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PERSPECTIVE

Epigenetic synthetic lethality as a cancer therapeutic strategy: synergy of 
experimental and computational approaches
Maria Farina-Morillas a, Laia Ollé-Monràs a, Silvana CE Maas a, Isabel de Rojas-P b, Miguel F. Segura b 

and Jose A. Seoane a

aCancer Computational Biology Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain; bChildhood Cancer and Blood Disorders 
Group, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain

ABSTRACT
Cancer treatment is an ongoing challenge, as directly targeting oncogenic drivers is often unfeasible in 
many patients due to the lack of druggable targets. This has led to the exploration of alternative 
strategies, such as exploiting synthetic lethality (SL) relationships between genes. SL facilitates the 
indirect targeting of oncogenic drivers, as exemplified by the clinical success of PARP inhibitors against 
BRCA-mutated tumors. Advances in high-throughput perturbation screens and multi-omics technolo
gies have deepened our understanding of SL relationships, while computational models enhance SL 
predictions to better reflect biological complexity. However, while numerous experimental and com
putational methods have been developed to identify SL interactions, difficulties remain in translating 
these findings into clinical applications.

This review combines recent progress on SL relationships in cancer with emerging insights into 
epigenetic regulation, highlighting how epigenetic drugs (epidrugs) can provide new opportunities for 
targeted interventions, offering a way to minimize off-target effects and enhance therapeutic precision. 
To advance SL-based therapies, efforts must focus not only on identifying new SL interactions but also 
on consolidating existing knowledge and integrating experimental and computational approaches to 
characterize the vulnerabilities of cancer cells. Strengthening this foundation will be critical for the 
effective development of SL-based cancer treatments.

PLAIN LANGUAGE SUMMARY
Synthetic Lethality (SL) describes a relationship between a pair of genes where cells remain viable if at 
least one gene of the pair functions normally, but die if both genes are altered (e.g. mutated) at the 
same time. These alterations may occur naturally or can be drug-induced. Genes are often mutated in 
cancer cells, so therapeutically altering the SL partner of a gene already mutated in the cancer cells 
leads to cell death, as both partner genes are now altered, while normal cells lacking the initial 
mutation are spared. As gene function can be affected by diverse alterations besides DNA mutations, 
the mechanisms that control gene regulation without changing the DNA sequence, referred to as 
epigenetics, also need to be considered. In this Perspective, we highlight the importance of integrating 
both genetic and epigenetic alterations while studying SL relationships, and we explore how these SL 
relationships can be better identified by integrating experimental and computational approaches, to 
understand gene-gene interactions in order to broaden the treatment possibilities.
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1. Introduction

Synthetic Lethality (SL) is a molecular interaction in which the 
simultaneous perturbation of two or more genes leads to loss 
of viability. First described in 1922 by Calvin Bridges as reces
sive lethality, this phenomenon was observed in fruit flies 
(Drosophila melanogaster), where crossing flies with divergent 
eye abnormalities failed to produce offspring with a combined 
phenotype [1]. Further experiments in yeast models not only 
refined the original concept but also provided a novel 
approach for drug discovery focused not on the altered gene 
but on its synthetic lethal partner, ultimately contributing to 
the development of selective cancer therapies [2]. Because 

tumors have different molecular landscapes than normal 
cells, independent alterations do not result in cell death or 
impairment, and are often considered undruggable, such as 
loss-of-function mutations or overexpression. Therefore, tar
geting the SL partner to a tumor-specific defective gene 
induces cell death due to the combination of events, while 
sparing the normal cells without such an alteration, overcom
ing as well the potential lack of druggability [2–4]. Figure 1. 
provides a schematic overview of the synthetic lethality 
mechanism and its application in cancer treatments.

As interest in SL has grown, more precise terms have 
emerged to better classify these gene-gene interactions 
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leading several authors [5,6] to differentiate between two 
main categories, non-conditional and conditional SL 
(Figure 2) [2,5,6]. Non-conditional SL focusses only on gene 
alterations, while conditional SL accounts for specific intrinsic 
or extrinsic conditions that may drive the interaction beyond 
the aberrations already present in non-conditional SL.

