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ABSTRACT
Background  T-cell activation and clonal expansion 
are essential to effective immunotherapy responses in 
non-small cell lung cancer (NSCLC). The distribution 
of T-cell clones may offer insights into immunogenic 
mechanisms and imply potential prognostic and 
predictive information.
Methods  We analyzed α/β T-cell receptor (TCR) clonality 
using RNA-sequencing of bulk frozen tumor tissue from 
182 patients with NSCLC. The data was integrated with 
molecular and clinical characteristics, extensive in situ 
imaging, and spatial sequencing of the tumor immune 
microenvironment. TCR clonality was also determined 
in an independent cohort of nine patients with immune 
checkpoint-treated NSCLC.
Results  TCR clonality (Gini index) patterns ranged from 
high T-cell clone diversity with high evenness (low Gini 
index) to clonal dominance with low evenness (high Gini 
index). Generally, TCR clonality in cancer was lower than 
in matched normal lung parenchyma distant from the 
tumor (p=0.021). The TCR clonality distribution between 
adenocarcinoma and squamous cell carcinoma was 
similar; however, smokers showed a higher Gini index. 
While in the operated patient with NSCLC cohort, TCR 
clonality was not prognostic, in an immune checkpoint 
inhibitor-treated cohort, high TCR clonality was associated 
with better therapy response (p=0.016) and prolonged 
survival (p=0.003, median survival 13.8 vs 2.9 months). 
On the genomic level, a higher Gini index correlated 
strongly with a lower frequency of epidermal growth factor 
receptor (EGFR) and adenomatous polypsis coli (APC) gene 
mutations, but a higher frequency of P53 mutations, and a 
higher tumor mutation burden. In-depth characterization 
of the tumor tissue revealed that high TCR clonality was 
associated with an activated, inflamed tumor phenotype 
(PRF1, GZMA, GZMB, INFG) with exhaustion signatures 
(LAG3, TIGIT, IDO1, PD-1, PD-L1). Correspondingly, PD-
1+, CD3+, CD8A+, CD163+, and CD138+immune cells 
infiltrated cancer tissue with high TCR clonality. In situ 
sequencing recovered single dominant T-cell clones within 
the patient tumor tissue, which were predominantly of the 
CD8 subtype and localized closer to tumor cells.

Conclusion  Our robust analysis pipeline characterized 
diverse TCR repertoires linked to distinct genotypes and 
immunologic tumor phenotypes. The spatial clustering 
of expanded T-cell clones and their association with 
immunological activation underscores a functional, 
clinically relevant immune response, particularly in 
patients with NSCLC treated with checkpoint inhibitors.

INTRODUCTION
The introduction of new immune modu-
latory treatment options has revolution-
ized clinical oncology and provided clinical 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Specific T-cell activation and clonal expansion are 
critical components of an effective anticancer im-
mune response. This active response is reflected by 
the frequency and distribution of T-cell clones within 
the local tumor microenvironment.

WHAT THIS STUDY ADDS
	⇒ Our study demonstrates that T-cell clonal expansion, 
as quantified by the Gini index, is variably present in 
non-small cell lung cancer tissue and is associated 
with an active immune phenotype and the spatial 
proximity of CD8+T cells to cancer cells. High T-cell 
receptor clonality was predictive for improved re-
sponse and survival following immune checkpoint 
blockade.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The measurement of T-cell expansion provides clin-
ically relevant information for lung cancer patients. 
The development of T-cell clonality testing on min-
imal diagnostic formalin-fixed, paraffin-embedded 
biopsies holds the potential to refine patient strat-
ification for immunotherapy and may also aid in 
identifying tumor-specific antigens for personalized 
immune interventions.
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evidence that the immune system is able to recognize 
and eliminate cancer cells.1 2 In line with this, the infil-
tration of immune cells in tumor tissue is associated with 
an improved prognosis, independent of therapy.3 4 This 
includes densities of T-cell subsets (CD4, CD8, T regula-
tory (Treg) cells, CD45 T memory cells), B cells, plasma 
cells, as well as subsets of macrophages and dendritic 
cells.5–7 This particular immune cell infiltration is often 
associated with higher expression of T-cell activation 
markers but also of T-cell exhaustion.8–10 This immune 
cell-dense tumor tissue is frequently denoted as “immune 
hot” or “inflamed” and is not only prognostic but has 
also proven to be predictive in the context of immune 
checkpoint blockade.6 11–14 However, the prognostic and 
predictive value is still relatively low, which suggests that 
these quantitative measurements do not entirely reflect 
the patient’s individual actual immune reaction. Further-
more, technical aspects and the heterogeneity of results 
hinder clinical implementation.

The efficacy of a specific tumor-antigen T-cell response 
is reflected by the precedent activation, differentiation, 
and clonal expansion of naive T cells on specific binding of 
their T-cell receptors (TCRs) to tumor-antigens presented 
on major histocompatibility complex (MHC), together 
with costimulatory signals (eg, CD28).15 16 The activation 
is reinforced by autocrine or paracrine interleukin (IL)-2 
signaling, contributing to massive clonal expansion of 
tumor-antigen specific T-cell clones17 18 generating both 
effector and memory T cells.19 This T-cell activation, with 
subsequent expansion, can be measured by the clonal 
unevenness of the TCR in the T-cell population, which is 
often referred to as high clonality.20 21 

TCR clonality was previously determined by targeted 
sequencing of the TCR-ß chain.22 Clinically certified 
assays are used to determine malignant clones in hema-
tological malignancies that can be followed over time.23 
In solid tumors, targeted sequencing methods have 
mostly been done on blood samples to evaluate specific 
antitumor T-cell responses and their relation to clinical 
outcomes.24–26 In melanoma, tumor TCR clonality was 
associated with benefit from checkpoint inhibitor treat-
ment in several studies.27–29

