Taylor & Francis
Taylor & Francis Group

N Epigenomics

Epigenomics

ISSN: 1750-1911 (Print) 1750-192X (Online) Journal homepage: www.tandfonline.com/journals/iepi20

Epigenetic synthetic lethality as a cancer
therapeutic strategy: synergy of experimental
and computational approaches

Maria Farina-Morillas, Laia Ollé-Monras, Silvana CE Maas, Isabel de Rojas-P,
Miguel F. Segura & Jose A. Seoane

To cite this article: Maria Farina-Morillas, Laia Ollé-Monras, Silvana CE Maas, Isabel de Rojas-P,
Miguel F. Segura & Jose A. Seoane (2025) Epigenetic synthetic lethality as a cancer therapeutic
strategy: synergy of experimental and computational approaches, Epigenomics, 17:15,
1069-1081, DOI: 10.1080/17501911.2025.2548756

To link to this article: https://doi.org/10.1080/17501911.2025.2548756

8 © 2025 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

A
h View supplementary material &

@ Published online: 25 Aug 2025.

N
CJ/ Submit your article to this journal

||I| Article views: 535

A
& View related articles &'

(&) View Crossmark data &'

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=iepi20


https://www.tandfonline.com/journals/iepi20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17501911.2025.2548756
https://doi.org/10.1080/17501911.2025.2548756
https://www.tandfonline.com/doi/suppl/10.1080/17501911.2025.2548756
https://www.tandfonline.com/doi/suppl/10.1080/17501911.2025.2548756
https://www.tandfonline.com/action/authorSubmission?journalCode=iepi20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=iepi20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/17501911.2025.2548756?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/17501911.2025.2548756?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/17501911.2025.2548756&domain=pdf&date_stamp=25%20Aug%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/17501911.2025.2548756&domain=pdf&date_stamp=25%20Aug%202025
https://www.tandfonline.com/action/journalInformation?journalCode=iepi20

EPIGENOMICS
2025, VOL. 17, NO. 15, 1069-1081
https://doi.org/10.1080/17501911.2025.2548756

Taylor & Francis
Taylor &Francis Group

PERSPECTIVE

a OPEN ACCESS W) Check for updates

Epigenetic synthetic lethality as a cancer therapeutic strategy: synergy of
experimental and computational approaches

Maria Farina-Morillas @2, Laia Ollé-Monras

and Jose A. Seoane »?

a, Silvana CE Maas

b

3, Isabel de Rojas-P ®®, Miguel F. Segura

2Cancer Computational Biology Group, Vall d’'Hebron Institute of Oncology (VHIO), Barcelona, Spain; °Childhood Cancer and Blood Disorders
Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain

ABSTRACT

Cancer treatment is an ongoing challenge, as directly targeting oncogenic drivers is often unfeasible in
many patients due to the lack of druggable targets. This has led to the exploration of alternative
strategies, such as exploiting synthetic lethality (SL) relationships between genes. SL facilitates the
indirect targeting of oncogenic drivers, as exemplified by the clinical success of PARP inhibitors against
BRCA-mutated tumors. Advances in high-throughput perturbation screens and multi-omics technolo-
gies have deepened our understanding of SL relationships, while computational models enhance SL
predictions to better reflect biological complexity. However, while numerous experimental and com-
putational methods have been developed to identify SL interactions, difficulties remain in translating
these findings into clinical applications.

This review combines recent progress on SL relationships in cancer with emerging insights into
epigenetic regulation, highlighting how epigenetic drugs (epidrugs) can provide new opportunities for
targeted interventions, offering a way to minimize off-target effects and enhance therapeutic precision.
To advance SL-based therapies, efforts must focus not only on identifying new SL interactions but also
on consolidating existing knowledge and integrating experimental and computational approaches to
characterize the vulnerabilities of cancer cells. Strengthening this foundation will be critical for the
effective development of SL-based cancer treatments.

PLAIN LANGUAGE SUMMARY

Synthetic Lethality (SL) describes a relationship between a pair of genes where cells remain viable if at
least one gene of the pair functions normally, but die if both genes are altered (e.g. mutated) at the
same time. These alterations may occur naturally or can be drug-induced. Genes are often mutated in
cancer cells, so therapeutically altering the SL partner of a gene already mutated in the cancer cells
leads to cell death, as both partner genes are now altered, while normal cells lacking the initial
mutation are spared. As gene function can be affected by diverse alterations besides DNA mutations,
the mechanisms that control gene regulation without changing the DNA sequence, referred to as
epigenetics, also need to be considered. In this Perspective, we highlight the importance of integrating
both genetic and epigenetic alterations while studying SL relationships, and we explore how these SL
relationships can be better identified by integrating experimental and computational approaches, to
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understand gene-gene interactions in order to broaden the treatment possibilities.

1. Introduction

Synthetic Lethality (SL) is a molecular interaction in which the
simultaneous perturbation of two or more genes leads to loss
of viability. First described in 1922 by Calvin Bridges as reces-
sive lethality, this phenomenon was observed in fruit flies
(Drosophila melanogaster), where crossing flies with divergent
eye abnormalities failed to produce offspring with a combined
phenotype [1]. Further experiments in yeast models not only
refined the original concept but also provided a novel
approach for drug discovery focused not on the altered gene
but on its synthetic lethal partner, ultimately contributing to
the development of selective cancer therapies [2]. Because

tumors have different molecular landscapes than normal
cells, independent alterations do not result in cell death or
impairment, and are often considered undruggable, such as
loss-of-function mutations or overexpression. Therefore, tar-
geting the SL partner to a tumor-specific defective gene
induces cell death due to the combination of events, while
sparing the normal cells without such an alteration, overcom-
ing as well the potential lack of druggability [2-4]. Figure 1.
provides a schematic overview of the synthetic lethality
mechanism and its application in cancer treatments.

