-CoV-2, while we did
not find any studies involving influenza A HIN1. Additionally, most studies included
hospitalized patients, with few critically ill patients. Huang et al. [27] reported an AUC of
94.4%, a sensitivity of 94.1%, and a specificity of 90.2% when using ML, but the population
considered comprised only 127 patients, of whom 33 were critically ill. Meanwhile, Zhu
et al. [28] examined 127 patients with confirmed cases of SARS-CoV-2 (16 of whom were
severely ill), Gong et al. [29] examined 372 patients with confirmed cases of SARS-CoV-2
who were hospitalized, Aloisio et al. [30] examined 427 patients with confirmed cases of
SARS-CoV-2, and Liu et al. [31] examined 336 severely ill patients with confirmed cases
of SARS-CoV-2 (34 of whom died). All of these studies showed excellent performance
(AUC > 90%) using linear logistic regression models. The small number of patients included
in these studies limits the strength and generalizability of the results.

In line with our research, Reina-Reina et al. [32] conducted a sophisticated study on
a population of 1200 patients with confirmed cases of SARS-CoV-2. The study assessed
the risk of death and ICU admission using various machine learning (ML) techniques,
including support vector machine (SVM), logistic regression (LR), k-nearest neighbors,
decision tree, Gaussian naive Bayes, multi-layer perceptron (MLP), and ensemble methods
such as AdaBoost and bagging. The authors found no significant differences in classifi-
cation accuracy (>88%) between the different ML techniques. However, they opted for
logistic regression (LR) as the algorithm for optimization due to the interpretability of
the model, which is crucial in the medical field, despite random forest (RF) achieving
slightly better average results. The model identified the most important variables as COPD,
which increases the probability of death by 575%; age, which increases the probability
by 145% every 10 years; and acute respiratory failure, which increases the probability by
513%. However, the authors do not report the differences between the predictor variables
identified by each model, and only a small percentage of patients were critical.

Pourhomayoun et al. [33] applied various machine learning (ML) models (support
vector machine (SVM), neural networks (NN), random forest (RF), decision tree, and
logistic regression (LR)) to predict severity in a large cohort of more than 2,670,000 patients
with SARS-CoV-2 infection. The original dataset contained 32 data points for each patient,
including demographic and physiological data. The NN algorithm achieved the best
performance and accuracy, with an area under the curve (AUC) of 89.98%, compared to
87.93% for random forest (RF) and 87.91% for logistic regression (LR). However, the authors
did not conduct a statistical comparison of the AUCs to determine significance, nor did they
compare the predictive factors of the different models, only presenting the NN factors in
the form of a heat map. Furthermore, the severity of the patients’ disease was not reported.

In an excellent review of machine learning (ML) techniques used for prognosis in
patients with SARS-CoV-2 infection, Alballa et al. [34] note that the most commonly used
algorithm for diagnostic and prognostic models is logistic regression (LR), followed by
XGBoost and finally, support vector machine (SVM). The authors point out that most of the
studies included in the review used unbalanced datasets. In these studies, the majority of
records in the training dataset represent the negative class (survivors), while the positive
class (non-survivors) is under-represented. Consequently, the performance of various
ML algorithms applied in the context of COVID-19 may be biased. In such cases, a high
accuracy score could be attributed to the model’s ability to accurately identify negative
samples and erroneously exclude all positive cases. In our study, we recognized and
addressed this bias by applying subsampling to the majority class. However, this did not
improve the performance of the balanced model compared to that of the unbalanced model,
showing that class imbalance does not affect model reliability. This may be because the
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mortality rate among our critically ill patients is 25%, whereas in most published studies, it
is around 10-15% [8,32,35] due to the absence of critically ill patients.

As our study revealed, the linear model performs similarly to non-linear models
when it comes to predicting mortality in patients with COVID-19, a finding that has been
corroborated by several other studies [32-35]. However, despite the structural flexibility of
machine learning models for predicting outcomes in patients with this disease, there are
limitations to their practical use. These include high heterogeneity between patients’ clinical
profiles and small sample sizes, which may reduce the external validity and generalizability
of the data. Most studies describe different risk factors and performances depending
on which factors are included. This is consistent with studies [32,35-37] reporting the
modest performance of machine learning (ML) models when trained exclusively with
baseline clinical data collected at the time of intensive care unit (ICU) admission. The most
successful predictive models, such as those of Wang et al. [38] and Karasneh et al. [39],
incorporate dynamic, therapeutic, or immunological variables that significantly improve
model performance. However, these variables are not available during the initial hours of
care for critically ill patients, limiting their applicability to clinical practice.

We would like to highlight the strengths of our study. Firstly, the large number
of critically ill patients included (n = 8902), of whom more than 3000 were affected by
influenza A (HIN1)pdm09, makes it unique in its results. As it is a national multicenter
study involving more than 148 ICUs in Spain, its results can be generalized to the whole
country. Furthermore, it reports not only on the performance of the developed models, but
also on the different risk factors identified and how patients are classified by each model.
Based on these findings, we can classify risk factors as either major or minor determinants,
depending on whether they are important in both models or only one. Recognizing these
risk factors could be valuable in clinical practice for determining the prognosis of critically
ill patients with a pandemic virus infection. Finally, our study alerts clinicians to the
limitations of using models developed using a single method of analysis.

However, our study reflects limitations that need to be recognized. Firstly, despite
the large number of patients and the study’s multicenter nature, these findings cannot be
extrapolated to other populations (non-critical), health systems, or continents without local
validation. Secondly, while the potential bias due to class imbalance has been addressed,
other biases cannot be ruled out, such as those related to ethnicity or other confounding
variables, as these variables are not included in our data. Thirdly, including data on
ICU evolution in the models could potentially improve performance. However, our aim
was to identify early risk factors for mortality that could be modified by clinicians to
improve prognosis.

5. Conclusions

Our study highlights the continued relevance of linear models (GLM) for predicting
mortality in the era of machine learning analysis. However, it alerts clinicians to the need
for a complementary approach combining linear and non-linear analysis in order to identify
all the major and minor determinants of mortality, with the ultimate goal of improving the
prognosis of this critical patient group.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm14155383 /51, Table S1: Performance of multivariate linear
model (GLM) for ICU mortality; Table S2: Collinearity study by VIF (variance inflation factors)
determination; Table S3: Cross-validation of multivariate linear (GLM) model; Table S4: Performance
of balanced linear model; Figure S1: Area under ROC curve (AUC) for multivariate lineal model for
ICU mortality; Figure S2: Forest plot with the variables included in the balanced linear model, along
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with the odds ratio; Figure S3: area under ROC curve of balanced mortality linear model; Figure S4:
Category profiles according to the model (A = linear model; B = no linear model).
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