Recently, bioinformatic algorithms have been devel-
oped to determine the clonality in crude RNA sequencing 
(RNA-seq) data without the necessity of specific 
assays.30 31 Such RNA-seq-based clonality analysis of lung 
cancer tissue indicated that the TCR richness, that is, the 
number of different T-cell clones, was lower in the tumor 
tissue than in the adjacent normal tissue and was associ-
ated with histomorphological tumor features.32 However, 
T-cell repertoire analysis was most often limited to the in 
silico processing of public data sets, and consequently, 
the pure quantification of the T-cell clones excluded the 
cellular tissue context. It can be speculated that the TCR 
clonality and differentiation also depend on molecular 
features of tumor and stroma cells and that the individual 
immune microenvironment is a cause or consequence of a 
specific T-cell expansion. This was recently demonstrated 

in an elegant study characterizing “supportive” and “non-
supportive” CD8 T-cell niches in different cancer types.33 

With this background, our study aimed to determine 
the T-cell repertoires in the immune microenvironmental 
context using a thoroughly validated TCR sequencing 
pipeline,34 providing the clinical and molecular back-
ground of T-cell clonality in cancer tissue from patients 
with non-small cell lung cancer (NSCLC).

MATERIALS AND METHODS
Patient material
This study includes 182 patients with NSCLC from the 
Uppsala II cohort (n=357) for which RNA-seq data were 
available, as described before.35 Patient characteristics 
are listed in table 1 and online supplemental table S1. All 
patients from the Uppsala II cohort were patients with 
NSCLC treated surgically at Uppsala University Hospital 
between 2006 and 2010. This study was conducted in 

Table 1  Patient characteristics of the non-small cell lung 
cancer cohort. Patients were operated on at the Uppsala 
University Hospital (Sweden) between 2006 and 2010. Fresh 
tissue was procured freshly after the operation and used 
later for RNA sequencing.

No. %

All patients 182 100

Age (years)

 � >70 73 40

 � ≤70 109 60

Sex

 � Female 95 52

 � Male 87 48

Smoking

 � Ever smokers 165 91

 � Never smokers 17 9

Histology

 � Adenocarcinoma 107 59

 � Squamous cell carcinoma 62 34

 � Other types 13 7

Stage (eighth edition)

 � 1A2 39 21

 � 1A3 35 19

 � 1B 23 13

 � 2A 14 8

 � 2B 30 17

 � 3A 35 19

 � 3B 6 3

Performance status (WHO)

 � 0 114 63

 � 1 66 36

 � 2 2 1
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accordance with the Declaration of Helsinki and the 
Swedish Ethical Review Act.

RNA-seq data from publicly available NSCLC 
cohort downloaded from Gene Expression Omnibus 
(GSE126044) were also used. These RNA-seq data are 
derived from nine fresh frozen samples from patients 
with anti-programmed cell death protein-1 (PD-1) 
(nivolumab) treated NSCLC (online supplemental Table 
S3).36

RNA sequencing
Transcriptomic profiling was performed on fresh 
frozen tumor tissue, as described previously.35 RNA was 
extracted using RNeasy Mini Kit (Qiagen) from archived 
fresh frozen tumor tissues stored at −80°C. The samples 
were prepared for sequencing using the Illumina TruSeq 
RNA Sample Prep Kit V.2 and poly-A selection. 100 base 
paired-end multiplex sequencing was performed on the 
Illumina HiSeq2500 machine (Illumina, USA) with five 
samples per lane following the standard Illumina RNA-seq 
protocol. The raw data is accessible in the Gene Expres-
sion Omnibus (GEO) repository (accession number 
GSE81089).

TCR clonality analysis
TCR clones within each sample were extracted from 
bulk RNA-seq results using MiXCR V.3.0.13 following 
the software reference document (https://docs.mila-
boratories.com/) on a Windows V.10 system server 
(Java V.17.0.2, processor: Intel i9-11900). Raw RNA-
seq data was aligned with the command “mixcr align -s 
hs -p rna-seq -OallowPartialAlignments=true forward_
sequence reverse_sequence ​align_​output.​vdjca”. After 
that, two rounds of “assemblePartial” were performed 
according to the software reference document with 
commands “mixcr assemblePartial ​align_​output.​
vdjca ​assemble1.​vdjca” and “mixcr assemblePartial ​
assemble1.​vdjca ​assemble2.​vdjca”. The extension 
step was then performed using the command “mixcr 
extend ​assemble2.​vdjca ​extend.​vdjca”. Clones were 
assembled using “mixcr assemble ​extend.​vdjca ​clones.​
clns”. TRA and TRB clones were exported separately 
using the commands “mixcr exportClones -cloneId 
-count -fraction -vGene -dGene -jGene -cGene -vAlign-
ment -jAlignment -targets -nFeature CDR3 -c TRA ​
clones.​clns ​tra.​txt” and “mixcr exportClones -cloneId 
-count -fraction -vGene -dGene -jGene -cGene -vAlign-
ment -jAlignment -targets -nFeature CDR3 -c TRB ​
clones.​clns ​trb.​txt”. TRA and TRB clones for each 
sample were merged, and a fraction of each clone 
was recalculated using a Python script. Clonality was 
quantified using the Gini coefficient (Gini index)20 21 
and calculated based on the sequences of both beta 
and alpha chain using a Python script.