As interest in SL has grown, more precise terms have
emerged to better classify these gene-gene interactions
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Article highlights

e Synthetic Lethal relationships are categorized to describe the com-
plexity of genetic interactions and how they may be affected by
external factors, such as pharmacological inhibition.

e The success of PARP inhibitors in BRCA-mutated tumors has fueled
interest in SL-based clinical applications, which has been reinforced
by the complexity of SL relationships and cases of drug resistance.

o Alterations in chromatin regulatory complexes have led to new
therapeutic strategies, targeting genes in the same complexes or in
their antagonists, due to the intrinsic relationship between them.

¢ The interplay between epigenetic and structural alterations highlights
novel SL interactions that drastically expand the number of potential
targets.

e Computational methods are a key tool in predicting SL relationships
by integrating data from experimental studies to explore genomic
networks.

¢ Drug perturbation data offers still untapped potential to predict SL
targets and drug response.

o A better integration of computational methodologies and large-scale
experimental data is needed to identify SL relationships for thera-
peutic strategies, so that future efforts can be built upon reliable
groundwork.

leading several authors [5,6] to differentiate between two
main categories, non-conditional and conditional SL
(Figure 2) [2,5,6]. Non-conditional SL focusses only on gene
alterations, while conditional SL accounts for specific intrinsic
or extrinsic conditions that may drive the interaction beyond
the aberrations already present in non-conditional SL.

In non-conditional SL, Li et al. [5] established three main
categories according to the biological mechanisms affected:
gene, pathway, and organelle. They include the basic SL con-
cept at the gene level, as well as Synthetic Dosage Lethality
(SDL), which expands upon the initial meaning to describe
a specific subtype of SL where one gene is overexpressed,
while the partner gene is underexpressed [2,5,7,8] (Figure 2).
At the molecular level, they distinguish between a protein
complex or single pathway vulnerability to multiple pathways
being altered, recognizing how the key role of several genes in
SL relationships can even reach organelle’s activity, as is the
case of mitochondrial-related metabolic SL. Collateral SL is also

Synthetic Lethality
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worth mentioning, as it addresses how an event in one gene
leads to the loss of an adjacent passenger gene, often due to
the co-deletion of tumor suppressor-associated neighboring
genes. It is the loss of the collateral gene that drives this SL
relationship, often with a homolog or functionally redundant
gene [2,5,9]. Another closely related interaction, due to its role
in therapy resistance and survival, is Synthetic Rescue (SR),
where the inactivation of a vulnerable gene is compensated
by adaptive alterations in another gene. Therefore, when
a vulnerable gene is pharmacologically inhibited, changes in
the activity of the rescuer gene may lead to drug resistance
[2,5,10,11]. A schematic overview of the SL relationships
described is depicted in Figure 2.

Furthermore, in conditional SL, besides the simultaneous
alterations, a specific cell condition is required. These factors
influencing the gene’s relationships can be either internal,
such as hypoxia and the presence of Reactive Oxygen
Species (ROS), or external, which includes the different treat-
ments that patients receive (Figure 2) [5,6]. These factors
enable targeted combination therapies, and pharmacological
inhibition in conjunction with radio- or chemotherapy. In
some cases, cells may even develop drug dependency, with
their metabolism adapting to the new state for survival
[5,12,13]. Therefore, multi-gene interactions should also be
considered as potential SL partners, since although SL rela-
tionships are more easily demonstrated between gene pairs,
their regulation occurs within a complex network [2,5,6].

More recently, SL has gained interest as a strategy to explore
the potential of epigenetically regulated genes. As epigenetics
describes mechanisms that regulate genomic function and struc-
tural changes in DNA without altering the DNA sequence, target-
ing these regulatory processes increases the range of potential
targets and treatments considerably. DNA methylation, histone
modifications, and DNA damage response (DDR) mechanisms,
together with genetic aberrations such as mutations, provide
deeper insights into cellular status and broaden the landscape
of therapeutic opportunities [14-17].

Accordingly, the first approved drugs that capitalize on SL
relationships are PARP (Poly-(ADP-Ribose) Polymerase)

SL as cancer treatment

Cell survival

Cell death

Figure 1. Synthetic Lethality (SL) as a cancer treatment strategy. SL occurs when the simultaneous alteration of two genes, such as mutations or copy-number
alterations, leads to cell death, while the alteration of just one of these genes does not affect cell viability. This relationship can be exploited in cancer treatment by
targeting the SL partner of an altered gene. In the figure, the scenarios in green boxes represent viable cells while the red boxes represent a lethal combination; the

yellow asterisk marks an alteration, and the syringe represents the treatment.
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Figure 2. Categorization of the synthetic lethality relationships. Synthetic Dosage Lethality (SDL) refers to cases where one gene is either overexpressed or amplified,
and another alteration in the second gene leads to cell death. Collateral SL occurs when the deletion of a second adjacent gene drives the lethal interaction. In
contrast, Synthetic Rescue describes a scenario where a second alteration compensates for the initial defect, restoring cell viability. In conditional SL, the
environmental factors, either internal or external, may drive the SL relationship. In the figure, filled genes represent expressed genes, empty genes indicate
deletions, the yellow asterisk marks an alteration, enlarged genes represent overexpression, duplicated genes represent gene amplification, the syringe represents
the treatment, the star symbolizes internal factors such as reactive oxygen species (ROS), and the lightning bolt represents external factors such as radiotherapy (RT).

inhibitors. Since then, more DDR inhibitors have been devel-
oped and are currently being tested in different cancer types,
to target genes such as ATM (Ataxia Telangiectasia Mutated)
and ATR (Ataxia Telangiectasia and Rad3 related) serine/threo-
nine kinases [18,19]. A recent review by Ngoi et al. [2] provides
(as Supplementary Table S1 and S2) two comprehensive lists
detailing completed and ongoing clinical trials and preclinical
studies which include many epigenetic targets.