In non-conditional SL, Li et al. [5] established three main 
categories according to the biological mechanisms affected: 
gene, pathway, and organelle. They include the basic SL con
cept at the gene level, as well as Synthetic Dosage Lethality 
(SDL), which expands upon the initial meaning to describe 
a specific subtype of SL where one gene is overexpressed, 
while the partner gene is underexpressed [2,5,7,8] (Figure 2). 
At the molecular level, they distinguish between a protein 
complex or single pathway vulnerability to multiple pathways 
being altered, recognizing how the key role of several genes in 
SL relationships can even reach organelle’s activity, as is the 
case of mitochondrial-related metabolic SL. Collateral SL is also 

worth mentioning, as it addresses how an event in one gene 
leads to the loss of an adjacent passenger gene, often due to 
the co-deletion of tumor suppressor-associated neighboring 
genes. It is the loss of the collateral gene that drives this SL 
relationship, often with a homolog or functionally redundant 
gene [2,5,9]. Another closely related interaction, due to its role 
in therapy resistance and survival, is Synthetic Rescue (SR), 
where the inactivation of a vulnerable gene is compensated 
by adaptive alterations in another gene. Therefore, when 
a vulnerable gene is pharmacologically inhibited, changes in 
the activity of the rescuer gene may lead to drug resistance 
[2,5,10,11]. A schematic overview of the SL relationships 
described is depicted in Figure 2.

Furthermore, in conditional SL, besides the simultaneous 
alterations, a specific cell condition is required. These factors 
influencing the gene’s relationships can be either internal, 
such as hypoxia and the presence of Reactive Oxygen 
Species (ROS), or external, which includes the different treat
ments that patients receive (Figure 2) [5,6]. These factors 
enable targeted combination therapies, and pharmacological 
inhibition in conjunction with radio- or chemotherapy. In 
some cases, cells may even develop drug dependency, with 
their metabolism adapting to the new state for survival 
[5,12,13]. Therefore, multi-gene interactions should also be 
considered as potential SL partners, since although SL rela
tionships are more easily demonstrated between gene pairs, 
their regulation occurs within a complex network [2,5,6].

More recently, SL has gained interest as a strategy to explore 
the potential of epigenetically regulated genes. As epigenetics 
describes mechanisms that regulate genomic function and struc
tural changes in DNA without altering the DNA sequence, target
ing these regulatory processes increases the range of potential 
targets and treatments considerably. DNA methylation, histone 
modifications, and DNA damage response (DDR) mechanisms, 
together with genetic aberrations such as mutations, provide 
deeper insights into cellular status and broaden the landscape 
of therapeutic opportunities [14–17].

Accordingly, the first approved drugs that capitalize on SL 
relationships are PARP (Poly-(ADP-Ribose) Polymerase) 

Article highlights

● Synthetic Lethal relationships are categorized to describe the com
plexity of genetic interactions and how they may be affected by 
external factors, such as pharmacological inhibition.

● The success of PARP inhibitors in BRCA-mutated tumors has fueled 
interest in SL-based clinical applications, which has been reinforced 
by the complexity of SL relationships and cases of drug resistance.

● Alterations in chromatin regulatory complexes have led to new 
therapeutic strategies, targeting genes in the same complexes or in 
their antagonists, due to the intrinsic relationship between them.

● The interplay between epigenetic and structural alterations highlights 
novel SL interactions that drastically expand the number of potential 
targets.

● Computational methods are a key tool in predicting SL relationships 
by integrating data from experimental studies to explore genomic 
networks.

● Drug perturbation data offers still untapped potential to predict SL 
targets and drug response.

● A better integration of computational methodologies and large-scale 
experimental data is needed to identify SL relationships for thera
peutic strategies, so that future efforts can be built upon reliable 
groundwork.

Figure 1. Synthetic Lethality (SL) as a cancer treatment strategy. SL occurs when the simultaneous alteration of two genes, such as mutations or copy-number 
alterations, leads to cell death, while the alteration of just one of these genes does not affect cell viability. This relationship can be exploited in cancer treatment by 
targeting the SL partner of an altered gene. In the figure, the scenarios in green boxes represent viable cells while the red boxes represent a lethal combination; the 
yellow asterisk marks an alteration, and the syringe represents the treatment.
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inhibitors. Since then, more DDR inhibitors have been devel
oped and are currently being tested in different cancer types, 
to target genes such as ATM (Ataxia Telangiectasia Mutated) 
and ATR (Ataxia Telangiectasia and Rad3 related) serine/threo
nine kinases [18,19]. A recent review by Ngoi et al. [2] provides 
(as Supplementary Table S1 and S2) two comprehensive lists 
detailing completed and ongoing clinical trials and preclinical 
studies which include many epigenetic targets.