	
‍
Gini Index =

∑n
i=1

∑n
j=1

��xi − xj
��

2n2x

(
xi represent the clone count for clone i

)
‍

�

All scripts are available as Online supplemental mate-
rial and have been deposited on GitHub. The workflow 
of this analysis is provided in online supplemental figure 
S1. The quality control of the MiXCR analyses for each 
case from the Uppsala cohort and the external cohort 
is provided in the online supplemental file 1. The Gini 
index, the number of unique alpha/beta T-cell clones 
detected, and clinical data for each patient are included 
in online supplemental table S1. The detected TCR 
sequences for all TCR clones for each case can be down-
loaded at https://doi.org/10.5281/zenodo.15439669.

Differential gene expression analysis
The differential gene expression analysis was performed 
using the “DESeq2” package (V.1.40.2) in R. Two groups 
were compared: the top quartile against the bottom quar-
tile of patients ranked by Gini index. The gene expres-
sion raw count data and the patient group records were 
formed as required by the software instruction. “DESe-
qDataSetFromMatrix”, “DESeq”, and “results” from the 
“DESeq2” package were used with the default function. 
The full result is shown in the online supplemental Table 
S3. The Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analysis was performed 
using “enrichGO” and “enrichKEGG” with default param-
eters from package “clusterProfiler” (V.4.8.2).

Lymphotrack
Four patients with different clonality/Gini index were 
analyzed by the Lymphotrack assay.23 Two cases with 
the highest Gini index were selected to represent the 
high T-cell clone expansion cases. One case with the 
median Gini index of all cases was selected to represent 
the median T-cell clone expansion cases. One case with 
the lowest Gini index was selected to represent the low 
T-cell clone expansion cases. Three 10 µm fresh frozen 
tissue sections of each patient sample were transferred 
into ATL buffer, and DNA was extracted using DNeasy 
Blood and Tissue kit (Qiagen Germany) following the 
manufacturer’s protocol. Extracted DNA was stored in 
100 µL AE buffer, and the concentration was measured 
by the Qubit V.2.0 Fluorometer (Invitrogen) using Qubit 
dsDNA BR Assay Kit (Invitrogen, USA) according to the 
manufacturer’s protocol. TRB and TRG clones were 
measured respectively using LymphoTrack Dx TRB Assay 
Kit A-MiSeq (Invivoscribe, USA) and LymphoTrack Dx 
TRG Assay Kit Panel-MiSeq (Invivoscribe) on the Illu-
mina MiSeq sequencing platform. Raw sequence data was 
analyzed and visualized using the LymphoTrack Software-
MiSeq (V.2.4.3, Invivoscribe).

Immunohistochemistry
Immunohistochemistry was used to quantify immune cell 
infiltration and immune marker expression in this lung 
cancer cohort, as described previously.12 35 37 The detailed 
staining protocol is available on the Human Protein Atlas 
website (www.proteinatlas.org/download/IHC_protocol.​
pdf). Formalin-fixed, paraffin-embedded (FFPE) tissue 
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microarrays (TMA), including two 1 mm (diameter) 
representative punches of each patient, were cut to 4 µm 
sections. Automated immunohistochemistry (IHC) was 
conducted using the Autostainer 480 (Thermo Fisher 
Scientific, USA) as described before,12 35 the antibodies 
used were: CD3 (CL1497, 1:1000 dilution, Atlas Anti-
bodies), CD4 (CL0395, 1:125 dilution, Atlas Antibodies), 
CD8A (CL1529, 1:250, Atlas Antibodies), CD20 (L26, pre-
prepared manufacturer dilution; Agilent Technologies, 
USA), CD45RO (UCHL1, 1:1000 dilution; Abcam, UK), 
CD138 (MI15, 1:100 dilution; Agilent Technologies), 
CD163 (10D6, 1:100 dilution; Novocastra, Leica Biosys-
tems, USA), FOXP3 (236A/E7, 1:15 dilution; Santa Cruz 
Biotechnology, USA), PD-1 (MRQ-22, 1:100 dilution; 
Cell Marque, USA), and NKp46 (195314, 1:50 dilution; 
R&D Systems, USA). PD-L1 (22C3, ready-to-use solution, 
Agilent Technologies) staining was performed at the 
Clinical Pathology Unit at Uppsala University Hospital on 
a DAKO autostainer system according to manufacturer 
instructions.

Afterward, vision-based manual annotation was carried 
out to calculate the immune score on the stroma and 
tumor area of each TMA core, as described before.12 37 38 
The immune score was calculated by dividing stained, 
positive immune cells by all other cells in the stroma 
or tumor compartment, respectively. The programmed 
death-ligand 1 (PD-L1) staining annotation in the tumor 
compartment followed the standard annotation of cancer 
cell staining used in clinical diagnostics, in which partial 
or complete membrane-stained tumor cells were all 
counted positive.

Multiplex immunofluorescence
Multiplex immunofluorescence (multiplex IF) staining 
was used to quantify and localize immune cell subsets in 
this patient with NSCLC cohort as previously described.6 38 
In brief, TMA sections were stained with antibody panels: 
a tumor-infiltrating lymphocyte panel, including CD4, 
CD8, CD20, FoxP3 and PanCK; a natural killer (NK) cell/
macrophage panel, including CD3, NKp46, CD56, CD68, 
CD163 and PanCK; and an antibody presenting cell panel 
(APC), including CD1a, CD208, CD123, CD15, CD68 and 
PanCK. The staining procedure was performed in accor-
dance with an earlier published study37 38 based on the 
modified Opal Multiplex IHC assay (Akoya Biosciences, 
USA). The slides were scanned using the VectraPolaris 
system (Akoya Biosciences) at a two pixels/μm resolu-
tion in multispectral mode and analyzed in the inForm 
software, where spectral unmixing was used to generate 
an oligo-layer image with layers corresponding to the 
specific staining, 4’,6-diamidino-2-phenylindole (DAPI), 
and autofluorescence. The inForm software was used 
to define tumor and stroma compartments within each 
tissue core. The algorithm was trained on pathologist-
annotated samples. Cell segmentation was based on DAPI 
nuclear staining. Representative subsets of the included 
markers were annotated as either positive or negative, 
and the inForm software was then trained on these to 

phenotype all other cells accordingly. The intensity of 
each marker expression was used to calculate the thresh-
olds for marker positivity. A pathologist reviewed each 
image and curated it with regard to artifacts, staining 
defects and necrosis.