2. Clinical applications and challenges of synthetic
lethality: the case of PARP inhibitors

SL-based cancer therapies have been implemented in the clinic as
first-line treatment, such as PARP inhibitors (PARPI) in breast and
ovarian cancer in patients with BRCA-mutated tumors. The three
most well-known PARP members—PARP1, PARP2, and PARP3—
are all involved in DNA repair mechanisms, both detecting and
repairing single-strand breaks (SSBs) through base excision repair
(BER) and double-strand breaks (DSBs) via homologous recombi-
nation (HR) or non-homologous end-joining (NHEJ). Similarly,
BRCA1 and BRCA2, while being mutually exclusive, play distinct
but indispensable roles in HR. Interestingly, despite initial assump-
tions that, when the HR pathway is broken, BRCA-defective cells

cannot repair DNA damage in the presence of PARPi through any
of the aforementioned mechanisms, the complexity of this SL
relationship has gradually been uncovered, revealing a more intri-
cate mechanism than previously thought [20,21]. Thanks to the
development of several PARPi with different degrees of catalytic
inhibition and trapping activity —such as olaparib, veliparib, tala-
zoparib, and saruparib—it has been shown that both functions are
required for cell death. Specifically, PARP1 trapping onto DNA is
essential to convert SSBs into DSBs, causing enough genomic
instability that a deregulated NHEJ pathway is unable to compen-
sate for or rescue HR inactivity, ultimately leading to the death of
BRCA-mutated cells [6,16].

Unfortunately, treatment with PARPi often results in drug
resistance, as tumor cells adapt to counter the loss of fitness.
This adaptation can occur through various mechanisms: by
altering PARP1 (in some cases to prevent DNA trapping), by
genetic reversion to restore BRCA1 or BRCA2 functions, or by
mutations occurring in functionally related genes such as
TP53BP1 (Tumor Protein P53 Binding Protein 1) [21,22].

Despite these challenges, novel therapies are currently
under development, both at clinical and preclinical stages,
following the success of PARPi. Ngoi et al. [2] provide an
overview of pre-clinical and clinical trials on SL agents,
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focused on relationships around DNA damage response
(DDR), signaling and repair mechanisms, as well as DNA
replication and cell division, metabolic reprogramming, and
epigenetic regulation for different cancer types [15,16].
Among them, DNA polymerase 6 (POLQ) trials are of special
relevance, as when DNA repair pathways are compromised
(especially when TP53BP1 is also defective), cells become
dependent on error-prone Theta-Mediated End-Joining
(TMEJ), also known as alternative DNA end-joining (Alt-EJ),
where POLQ plays a key role. Because POLQ has been identi-
fied as a SL partner to BRCA1 and BRCAZ2, several studies on
POLQ inhibitors are currently being conducted to assess their
efficacy as monotherapy or in combination with PARPi [2,23-
25]. One specific inhibitor (ART558) has been shown to also
trap POLQ on DNA in its closed conformation, suppressing
PARPi resistance [23].

3. Exploring chromatin complex alterations and
epigenetic synthetic lethality for precision oncology

Currently, most efforts to identify and exploit SL relationships
have focused on DDR pathways, such as targeting ATR and
ATM, because of their upstream role in these pathways.
Inhibitors are being tested for these two proteins (ATRi or
ATMi, accordingly), as several SL partners have been identified
[18,19]. For example, epigenetic silencing of SLFN11 (Schlafen
Family Member 11) in esophageal cancer or FAM110C (Family
With Sequence Similarity 110 Member C) in pancreatic cancer
are SL with ATMi or ATRI, respectively. In both cases, DNA
methylation is a sensitive marker and upon the consequent
loss of expression due to epigenetic silencing, the cancer cells
become susceptible to inhibition [18,19].

However, in recent years, increasing attention has been
paid to other DNA-related processes. Essential mechanisms
like DNA replication and transcription rely on DNA accessibil-
ity, which is regulated by several chromatin remodeling family
complexes, including SWI/SNF  (SWItch/Sucrose  Non-
Fermentable), ISWI (Imitation SWItch), Polycomb (Polycomb-
group or PcG proteins), NuRD (Nucleosome Remodelling and
Deacetylase), and INO80 (INOsitol requiring 80). For instance,
PBRM1 (Polybromo 1) is a specific SWI/SNF complex subunit
implicated not only in maintaining chromosomal stability but
also on ATM-dependent DNA repair pathways. Loss of
PBRM1 has been found to be SL in renal cancer with both
PARPi and ATRi, promoting replication stress, while PBRM1
deficiency also sensitizes cells to PARPi [26].

Notably, due to their high mutation frequency, several
other SWI/SNF subunits are under the spotlight for the devel-
opment of novel SL therapeutic strategies, particularly ARIDTA
(AT-Rich Interaction Domain 1A) and SMARCA4/2 (SWI/SNF
Related BAF Chromatin Remodeling Complex Subunit ATPase
4/2) [2,27,28].