2. Clinical applications and challenges of synthetic 
lethality: the case of PARP inhibitors

SL-based cancer therapies have been implemented in the clinic as 
first-line treatment, such as PARP inhibitors (PARPi) in breast and 
ovarian cancer in patients with BRCA-mutated tumors. The three 
most well-known PARP members—PARP1, PARP2, and PARP3— 
are all involved in DNA repair mechanisms, both detecting and 
repairing single-strand breaks (SSBs) through base excision repair 
(BER) and double-strand breaks (DSBs) via homologous recombi
nation (HR) or non-homologous end-joining (NHEJ). Similarly, 
BRCA1 and BRCA2, while being mutually exclusive, play distinct 
but indispensable roles in HR. Interestingly, despite initial assump
tions that, when the HR pathway is broken, BRCA-defective cells 

cannot repair DNA damage in the presence of PARPi through any 
of the aforementioned mechanisms, the complexity of this SL 
relationship has gradually been uncovered, revealing a more intri
cate mechanism than previously thought [20,21]. Thanks to the 
development of several PARPi with different degrees of catalytic 
inhibition and trapping activity —such as olaparib, veliparib, tala
zoparib, and saruparib—it has been shown that both functions are 
required for cell death. Specifically, PARP1 trapping onto DNA is 
essential to convert SSBs into DSBs, causing enough genomic 
instability that a deregulated NHEJ pathway is unable to compen
sate for or rescue HR inactivity, ultimately leading to the death of 
BRCA-mutated cells [6,16].

Unfortunately, treatment with PARPi often results in drug 
resistance, as tumor cells adapt to counter the loss of fitness. 
This adaptation can occur through various mechanisms: by 
altering PARP1 (in some cases to prevent DNA trapping), by 
genetic reversion to restore BRCA1 or BRCA2 functions, or by 
mutations occurring in functionally related genes such as 
TP53BP1 (Tumor Protein P53 Binding Protein 1) [21,22].

Despite these challenges, novel therapies are currently 
under development, both at clinical and preclinical stages, 
following the success of PARPi. Ngoi et al. [2] provide an 
overview of pre-clinical and clinical trials on SL agents, 

Figure 2. Categorization of the synthetic lethality relationships. Synthetic Dosage Lethality (SDL) refers to cases where one gene is either overexpressed or amplified, 
and another alteration in the second gene leads to cell death. Collateral SL occurs when the deletion of a second adjacent gene drives the lethal interaction. In 
contrast, Synthetic Rescue describes a scenario where a second alteration compensates for the initial defect, restoring cell viability. In conditional SL, the 
environmental factors, either internal or external, may drive the SL relationship. In the figure, filled genes represent expressed genes, empty genes indicate 
deletions, the yellow asterisk marks an alteration, enlarged genes represent overexpression, duplicated genes represent gene amplification, the syringe represents 
the treatment, the star symbolizes internal factors such as reactive oxygen species (ROS), and the lightning bolt represents external factors such as radiotherapy (RT).
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focused on relationships around DNA damage response 
(DDR), signaling and repair mechanisms, as well as DNA 
replication and cell division, metabolic reprogramming, and 
epigenetic regulation for different cancer types [15,16]. 
Among them, DNA polymerase θ (POLQ) trials are of special 
relevance, as when DNA repair pathways are compromised 
(especially when TP53BP1 is also defective), cells become 
dependent on error-prone Theta-Mediated End-Joining 
(TMEJ), also known as alternative DNA end-joining (Alt-EJ), 
where POLQ plays a key role. Because POLQ has been identi
fied as a SL partner to BRCA1 and BRCA2, several studies on 
POLQ inhibitors are currently being conducted to assess their 
efficacy as monotherapy or in combination with PARPi [2,23– 
25]. One specific inhibitor (ART558) has been shown to also 
trap POLQ on DNA in its closed conformation, suppressing 
PARPi resistance [23].