Mutation analysis
As described previously,39 genomic DNA was extracted 
from fresh frozen tissue, using the QIAamp DNA 
Mini Kit (Qiagen) or the QIAamp DNA FFPE Tissue 
(Qiagen), respectively. Targeted DNA enrichment was 
performed using the HaloPlex target enrichment system 
(Agilent Technologies), and targeted deep sequencing 
was conducted on the Illumina HiSeq 2500 platform 
following the manufacturer protocol. La Fleur et al 
performed downstream analysis and identified gene vari-
ants as published before.

In situ sequencing
The sequencing was performed with modification as 
previously described.40 41 Tumor sections (10 µm) from 
frozen tumor tissue slides were thawed and air-dried at 
room temperature for a maximum of 5 min. Fixation was 
performed with 3.7% formaldehyde for 10 min and the 
samples were rinsed two times in phosphate-buffered 
saline (PBS). Permeabilization followed immediately, 
using 0.1 M hydrochloric acid diluted in water, at room 
temperature for 5 min. Two PBS washes followed, each 
lasting 1 min, and then dehydration with 70% and 100% 
ethanol for 2 min each. After air drying, SecureSeal 
Hybridization chambers by Grace Bio-Labs were mounted 
on the tissue sections.

The padlock probe hybridization and rolling circle 
amplification (RCA) were performed according to the 
High Sensitivity Library Preparation Kit by Cartana 
(Cartana, 10x Genomics, USA). In brief, the padlock 
probe mix (including the Immune General P/N: 4121–13 
Lot: 4WW44632, Immune Oncology P/N:4122–13 
Lot:4QZ44362, and TCR padlock probe panels together 
with blocking probes for the high expressors IGKC, 
PTPRC, and LST1, (online supplemental Tables S10 and 
S11) was diluted in Buffer A, and incubated at 37°C over-
night. On the second day of the protocol, a 30 min wash 
with WB4 at room temperature and a 2-hour ligation with 
RM2 and enzymes 1 and 2 at 37°C was performed. The 
RCA step was then carried out overnight at 30°C with 
RM3 and enzyme 3 mix.

The procedure continued with the hybridization 
of L-probes and detection probes on the RCPs, using 
Cartana’s In Situ Sequencing Kit (Cartana). Initially, the 
samples were incubated with the L-probe mix for an hour 
at 37°C and washed three times with PBS. Next, they were 
incubated with the detection oligo mix for an hour at 
37°C and again washed three times with PBS.

Autofluorescence was reduced with Vector True-
View from Vector Laboratories (Vector Laboratories, 
USA), as per the manufacturer’s protocol. Cover slips 
were mounted with SlowFade Gold antifade reagent by 
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Invitrogen (Invitrogen Corp, USA). Lastly, the protocol 
included cover slip removal and detection oligo strip-
ping between imaging rounds, with 100% formamide for 
three 1 min incubations, as outlined by Cartana’s In Situ 
Sequencing Kit.

Image acquisition and data processing were performed 
as described previously.40 The entire code is available at 
https://github.com/Moldia/Lee_2023. The probes were 
listed in online supplemental tables S10 and S11.

Hexbin-based in situ sequencing data analysis
The analysis of the sequencing result was performed with 
Python code (V.3.10.13, https://github.com/JnuYHui/​
TCR_in_NSCLC). The DAPI image from sequencing 
was segmented by hexagon bins (long diagonal 300 µm). 
The sequencing signals were allocated to each hexbin 
according to their coordinates. The H&E staining was 
performed on the same slide after imaging for DAPI 
staining according to the standard H&E staining protocol. 
The H&E staining slides were scanned using bright field 
scanning and overlayed to the DAPI image using QuPath 
(0.5.1) and Python scripts. The hexbins with either 
EPCAM or CDH1 expression (cut-off=2 signal counts) 
were assigned as tumor compartment. The empty or 
necrotic areas were manually annotated. The remaining 
hexbins were assigned as stroma compartments. TCR 
clones were considered dominant with a count larger 
than 10 in the bulk RNA-seq data. TCR clones were recov-
ered in the in situ sequencing data using Python scripts, 
and the number of dominant clones was counted in each 
tumor and stroma hexbin and differences were assessed 
by χ2 test. Dot plots were made using Python scripts and 
illustrate the fraction and expression distribution of TCR 
clones. The stack plots were made in OriginPro2024b 
(OriginLab Corporation, Massachusetts, USA).

Statistics and bioinformatics
Data analysis was performed using R (V.4.2.0). Median 
TCR clonality (Gini index=0.25431) was used as a cut-off 
to define high and low clonality. Statistical significance 
was set to p<0.05. An unpaired Wilcoxon rank-sum test 
was used to compare two independent groups, while the 
unpaired Kruskal-Wallis test was used for more than two 
independent groups. Boxing plots and the significant 
test were produced with the ggplot2 package (V.3.3.6). 
Overall survival analysis was performed using the Kaplan-
Meier method with R package “survival” (V.3.3–1) and 
“survminer” (V.0.4.9) using the log-rank test for group 
comparison. Multivariate Cox regression test from the 
“survival” package was used to calculate the relative HRs 
with 95% CI controlling for all causes. The best cut-off 
calculation was performed using the “surv_cutpoint” 
function from the “survminer” package. Spearman’s rank 
correlation between Gini index and the immune markers 
was calculated using the Hmisc package (V.4.7–1). Hier-
archical cluster analysis was carried out using “ward.D2” 
as a clustering method measuring the Euclidean distance 
using the “pheatmap” package (V.1.0.12). The DESeq2 

package (V.1.36.0) was used to perform differential gene 
expression. GO and KEGG analysis of the significantly 
differentially expressed genes was performed using the 
clusterProfiler package (V.4.4.4). Χ2 tests were used 
comparing the fraction of dominant TCR clones in tumor 
and stroma hexabins (Python). The Python and R scripts 
were deposited at GitHub (V.3.10.13, https://github.​
com/JnuYHui/TCR_in_NSCLC).