Multiple potential SL partners have been proposed for
these genes in various studies, and their characterization has
led to diverse therapeutic strategies. These include targeting
genes within the same complexes, such as BRD9
(Bromodomain Containing 9), SMARCC1T (SWI/SNF Related
BAF Chromatin Remodeling Complex Subunit C1), or even

paralogues of the mutated genes (ARID1B, SMARCA2/4), to
completely inhibit their activity [27]. Another approach
involves inhibiting antagonist complexes like PRC2
(Polycomb Repressive Complex 2) to rescue SWI/SNF activity
[14,27,29]. Additionally, targeting seemingly unrelated genes,
such as AURKA (Aurora kinase A), involved in cell cycle and
division, has also shown potential SL behavior [29].

Among these targets, perturbations in KEAP1 (Kelch-like
ECH-Associated Protein 1) have been identified as an SL
mechanism in ARID1A-deficient cells in clear cell ovarian car-
cinoma (CCOQ), unrelated to its function as NRF2 (nuclear
factor erythroid 2-related factor 2) activator [30]. While the
authors propose dual inhibition of ATR and KEAP1 —as ATR
is also a SL partner of ARID1A and SMARCA4 (mainly observed
in lung cancer) [31-33]— targeting both the SWI/SNF complex
and KEAP1 could offer a potential therapeutic strategy, parti-
cularly given KEAP1’'s role in therapy resistance via alterations
in the KEAP-NRF2 system [34-36].

Recently, KLF5 (Krippel-like transcription factor 5) was pro-
posed as a potential SL partner for ARID1A. The loss of KLF5 in
ARID1A-deficient cells mimics the inhibition of BRD4
(Bromodomain Containing 4), which is toxic for these cells.
When ARID1A is lost from chromatin remodeling complexes,
transcription becomes dependent on BRD4, which in turn
requires KLF5 to be recruited to the chromatin, rendering
KLF5 a potential therapeutic target [33]. Moreover, KLF5 has
been implicated in promoting resistance via KEAP1 inhibition
in esophageal squamous cell carcinoma, emerging as
a potential target to overcome resistance [36]. This also
helps further defining the SL relationship between ARID1A
and KEAP1.

SMARCA4 is frequently inactivated in lung and ovarian
cancers, including small cell carcinoma of the ovary hypercal-
cemic type (SSCOHT), a rare pediatric malignancy. Recently, it
has been demonstrated that SMARC4-deficient cells become
dependent on lysine-specific histone demethylases KDM6A
(also known as UTX, ubiquitously transcribed X chromosome
tetratricopeptide repeat protein) and KDM6B (also known as
JMJD3, Jumonji domain-containing protein 3) due to impaired
epigenetic regulation of H3K27 marks. As a result, these
tumors are highly sensitive to KDM6 inhibitors such as GSK-
J4. The dual loss of SMARCA4 and KDM6 functions induces
lethal chromatin rigidity and transcriptional silencing in both
lung and ovarian cancer models, including patient-derived
orthotopic xenografts (PDOXs) from SCCOHT, where GSK-J4
treatment significantly impaired tumor growth and prolonged
survival [37].

To highlight the importance and interest in these genes, we
have performed a systematic search in Scopus to find cancer
research publications from the last 5years mentioning syn-
thetic lethality and chromatin, either in the title or the
abstract. We found 267 papers mentioning 109 different
genes that we manually curated to properly classify the
found pairs as SL or not. In Figure 3., we present a summary
of the chromatin regulatory genes (CRGs) most commonly
identified in a SL-pair, the number of SL relationships they
establish, as well as the most represented chromatin regula-
tory complexes or gene superfamilies, classified in Table 1.
according to their function. The full methodology and curated



table can

be found

in Supplementary File S1 and

Supplementary Table S1, respectively.

3.1. The Goldilocks principle in epigenetic regulation

An intriguing concept recently introduced in the context of

epigenetic
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phenomenon” [27]. This principle refers to cases where cancer
cells require an intermediate activity level of certain genes—
neither too high nor too low—to sustain tumorigenesis. For
example, a partial reduction in SWI/SNF complex activity may
support oncogenic programs, whereas complete loss or full
restoration of its function is detrimental to cell viability [27].

vulnerabilities is the so-called “Goldilocks These dosage-sensitive dependencies open up therapeutic
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Figure 3. Overview of SL relationships involving CRGs identified through manual curation of systematic literature search. Only SL pairs reported in at least three
independent sources are included. (A) frequency of each CRG reported as part of an SL relationship, (B) number of unique SL partner genes identified for each CRG,
(C) frequency of each reported SL pair, and (D) number of unique complexes or functional superfamilies for the CRGs in a SL pair.

Table 1. Overview of chromatin remodelers’ families.

WRITERS

ERASERS

READERS

Methylation
DNA methyltransferases (DNMTs)

Acetylation

Methylation
DNA demethylation
Acetylation

Methylation
DNA methylation
Acetylation

Histone methyltransferases (HMTs)
Histone lysine methyltransferase (KMTs)
Arginine methyltransferases (PRMTs)
Histone lysine acetyltransferase (HATs or KATs)
Lysine demethylases (KDMs or HDMs)
Histone or lysine deacetylase (HDACs or KDACs)

Histone methylation

Histone acetylation
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opportunities by targeting either SWI/SNF or Polycomb
Repressive Complexes (PRCs) to perturb this fragile balance.
In breast cancer, it was demonstrated that intermediate
expression levels of SMARCD1 (SWI/SNF-related matrix-
associated actin-dependent regulator of chromatin subfamily
D member 1), were associated with poorer prognosis com-
pared to both low and high expression levels [38]. This obser-
vation suggests a narrow window of tolerated expression,
consistent with the “Goldilocks” model. Additionally, the
study identified other SWI/SNF subunits as potential “essential
expression-restricted” genes, further expanding the potential
treatment opportunities [38].