3. Exploring chromatin complex alterations and 
epigenetic synthetic lethality for precision oncology

Currently, most efforts to identify and exploit SL relationships 
have focused on DDR pathways, such as targeting ATR and 
ATM, because of their upstream role in these pathways. 
Inhibitors are being tested for these two proteins (ATRi or 
ATMi, accordingly), as several SL partners have been identified 
[18,19]. For example, epigenetic silencing of SLFN11 (Schlafen 
Family Member 11) in esophageal cancer or FAM110C (Family 
With Sequence Similarity 110 Member C) in pancreatic cancer 
are SL with ATMi or ATRi, respectively. In both cases, DNA 
methylation is a sensitive marker and upon the consequent 
loss of expression due to epigenetic silencing, the cancer cells 
become susceptible to inhibition [18,19].

However, in recent years, increasing attention has been 
paid to other DNA-related processes. Essential mechanisms 
like DNA replication and transcription rely on DNA accessibil
ity, which is regulated by several chromatin remodeling family 
complexes, including SWI/SNF (SWItch/Sucrose Non- 
Fermentable), ISWI (Imitation SWItch), Polycomb (Polycomb- 
group or PcG proteins), NuRD (Nucleosome Remodelling and 
Deacetylase), and INO80 (INOsitol requiring 80). For instance, 
PBRM1 (Polybromo 1) is a specific SWI/SNF complex subunit 
implicated not only in maintaining chromosomal stability but 
also on ATM-dependent DNA repair pathways. Loss of 
PBRM1 has been found to be SL in renal cancer with both 
PARPi and ATRi, promoting replication stress, while PBRM1 
deficiency also sensitizes cells to PARPi [26].

Notably, due to their high mutation frequency, several 
other SWI/SNF subunits are under the spotlight for the devel
opment of novel SL therapeutic strategies, particularly ARID1A 
(AT-Rich Interaction Domain 1A) and SMARCA4/2 (SWI/SNF 
Related BAF Chromatin Remodeling Complex Subunit ATPase 
4/2) [2,27,28].

Multiple potential SL partners have been proposed for 
these genes in various studies, and their characterization has 
led to diverse therapeutic strategies. These include targeting 
genes within the same complexes, such as BRD9 
(Bromodomain Containing 9), SMARCC1 (SWI/SNF Related 
BAF Chromatin Remodeling Complex Subunit C1), or even 

paralogues of the mutated genes (ARID1B, SMARCA2/4), to 
completely inhibit their activity [27]. Another approach 
involves inhibiting antagonist complexes like PRC2 
(Polycomb Repressive Complex 2) to rescue SWI/SNF activity 
[14,27,29]. Additionally, targeting seemingly unrelated genes, 
such as AURKA (Aurora kinase A), involved in cell cycle and 
division, has also shown potential SL behavior [29].

Among these targets, perturbations in KEAP1 (Kelch-like 
ECH-Associated Protein 1) have been identified as an SL 
mechanism in ARID1A-deficient cells in clear cell ovarian car
cinoma (CCOC), unrelated to its function as NRF2 (nuclear 
factor erythroid 2-related factor 2) activator [30]. While the 
authors propose dual inhibition of ATR and KEAP1 —as ATR 
is also a SL partner of ARID1A and SMARCA4 (mainly observed 
in lung cancer) [31–33]— targeting both the SWI/SNF complex 
and KEAP1 could offer a potential therapeutic strategy, parti
cularly given KEAP1’s role in therapy resistance via alterations 
in the KEAP-NRF2 system [34–36].

Recently, KLF5 (Krüppel-like transcription factor 5) was pro
posed as a potential SL partner for ARID1A. The loss of KLF5 in 
ARID1A-deficient cells mimics the inhibition of BRD4 
(Bromodomain Containing 4), which is toxic for these cells. 
When ARID1A is lost from chromatin remodeling complexes, 
transcription becomes dependent on BRD4, which in turn 
requires KLF5 to be recruited to the chromatin, rendering 
KLF5 a potential therapeutic target [33]. Moreover, KLF5 has 
been implicated in promoting resistance via KEAP1 inhibition 
in esophageal squamous cell carcinoma, emerging as 
a potential target to overcome resistance [36]. This also 
helps further defining the SL relationship between ARID1A 
and KEAP1.