RESULTS
The T-cell repertoire in lung cancer
The T-cell repertoire was determined on RNA-seq data 
derived from 182 tumor tissues from operated patients 
with NSCLC (table  1). Additionally, 20 paired normal 
lung tissues distant from the primary tumor were 
analyzed. Quantifying RNA reads attributed to each TCR 
determines the relative frequency and proportion of TCR 
clones in each sample. These proportions are then visual-
ized using pie charts (figure 1A).

To transfer the pattern of T-cell clones to a metric, 
we applied the Gini coefficient (Gini index).20 The 
Gini index is considered particularly useful for 
describing unevenness.42 A T-cell repertoire with few 
dominant clones results in a high Gini index, whereas 
a repertoire without dominant clones, with even distri-
bution, results in a low Gini index (figure 1A, online 
supplemental table S1). In our dataset, the Gini 
coefficient also provides a larger variance compared 
with entropy, indicating a higher sensitivity to detect 
unevenness (online supplemental figure S1).

Using the DNA-based LymphoTrack assay,23 we 
recovered the identified dominant clones in four 
selected samples (online supplemental figure S2). 
The agreement demonstrates the validity and robust-
ness of our method, as well as the quality of the RNA 
data sets. The workflow for the calculation of the 
Gini index (online supplemental figure S1), as well 
as the CDR3 characteristics of four cases, is provided 
(online supplemental figure S3).

The RNA-seq analyses of the 182 NSCLC cases 
revealed a heterogeneous distribution among 
samples, with a few exceptions, with a median Gini 
index of 0.25. The distribution of T-cell clonality was 
similar between adenocarcinoma and squamous cell 
cancer (figure 1B). The clonality of 20 corresponding 
normal lung tissue from the same patient revealed 
generally higher Gini coefficients than tumors 
(p=0.021, figure 1C).

TCR clonality and association with clinical parameters
Subsequently, we analyzed whether TCR clonality was 
associated with clinical characteristics. None of the 
evaluated parameters (patient age, stage, and sex) 
correlated with the Gini index (online supplemental 
figure S3 and S4), with the exception that ever-
smokers revealed a higher TCR receptor clonality in 
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Figure 1  TCR clonality in tumors of patients with NSCLC. (A) Example of different TCR profiles from low Gini index to high 
Gini index. The pie chart indicates the fraction of each clone within the repertoire of each sample. The corresponding H&E 
staining of corresponding formalin-fixed, paraffin-embedded tissue. (B) The Gini index distribution histogram of two major types 
of NSCLC, lung adenocarcinoma (AC) and squamous cell carcinoma (SqCC). (C) Boxplot represents the paired comparison of 
Gini index between tumor and adjacent normal lung tissue (paired Wilcoxon signed-rank test, n=20). (D) Boxplot presents the 
difference in the Gini index between never-smokers and smokers. (E) Kaplan-Meier survival analysis of operated patients with 
NSCLC stratified based on the Gini index using median cut-off (cut-off=0.25). (F) Analysis of patients with advanced NSCLC 
who received immune checkpoint inhibitor treatment (GSE126044, n=9). Box plot for comparison of responders (n=5; partial 
response and complete response) and non-responders (n=4; stable disease and progressive disease). (G) Kaplan-Meier survival 
analysis of same patients with immune checkpoint inhibitor treated NSCLC stratified by median Gini index cut-off (cut-off=0.19). 
NSCLC, non-small cell lung cancer; TCR, T-cell receptor.
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their tumors compared with never-smokers (p=0.015, 
figure 1D).

T-cell clonality and impact on survival response for immune 
checkpoint inhibitors
In 182 patients with NSCLC who underwent surgery, the 
Gini index did not show a significant prognostic impact 
(p=0.59, median cut-off, figure  1E). This was also true 
when the Gini index was analyzed as a continuous vari-
able in the univariable Cox regression (HR: 0.89, 95% CI: 
0.58 to 1.36, p=0.59) and multivariable Cox regression 
model (adjusted to age, stage, and performance status, 
HR: 0.95 (95% CI: 0.62 to 1.47), p=0.83, (online supple-
mental table S2).

To test the hypothesis that checkpoint inhibitor therapy 
is particularly effective in patients with higher TCR clon-
ality, that is, tumors with high T-cell expansion, we eval-
uated an immune checkpoint inhibitor (ICI) treated 
cohort of patients with NSCLC (n=9; online supple-
mental table S3) with publicly available RNA-seq data.36 
The Gini index was significantly higher in patients who 
responded to checkpoint inhibitor treatment (figure 1F). 
This association was also seen in the survival analysis of 
these patients with advanced NSCLC, with a difference 
in median survival of 13.8 compared with 2.9 months 
(log-rank test; p=0.0027, figure 1G). The data thus indi-
cate that TCR clonality does not have a prognostic but a 
predictive impact in the context of immunotherapy.