In these cases, the SL relationship relies on a partially
altered complex that has already modified the cell's pheno-
type. Targeting a second gene to inhibit its activity leads to
cell death. While the somewhat active complex is required for
cell survival, in other cases, complete alteration of the complex
is needed for tumorigenesis (Knudson’s two-hit theory) [15,39].
Thus, even if a SL relationship is identified between two genes,
unless the altered gene is completely inactivated, the relation-
ship may not be strong enough. Dual inhibition of the initial

gene and the SL partner may be needed to achieve an effec-
tive therapeutic response (Figure 4).

In addition, an interesting case is that of TIP60 (Tat-
interactive protein 60-kDa, also known as KAT5 or Lysine
Acetyltransferase 5), a haploinsufficient tumor suppressor
gene [40,41] whose expression is required for cell survival. It
is often downregulated in several cancer types such as breast
and colon [41,42], and it has been confirmed that its complete
inhibition leads to apoptosis. This is not only the case when
TIP60 expression is already suppressed, but also in cases
where it is upregulated instead, such as in anaplastic thyroid
cancer cells [43]. While targeting only TIP60 may offer
a therapeutic approach for many cancer types, TIP60 inhibition
has also been explored in refractory cancer cells in combina-
tion with other treatments. For example, in cisplatin-resistant
squamous cell carcinoma cells [44], TIP60 overexpression upre-
gulates ANp63a protein, promoting such resistance, while its
inhibition sensitizes the cells to the cisplatin treatment.
Similarly, in glioma cells, it has been shown that downregulat-
ing TIP60 increases sensitivity to ionizing radiation [40].
Therefore, to properly exploit TIP60 as a therapeutic target, it
is key to understand these tissue- and cancer-specific roles.
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Figure 4. The Goldilocks phenomenon. (A) upon Gene 1 acquiring an alteration, its expression diminishes; however, the expression levels are within the required
values to ensure the cell’s survival. (B) Gene 1 can be targeted to completely inhibit its expression, also in combination with Gene 2 inhibition if they are a SL pair.
(C) In some cases, the cells will rescue Gene 1 by inducing a second alteration in Gene 2 (SR). In those cases, the new adaptation may have made the cells to become
dependent on the given treatment (D), so stopping treatment (E) leads to cell death. In the figure, filled genes represent expressed genes, clear genes represent
reduced expression levels, and empty genes with a dashed line indicate complete loss of expression, the yellow asterisk marks an alteration, and the syringe

represents the treatment.



The Goldilocks or expression-restricted anomaly has also
been described in relation to Polycomb Repressive complexes.
In Drosophila, the level of highly conserved histone modifica-
tion H2Aub1 (Histone H2A monoubiquitination) is a key reg-
ulatory element in cancer, controlled just-right via PRC1
(Polycomb repressive complex 1) and PR-DUB (Polycomb
repressive deubiquitinase) to balance gene repression [45,46].

In the case of PRC2, EZH2 (Enhancer of Zeste Homolog 2)
gain-of-function mutations in lymphoma increase H3K27me3
(tri-methylation of lysine 27 on histone H3 protein) levels.
However, treatment with PRC2 inhibitors results in
a secondary mutation that ensures cell survival. Surprisingly,
when the treatment is removed, hypermethylation surpasses
the tolerable limit, provoking cell death, as the cells become
dependent on the drug to maintain the balance necessary for
survival [47,48].

While the Goldilocks phenomenon may regulate survival
under normal conditions, it could also respond to a synthetic
rescue adaptation. However, in this case, a secondary change
in external conditions might limit cell survival (Figure 4).

4. Interplay of epigenetics and chromosomal
changes in synthetic lethality

While chromatin remodeling complexes represent a well-
defined axis of epigenetic vulnerability, additional layers of
epigenetic regulation—such as DNA methylation, histone
modifications, and structural genomic changes—also contri-
bute to SL interactions, thereby expanding the therapeutic
landscape. An illustrative example of how epigenetic and
structural alterations converge to create SL vulnerabilities is
the case of TACC2 (Transforming Acidic Coiled-Coil Containing
Protein 2) in esophageal cancer. Loss of TACC2 expression,
driven by either copy number alterations or promoter hyper-
methylation, results in the repression of CDK1A, creating
a dependency on CDK activity. In this context, SL arises from
the inhibition of CDK1/2, which proves selectively toxic in
TACC2-inactivated cells. The proposed therapeutic strategy
includes either pharmacological CDK inhibition or combined
approaches involving CDK inhibitors and siRNA-mediated tar-
geting of TACC2 [49].

Another recent study identified PELO (Pelota MRNA
Surveillance and Ribosome Rescue Factor) as a potential ther-
apeutic target in cancers harboring large deletions in chromo-
some 9p21.3 or exhibiting microsatellite instability (MSI-H).
Through large-scale CRISPR (Clustered Regularly Interspaced
Short Palindromic Repeats) knockout screens, PELO was iden-
tified as a dependency in tumors with a disrupted superkiller

Table 2. Databases for cell line-based pharmacological perturbation screenings.
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complex (SKlc) function, either from stabilizer gene FOCAD
(Focadhesin) loss or SKI3 (SKI3 Subunit of Superkiller
Complex) mutations. PELO and SKlc analogous roles in
mRNA degradation outline a synthetic lethal interaction
where PELO inhibition may be exploited therapeutically in
a substantial subset of tumors, including those resistant to
immune checkpoint inhibitors [50].