The T-cell repertoire in the molecular background of lung 
cancer
The mutation data of 82 lung cancer-related genes were 
previously determined by targeted sequencing39 (online 
supplemental table S4; figure  2A). We found that the 
Gini index was higher in tumors harboring p53 (p=0.001, 
false discovery rate (FDR) =0.023), ARID1A (p=0.009, 
FDR=0.18), EPHB6 (p=0.024, FDR=0.38), and CSMD3 
mutations (p=0.031, FDR=0.41). The Gini index was 
lower for patients with EGFR (p<0.01, FDR=0.024) and 
APC mutations (p<0.01, FDR=0.03). Notably, the Gini 
index showed a significant positive correlation with the 
estimated tumor mutation burden (figure  2B, r=0.27, 
p<0.001). Taken together, the genetic background of the 
tumor and the number of putative neoantigens have a 

relation to the TCR clonality in the local tumor environ-
ment and might indicate some tumor-specific reactions.

The T-cell repertoire and the immune landscape of lung 
cancer
Subsequently, we evaluated the association between the 
Gini index and the immune cell repertoire in the micro-
environment. This was previously done using immuno-
histochemistry on a tissue microarray with representative 
tissue cores from the same tumors.12 Unsupervised hier-
archical cluster analysis using the immune scores demon-
strated two distinct clusters for patients with high 
immune scores (n=52) and lower immune scores (n=124) 
for CD4, CD8, CD20, CD45, CD163, FOXP3, PD-1, and 
PD-L1 (Wilcoxon test, p<0.01) (figure 3A; online supple-
mental tables S5 and S6). A higher Gini index was 
strongly associated in the immune-hot (inflamed) cases 
(figure  3B, p<0.001). When tumor-infiltrating immune 
cells were analyzed separately, association to high TCR 
clonality was more pronounced in the tumor compart-
ment compared with stromal compartment (figure 3C). 
High Gini index was strongly associated with CD3 positive 
lymphocytes (p<0.001), PD-1 (p<0.001), CD8 (p<0.001), 
CD45RO (p<0.001), and CD163 positive cells (p<0.001) 
in the tumor compartment. Likewise, PD-L1 expression 
(p<0.001) and PD-1 expression (p<0.01; figure 3C) were 
associated with higher TCR clonality.

By using an established multiplex immune fluorescence 
pipeline, we were also able to subtype relevant immune 
cell populations, indicating that predominantly effector 
CD8 and CD4 cells, and Treg cells strongly associated with 
the Gini index (p<0.001, figure 3D), although the associ-
ation of TCR clonality with Treg cells was restricted to the 
stroma compartment. In line with the cell density anal-
ysis, the distance analysis confirmed that the T-cell clon-
ality is higher when effector CD8 cells are closer and CD4 
T regulatory cells in distance to the tumor cells (p<0.001, 
figure  3E). Of non-lymphocytic cell types, particularly, 
the number of pro-inflammatory M1-like macrophages 
correlated with higher T-cell clonality (p<0.01, figure 3D) 
possibly linking M1 macrophages to antigen presentation.

The Gini index is not only related to the absolute 
numbers of immune cell types, but also correlates with 
a higher relative proportion of effector CD8 cells in the 

Figure 2  T-cell receptor clonality and association with mutations. (A) Comparison of Gini index between patients with tumors 
harboring pathogenic mutations (EGFR, APC, TP53) and tumors without mutations (wildtype, WT). (B) Correlation plot between 
Gini index and estimated tumor mutation burden. APC, adenomatous polypsis coli gene.
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Figure 3  Association of TCR clonality with immunophenotypes. (A) Unsupervised hierarchical cluster analysis based on 
normalized immune markers expression scores assessed using the immunohistochemical tissue staining of the Uppsala cohort. 
Patients were stratified into immune hot and immune cold phenotypes. The 5-year survival (Surv5years), clinical parameters, 
mutation status for selected genes, and their Gini index were given. (B) The Gini index of immune hot and cold tumors was 
compared. (C) Immune scores based on immunohistochemical stainings of immune markers were associated with the Gini 
index for the tumor and stroma compartment separately. The correlation level is indicated by the color. (D) Immune cell 
densities based on multiplex IF were correlated with the Gini index for the tumor and stroma compartment. (E) The cell nearest 
neighbor distances between each immune cell type and tumor cells were correlated with the Gini index. Red color indicates 
a longer distance between CD4 Treg cells and tumor cells in cases with higher Gini index. IHC: immunohistochemistry, IF: 
immunofluorescence, CD4-Eff: CD4 effector cells, CD4-Treg: CD4 regulatory cells, CD8-Eff: CD8 effector cells, CD8-Treg: CD8 
regulatory cells. 
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immune environment (online supplemental figure S3C), 
indicating a general change of the immune status.

The observation that the local TCR repertoire and 
immune phenotypes are interconnected was confirmed 
in gene enrichment analysis based on RNA-seq data from 
the top quartile cases with the highest Gini index and 

the bottom quartile with the lowest Gini index. Higher 
Gini index demonstrated enrichment of genes related to 
T-cell activation and expansion, with antigen presenta-
tion and binding as well as cytokine signaling. Also, NK 
cell-mediated immunity (KLRC1, KLRC2, KLRC3, KLRC4, 
NKG7) was over-represented in this analysis (figure  4A 

Figure 4  Differential gene expression and gene enrichment analysis. (A) Volcano plot indicating the differently expressed 
genes (adjusted p value<0.01) in the top 25% high Gini index tumors compared with 25% cases with the lowest Gini index. 
The upregulated genes were visualized in red and downregulated in green. Selected genes were labeled. (B) Enrichment plot 
for connection between differentially expressed genes and their pathway. (C) Enrichment plots indicate the biological pathway, 
cellular component, and molecular function in which differentially expressed genes were involved. Gene ratio (GeneRatio) 
indicates the percentage of genes involved in the differentially expressed gene set. (D) Venn diagram of genes that are 
upregulated or downregulated in the operated patients from the Uppsala cohort and immune checkpoint inhibitor treated 
cohort. MHC, major histocompatibility complex.
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and B; online supplemental table S7). In general, genes 
that were typically associated with immune activation 
(PRF1, GZMB, GZMA, INFG, IL17, NCR1) were contrasted 
by inhibitory signals (LAG3, PD-1, TIGIT, IDO1) as an 
indication for T-cell exhaustion (figure 4C).43–46 