The interplay between epigenetic enzymes and cellular
stress pathways also gives rise to synthetic lethal vulnerabil-
ities, as illustrated by the functional crosstalk between
DNMT3A (DNA (cytosine-5)-methyltransferase 3A) and HDAC6
(Histone deacetylase 6) in lung cancer. In this setting, DNMT3A
has been identified as a synthetic lethal partner of HDAC6 in
a HIF-1 (Hypoxia-Inducible Factor 1)-dependent manner,
underscoring how epigenetic dysregulation can modulate
hypoxia-adaptive signaling. Notably, this interaction appears
to be specific to DNMT3A, as other members of the DNMT
family do not display the same dependency. The combined
loss of DNMT3A and pharmacological inhibition of HDAC
activity triggers cell death via upregulation of VHL (Von
Hippel-Lindau) and the subsequent downregulation of HIF-1,
disrupting hypoxia-driven survival mechanisms [51].

5. Computational methods for synthetic lethality
prediction

Several screening methods have been employed to identify
clinically relevant SL partners, based on gene silencing strate-
gies such as knockdowns or knockouts. RNA interference
(RNAi) screens use small interference RNA (siRNA) or short-
hairpin RNA (shRNA) in cancer and non-cancer cell lines to
knockdown single genes (e.g. project DRIVE [52]); while
CRISPR-based systems can knockout single or multiple genes,
(CRISPR inhibition, CRISPRi) or mimic gain-of-function events
(CRISPR activation, CRISPRa) in cell lines, which may be grown
as 2D or 3D cultures, or even in in vivo models [2,53,54].

The results from such experiments represent valuable
information regarding gene-gene interaction as a key
resource for SL prediction. Large databases compile these
gene-gene interactions (Table 2). The largest database to
date for human cell lines is the Cancer Dependency Map
project (DepMap) [55], which includes data from the Score
[53] and Achilles projects from the Sanger Institute (315
CRISPR cell lines, and 966 drug screen cell lines) and the
Broad Institute [55] (1064 CRISPR cell lines, and 915 drug
screen cell lines), respectively. Alternatively, CellMap collects
data from yeast screenings (7,837 genes) [56], providing
a global genetic interaction network [57]. Specifically created

Database Screening/Analysis method Data Type Database publication
DepMap CRISPR, RNAi (Achilles, Score) Gene dependency data across cancer cell lines Tsherniak et al. [55]
Project DRIVE RNAi, shRNA Gene knockdown data from cancer cell lines McDonald et al. [52]
Score CRISPR (Sanger Institute) Gene knockout screens in cancer cell lines Behan et al. [53]
Achilles CRISPR (Broad Institute) Gene essentiality screens across diverse cancer Tsherniak et al. [55]

types
CellMap Yeast genetic screening Genetic interaction networks in yeast Costanzo et al. [56]
SynLethDB Multiple (CRISPR, RNAI, literature curation, computational Synthetic lethality gene pairs across species Wang et al. [58]; Guo et al.

3.0 predictions)

[59]
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Table 3. Summary of SL computational methods.

Model type Model Model name Model publication
Statistical methods DAISY Data Mining SL Jerby-Arnon et al. [62]
MiSL Mining Synthetic Lethals Sinha et al. [63]
ISLE Identification of clinically relevant SL Lee et al. [64]
SiLi Statistical inference-based SL identification Yang et al. [72]
Network methods IDLE Identifying Dosage Lethality Effects Megchelenbrink et al. [65]
Fast-SL Fast SL Pratapa et al. [66]
Classical ML methods SL2MF Matrix factorization model for SL prediction Liu et al. [69]
GRSMF Graph regularized self-representative matrix factorization Huang et al. [70]
CMFW MF with a matrix-specific weight (W) Liany et al. [71]
DiscoverSL Discover SL Das et al. [73]
CMF Collective matrix factorization Singh and Gordon [74]
Deep learning methods DDGCN Dual-dropout graph convolutional network Cai et al. [68]
KG4SL Knowledge graph for SL Wang et al. [75]
KR4SL Knowledge Graph Reasoning for SL Zhang et al. [76]
SLKG Synthetic Lethality Knowledge Graph Zhang et al. [77]
GCATSL Graph contextualized attention network for SL Long et al. [78]
SLMGAE SL Multi-view Graph Auto-Encoder Hao et al. [79]
MGE4SL Multi-Graph Ensemble Neural Network for SL Lai et al. [80]
SLGNN Synthetic Lethality knowledge graph neural network Zhu et al. [81]
PTGNN Pre-Training Graph Neural Networks Long et al. [82]
PiLSL Pairwise interaction learning-based graph neural network Liu et al. [83]
NSF4SL Negative-sample-free contrastive learning for SL Wang et al. [84]

for SL, SynLethDB and its latest update SynLethDB 3.0 offer
a comprehensive collection of SL gene pairs in multiple spe-
cies from various sources, including biochemical assays, pub-
lic databases, computational predictions, and manually
curated data from literature and text mining [58,59]. It has
51,411 known SL pairs for all 5 species, and over 1,777,000
predicted pairs. An overview of available databases for phar-
macological perturbation screenings is presented in Table 2
[52,53,55,56,58,59].

These databases serve as valuable resources for compu-
tational prediction models aimed at overcoming the inher-
ent limitations of experimental screenings, which are often
time-consuming and unrealistic due to the highly combi-
natorial nature of SL gene pair analyses. Several distinct
methods have been developed to identify SL relationships,
integrating biological knowledge as needed [60,61].

Hypothesis-based methods require prior knowledge to pre-
dict SL, such as identifying SL pairs that are co-expressed but
presenting mutually exclusive alterations to avoid cell death.
Specific pipelines have been developed for these methods,
such as DAISY (Data mining Synthetic lethality [62]), which
applies three parallel statistical inference strategies to cancer
genomic data, MiSL (Mining Synthetic Lethals [63]), which
identifies SL partners for specific mutated genes in pan-
cancer data from The Cancer Genome Atlas (TCGA), and ISLE
(Identification of clinically relevant Synthetic Lethality [64]),
which mines TCGA data to predict drug responses. While
these methods are relatively straightforward, they are limited
by the known SL pairs available in the databases. In contrast,
network-based methods are more extensive, analyzing pro-
tein-protein interactions or signaling networks. For example,
IDLE (Identifying Dosage Lethality Effects [65]), predicts SDL
from metabolic models, while Fast-SL [66] identifies SL in
metabolic networks. These and similar methods are discussed
in more detail in several publications [60,61].

The advancement in machine learning (ML) has led to the
development of various algorithms for SL prediction. Most fall
under the scope of supervised ML, which identifies patterns

from labeled observations (known SL or non-SL pairs), learning
the relationships between the input values and this label to
subsequently recognize them in new observations. These
algorithms integrate multi-omics data from the abovemen-
tioned databases (Table 2), along with SL key traits, such as
gene co-expression and the presence or absence of mutually
exclusive alterations to predict novel SL pairs.

Within ML, deep learning (DL) methods represent a more
intricate subset that identifies nonlinear relationships across
multiple layers, often building graphs or networks that mimic
cellular systems. This allows DL methods to better capture SL
relationships beyond paired genes. Nevertheless, both ML and
DL approaches require known SL and non-SL pairs to be properly
trained and are typically improved by incorporating other biolo-
gical knowledge, such as protein-protein interactions or pathway
data. Some methods, like matrix factorization (MF), can be imple-
mented in an unsupervised manner, overcoming the need for
labeled data [60,61,67-71]. A summary of SL computational
methods is presented in Table 3 [62-66,68-84].

5.1. Computational modelling

To fully explore SL relationships, it is crucial to identify targe-
table SL partners and potential drugs that can act against
them. High-throughput perturbation screening experiments
have been performed in several cell lines in order to uncover
vulnerabilities from multi-omics data across diverse cancer
types. Notable initiatives, such as PRISM [85], the Genomics
of Drugs Sensitivity in Cancer (GDSC) [86,87], and the Cancer
Therapeutic Response Portal (CTRP) [88], have contributed to
this effort. However, although this data has been integrated in
some of the previously mentioned computational methods
(e.g., DAISY [62], MiSL [63], and ISLE [64]), it is often only
included in the refinement steps and is not fully leveraged.
This is largely because most approaches primarily focus on
multi-omics data and do not fully capitalize on the perturba-
tion data’s potential [89,90].



To better use the available perturbation data, several new
computational approaches have been developed, many of
which integrate single-cell RNA-seq (scRNA-seq) data. Some
methods, such as scGen [91], scVIDR [92], and CellOracle [93],
are broadly aimed at perturbation prediction, while others, like
beyondcell [94], scDEAL [95] and scRank [96] are specifically
designed for drug-response predictions. Thanks to their
novelty, most of these models are continually updated.
However, incorporating scRNA-seq data adds an extra layer
of complexity and often disregards existing data.

As highlighted by Srivatsa et al. [89], perturbation data is
frequently used as a validation tool rather than as a predictive
resource for SL interactions. They propose a novel framework
that combines mutated genes with perturbed genes to predict
SL based on drug response, aiming to better harness the
power of perturbation data in therapeutic contexts.

6. Future perspectives

In this work, we show that several approaches, both wet-lab
and computational, have been developed to predict synthetic
lethality. However, despite the amount of knowledge gained
from screening methods and their computational integration,
there is still much work to be done. In many cases, the
proposed SL pairs are not yet being used as therapeutic
targets, even though clinical trials involving these targets
have been—and continue to be—conducted.

In wet-lab methods, detailed information can be obtained
at multiple levels for the studied SL pairs within specific cancer
types, ranging from cell lines to in vivo models. However, one
of the key challenges in identifying SL is defining bona fide
negative pairs—genes that cannot exhibit an SL relationship.
It is quite difficult to prove through perturbation screenings
(as done to determine SL pairs) that these genes are entirely
unrelated, especially accounting for the complex network
interactions between genes.

On the other hand, while in silico methods offer signifi-
cantly faster and cheaper exploration of multiple gene combi-
nations in a shorter time, they are dependent on existing data,
which may not always be available for a given cancer type or
specific omics data. Wet-lab identification efforts do not
always translate into computational resources, creating a gap
in the data available for computational methods. This limita-
tion is especially pronounced in DL models, which require vast
amounts of data. The lack of negative-labeled data further
restricts model performance, as many algorithms require
both positive and negative cases for proper training.
Nevertheless, some strategies are being developed to over-
come these challenges, such as NSF4SL (Negative Sampling
Free for SL), which avoids the use of negative pairs [84].