These findings were confirmed in the independent 
cohort of ICI-treated patients. With the same pipeline 
as the Uppsala cohort, differential gene expression anal-
ysis of this messenger RNA (mRNA) data set confirmed 
that TCR clonality was associated with markers of T-cell 
activation (GZMA, PRF1, IL2RB) and exhaustion (CD244, 
CD96); and also involved NK cell immunity (KRLB1, 
KLRK1, KKG7) (figure 4D, online supplemental tables S8 
and S9).

Collectively, we demonstrated that TCR clonality is 
strongly related to immune activation, a higher immune 
cell infiltration with effector cells in the tumor cell 
compartment, eventually counter-regulated by inhibitory 
signaling and immune cells with signs of T-cell exhaustion.

Location of dominant T-cell clones in the in situ environment 
of cancer
Recent advances in in situ sequencing techniques allow us 
to precisely localize gene expression in the cancer micro-
environment. Here, we use this technique to recover the 
gene sequence of the CDR3 TCR region of dominant 
clones in patients’ cancer tissue (figure 5A). We identi-
fied the location of the expanded, dominant T-cell clones 
as well as minor non-dominant clones. By overlaying 
corresponding H&E stainings, we annotated tumor and 
stroma cells compartments based on EPCAM and CDH1 
mRNA expression (figure 5B, online supplemental tables 
S10 and S11). Using spatial binning for quantification, we 
showed that dominant TCR clones were more abundant 
within the tumor cell compartment in all three analyzed 
patient samples (figure  5C), indicating that expanded 
TCR clones are more frequently in direct contact with 
cancer cells. These expanded T-cell clones were more 
often of the CD8 subtype, confirming the CD8 expansion 
observed in the bulk RNA-seq data (online supplemental 
figure S5 A and B). Taken together, the in situ location 
of TCR clones indicated an extension of CD8 effector 
cells that approximates cancer cells, suggesting a specific 
reaction.

DISCUSSION
Our study uncovers a significant variability of T-cell clonal 
expansion in human lung cancer tissue. The expansion, 
quantified as the Gini index, is associated with a specific 
molecular background (eg, EGFR, TP53), higher muta-
tional load, and activated but also exhausted immune cell 
profiles. The clinical relevance of the findings is demon-
strated, as patients with elevated TCR clonality benefit 
from checkpoint inhibitor therapies. Functional implica-
tions of these dominant clones are indicated by their in 
situ recovery as CD8 effector cells in proximity to cancer 
cells.

Our study is developed on the basis of previous devel-
opments of the bioinformatic pipelines, allowing for the 
precise alignment of TCR sequences from crude RNA-
seq data to estimate the number of T-cell clones.29 34 Our 
MiXCR approach was adopted from the study of Valpione 
et al29 and Farmanbar et al, 34 who analyzed TCR clonality 
in melanoma and lymphoma, respectively.

To describe the clonal distribution, we used the Gini 
index instead of entropy to describe the distribution of 
TCR clones, which emphasize unevenness and might be 
more sensitive to identifying clonal expansion.20 

There are few previous studies analyzing TCR clonality 
in diagnostic lung cancer samples. The study of Zhang 
et al47 evaluated the tumor tissue of 10 patients who 
received neoadjuvant immunotherapy. They found that 
the entropy of TCR clones in the remaining tumor bed 
after immunotherapy correlated with the residual tumor 
cell viability and major pathological response. They also 
showed, using pretreatment and post-treatment blood 
samples, an expansion of corresponding dominant clones. 
In a comparable approach using a targeted RNA assay, 
Casarrubios and coworkers48 confirmed those results in 
post-treatment tumor tissue. In addition, they found in 
the pretreatment tissue that the clonal space occupied 
by the top 1% pretreatment clones was associated with 
response to neoadjuvant therapy.

A more recent study from the group of Amos32 compared 
complex immune profiles in tumor and normal lung 
tissue from surgical specimens of 67 patients with NSCLC. 
Notably, their TCR clonality analysis identified substan-
tially fewer T-cell clones (total number of reads) than 
in our study, although they used the same MiXCR as an 
alignment tool in their pipeline. This discrepancy might 
be due to a different quality of RNA-seq source data. 
However, analogous to our study, they found a higher 
TCR clonality in the adjacent normal tissue. A larger 
study analyzed TCR clonality in blood and tissue samples 
(tumor and adjacent normal lung) of 214 patients with 
a targeted RNA assay. Their findings indicated a strong 
relation between TCR entropy and specific immune cell 
profiles. When filtrating tumor TCR against blood clon-
ality, they demonstrated that higher “tumor enriched” 
clonal expansion in the normal lung was associated with 
longer survival in the patient group after surgical resec-
tion.25 The most recent study analyzed TCR clonality 
peripheral in blood lymphocytes before immunotherapy 
and linked higher clonal TCR richness to better response 
and higher risk of immune-related adverse events in a 
large NSCLC cohort.49

Our study confirmed and extended previous findings 
in an independent, molecularly and clinically extensively 
annotated data set of patients with NSCLC. For the first 
time, we demonstrate that TCR clonality in pretreatment 
tissue samples is associated with the survival of patients 
with checkpoint inhibitor-treated NSCLC, while in oper-
ated patients, TCR clonality is not prognostic.