Unfortunately, the disconnect between computational meth-
ods and biological data fuels a feedback loop. As DL algorithms
often function as black boxes, they are often overlooked by the
biological community due to their poor interpretability.
Simultaneously, commonly used data repositories such as TCGA
and DepMap continue to grow, but the ML methods themselves
are not always kept up to date [60,84]. To bridge this gap between
wet-lab experiments and computational models, careful curation
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and preprocessing of data is essential. Integrating as much avail-
able data as possible and exploring gene networks holistically
could provide valuable insights (Figure 5). Future studies should
focus on a dual outcome: not only identifying SL pairs but also
considering how results obtained in experimental settings would
be used to train or validate computational methods, or how genes
predicted by these models should be experimentally tested,
respectively. In this context, more interpretable ML methods
could better help predict synthetic lethality in ways that are
both understandable and reproducible, while allowing for bidirec-
tional sharing of new data.

Furthermore, incorporating new knowledge into these
models, particularly in the field of epigenetics, is crucial.
While many current approaches focus on DNA repair mechan-
isms, there is increasing interest in DNA-associated processes,
such as DNA methylation and chromatin accessibility, studied
through techniques like ATAC-seq (assay for transposase-
accessible chromatin). Initially, increased methylation in pro-
moter CpG islands was linked to gene silencing, but later
studies revealed a more complex relationship. For instance,
positive correlations between methylation and gene expres-
sion have been found, especially in gene body or downstream
regions. Additionally, methylation of enhancer regions, though
less explored than promoter methylation, may play an impor-
tant role in transcription regulation [97-101].

The complexity of methylation marks—both in terms of
their presence or absence across methylation sites—creates
a challenging puzzle in gene expression regulation. Further
studies are needed to understand how gene expression is
regulated via methylation, first in normal cells to establish
baseline methylation profiles in normal cells, which can then
be later compared to cancer cells to identify alterations. By
integrating this regulatory layer with existing knowledge on
gene networks, new potential SL pairs can be identified.

Similarly, histone modifications are another key aspect of
epigenetic regulation that could offer new insights into cell
regulation and potential therapeutic strategies. Histones,
beyond serving as scaffolds for DNA packaging, dynamically
modulate chromatin accessibility through several post-
translational modifications. Enzymes involved in these pro-
cesses are classified as “writers,” “erasers,” or “readers,”
depending on their role in adding, removing or interpreting
modifications, respectively (Table 1). Mutations in these
enzymes and the histones themselves can alter chromatin
dynamics and present new targets for pharmacological inhibi-
tion, potentially revealing additional SL genes.

Therefore, when accounting for all these epigenetic mechan-
isms, it is clear that despite its abundance, the use of gene
expression is largely untapped, since its use has been limited to
co-expression and differential expression analyses. Underlaying
mechanisms like copy number alterations, DNA methylation, or
chromatin accessibility have not been fully leveraged. By establish-
ing baseline levels of gene expression in normal versus cancerous
cells, these mechanisms can be characterized and targeted as the
root cause of altered expression profiles.

This brings us to the growing attention on epigenetic
drugs, also known as epidrugs. Epidrugs target enzymes
involved in epigenetic regulation, such as DNA methyltrans-
ferases (DNMT), histone deacetylases (HDAC), histone
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Figure 5. Integrative workflow for synthetic lethality discovery. The circular diagram illustrates the iterative process of SL identification, combining experimental and
computational approaches. The computational half (right side) consists of data integration, computational modeling, prediction refinement, and new hypothesis
generation, feeding back into experimental testing. This experimental half (left side) includes screening experiments, data collection & processing, validation and
therapeutic design. The results obtained will be the computational method’s input.

methyltransferases (HMT) and bromodomain and extra-
terminal motif proteins (BET). Although several inhibitors tar-
geting these enzymes are approved for cancer treatment (e.g.,
DNMTi, HDACI, HMTi), their non-specificity due to the highly
conserved nature of these enzymes and the dynamic nature of
epigenetic regulation often lead to off-target toxicities.
Synthetic lethality offers a promising avenue to reduce these
off-target effects, as the presence of the acquired alteration in
cancer cells could reduce toxicity to healthy cells. SL relation-
ships can be established between both epigenetic and non-
epigenetic alterations and an epigenetic target, as exemplified
by the SWI/SNF and PCR2 complexes discussed earlier.

While current efforts to identify SL interactions often focus on
specific gene pairs in particular cancer subtypes, it may be time
to take a step back and reassess the data collected in detail.
A deeper understanding of the biological systems under study is
needed, achieved by integrating and interpreting existing data.
This includes starting with control cases and moving on to dis-
ease states. While more data will undoubtedly be helpful, its
quality is key. Bridging the gap between wet-lab and computa-
tional methods will allow us to better understand how they can
complement each other. As we explore the broader landscape of
SL, we must characterize gene networks more thoroughly to
identify new targets. Epigenetic mechanisms are not just another
layer of regulation, but a critical system that should be fully
incorporated into SL research.

By reevaluating our current knowledge and exploring novel or
repurposed drug combinations, we can better harness the poten-
tial of SL in cancer therapy. To truly advance the field, the next
step is not just about pushing forward but ensuring that we build
a solid foundation-, fone that integrates current insight, strength-
ens our understanding of biological systems, and refines our
methodologies. Only by doing so can we fully exploit synthetic
lethality and develop more effective, targeted therapeutic
strategies.
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