Our comparative analysis provided evidence that the 
clonal expansion of T cells is paralleled by the infiltration 
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Figure 5  Hexbin-based analysis of in situ sequencing data. (A) In situ sequencing (ISS) workflow, illustrated by case L596. 
The right panel shows a stained image with markers for EPCAM, CDH1, as well as the TCR genes TRAV29/DV5 and TRBV30. 
(B) Hexbin-based analysis pipeline applied to the ISS data illustrated by case L596. The left image depicts the hexagonal 
segmentation of the ISS results, where each hexbin aggregates detected signals based on their spatial coordinates. The middle 
UMAP plot visualizes the clustering of all marker genes, with the tissue compartments (tumor vs stroma) annotated based on 
the expression levels of EPCAM and CDH1. UMAP clusters were used to compartmentalize the tissue section (right figure) into 
tumor, stroma, and background, along with the location of a dominant clone. (C) Comparison of dominant TCR clones between 
tumor and stroma compartments across three cases (L496, L596, L766). The dot plot illustrates the proportion of hexbins 
containing each dominant clone in tumor and stroma: the dot size indicates the fraction of hexbin containing the dominant 
clone. The color intensity indicates the mean expression of the dominant clone transcripts. Χ2 tests were conducted to assess 
the distribution of dominant clones between tumor and stroma, with p-values indicated for each case. DAPI, 4’,6-diamidino-2-
phenylindole; TCR, T-cell receptor.
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of CD8 effector cells in the tumor cell compartments, that 
are in direct contact with tumor cells. We confirmed this 
relation in the spatial multiplex IF analyses and even visu-
alized these expanded T-cell clones in the in situ cancer 
environment by in situ RNA-seq. This in situ data posi-
tioned the expanded TCR clones closer to the tumor cells 
and confirmed that they are rather of CD8 subtype.

Together, the in situ findings strongly indicate that 
some expanded TCR clones are functionally related to 
tumor antigens. Therefore, it was not surprising that the 
potentially specific immune response coincided with an 
increase in inhibitory cell populations (CD163 M2-like 
macrophages) and markers of immune cell exhaustion 
(LAG3, PD-L1, PD-1), possibly counteracting any benefi-
cial cytolytic response.

The observation that T-cell expansion was associated 
with an ineffective immune reaction might explain why 
higher TCR clonality in tumor tissue does not translate 
into a survival benefit in our surgically treated patient 
cohort and possibly also in the surgically treated cohort 
previously described by Reuben et al,25 but is prognostic 
and predictive when checkpoint inhibitor therapy is 
applied. Therefore, our findings support the concept 
that the clonal expansion is tumor-antigen specific but 
ineffective and can thus potentially be therapeutically 
unleashed.

Still, a possible alternative explanation is that the 
TCR clonality serves as a strong surrogate for the “hot” 
immune environment and, therefore, is not directly 
related to a specific therapeutic antitumor immune reac-
tion. Although our Uppsala cohort presents an extensive 
and highly detailed TCR clonality data set, the immuno-
therapy cohort consisted of only nine patients. The low 
number reflects the problem that fresh tissue is usually not 
available from patients with advanced cancer but is still 
required to obtain high-quality RNA for the TCR clonality 
analysis. This limitation hinders further evaluation of the 
TCR clonality, based on broad RNA-seq, as a predictive 
biomarker for immune therapy. As an alternative, a more 
robust, targeted DNA-based assay could be better suited 
for analyzing minute FFPE material in clinical diagnos-
tics. Current targeted approaches, using multiplex PCR 
libraries or 5’ RACE libraries for the TCR CDR3 reper-
toire sequencing, also have the advantage of yielding 
exceedingly higher unique TCR clone numbers (>10,000 
per sample)50 than our MiXCR bulk RNA-seq method 
(range: 36–911 unique TCR clones). However, neither 
transcriptomic nor targeted sequencing on bulk RNA/
DNA provides αβ-chain pairing information, which limits 
true clonotyping or functional antigen prediction. These 
obstacles are addressed by single-cell TCR sequencing, 
allowing even the integration of transcriptomic data on 
a cellular level.51 52 An alternative approach is targeted 
spatial transcriptomics, which includes a detailed char-
acterization of the cellular ecosystems within tissues.53–55 
However, as shown in our present study and supported by 
others, spatial transcriptomics remains limited in sensi-
tivity—particularly for stromal cells—and thus cannot 

reliably provide high-sensitivity αβ-chain pairing infor-
mation.56 Of note, both single-cell TCR sequencing and 
targeted spatial transcriptomics are expensive, not well-
suited for high-throughput applications, and require 
the handling of fresh tissue, which limits their clinical 
applications.

With this background, we believe that our approach 
has its highest value in approximating clonal frequency 
distributions. It should be emphasized that the number 
and richness of detected TCR clones in our RNA-seq data 
were higher than in previous studies that used bulk RNA-
seq data.32 Our results were further validated against an 
independent CE-marked, DNA-based assay (Lympho-
Track), which is used in clinical diagnostics to identify 
and track clonality in lymphocytic diseases.23 The strong 
congruence confirmed the robustness of our pipeline 
and the accuracy of the TCR data set we used for compar-
ative analysis.

In conclusion, our study linked T-cell clonal expansion 
to relevant molecular and immunophenotypes of NSCLC, 
localized the TCR clones in patient tissue, and provided 
evidence that the analysis has potential as a predictive 
marker delineating a group of patients that will benefit 
from checkpoint inhibition. Our publicly available, 
extensive data set also presents a unique source for more 
focused studies, aiming to understand the mechanism of 
immune cell activation in lung cancer. Hopefully, this will 
contribute to improving the current therapeutic options, 
which currently offer only a limited overall response.
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