SMARCA4 is frequently inactivated in lung and ovarian 
cancers, including small cell carcinoma of the ovary hypercal
cemic type (SSCOHT), a rare pediatric malignancy. Recently, it 
has been demonstrated that SMARC4-deficient cells become 
dependent on lysine-specific histone demethylases KDM6A 
(also known as UTX, ubiquitously transcribed X chromosome 
tetratricopeptide repeat protein) and KDM6B (also known as 
JMJD3, Jumonji domain-containing protein 3) due to impaired 
epigenetic regulation of H3K27 marks. As a result, these 
tumors are highly sensitive to KDM6 inhibitors such as GSK- 
J4. The dual loss of SMARCA4 and KDM6 functions induces 
lethal chromatin rigidity and transcriptional silencing in both 
lung and ovarian cancer models, including patient-derived 
orthotopic xenografts (PDOXs) from SCCOHT, where GSK-J4 
treatment significantly impaired tumor growth and prolonged 
survival [37].

To highlight the importance and interest in these genes, we 
have performed a systematic search in Scopus to find cancer 
research publications from the last 5 years mentioning syn
thetic lethality and chromatin, either in the title or the 
abstract. We found 267 papers mentioning 109 different 
genes that we manually curated to properly classify the 
found pairs as SL or not. In Figure 3., we present a summary 
of the chromatin regulatory genes (CRGs) most commonly 
identified in a SL-pair, the number of SL relationships they 
establish, as well as the most represented chromatin regula
tory complexes or gene superfamilies, classified in Table 1. 
according to their function. The full methodology and curated 
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table can be found in Supplementary File S1 and 
Supplementary Table S1, respectively.

3.1. The Goldilocks principle in epigenetic regulation

An intriguing concept recently introduced in the context of 
epigenetic vulnerabilities is the so-called “Goldilocks 

phenomenon” [27]. This principle refers to cases where cancer 
cells require an intermediate activity level of certain genes— 
neither too high nor too low—to sustain tumorigenesis. For 
example, a partial reduction in SWI/SNF complex activity may 
support oncogenic programs, whereas complete loss or full 
restoration of its function is detrimental to cell viability [27]. 
These dosage-sensitive dependencies open up therapeutic 

Figure 3. Overview of SL relationships involving CRGs identified through manual curation of systematic literature search. Only SL pairs reported in at least three 
independent sources are included. (A) frequency of each CRG reported as part of an SL relationship, (B) number of unique SL partner genes identified for each CRG, 
(C) frequency of each reported SL pair, and (D) number of unique complexes or functional superfamilies for the CRGs in a SL pair.

Table 1. Overview of chromatin remodelers’ families.

WRITERS Methylation
DNA methyltransferases (DNMTs) Histone methyltransferases (HMTs)

Histone lysine methyltransferase (KMTs)
Arginine methyltransferases (PRMTs)

Acetylation
– Histone lysine acetyltransferase (HATs or KATs)

ERASERS Methylation
DNA demethylation Lysine demethylases (KDMs or HDMs)
Acetylation
– Histone or lysine deacetylase (HDACs or KDACs)

READERS Methylation
DNA methylation Histone methylation
Acetylation
– Histone acetylation
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opportunities by targeting either SWI/SNF or Polycomb 
Repressive Complexes (PRCs) to perturb this fragile balance. 
In breast cancer, it was demonstrated that intermediate 
expression levels of SMARCD1 (SWI/SNF-related matrix- 
associated actin-dependent regulator of chromatin subfamily 
D member 1), were associated with poorer prognosis com
pared to both low and high expression levels [38]. This obser
vation suggests a narrow window of tolerated expression, 
consistent with the “Goldilocks” model. Additionally, the 
study identified other SWI/SNF subunits as potential “essential 
expression-restricted” genes, further expanding the potential 
treatment opportunities [38].

In these cases, the SL relationship relies on a partially 
altered complex that has already modified the cell’s pheno
type. Targeting a second gene to inhibit its activity leads to 
cell death. While the somewhat active complex is required for 
cell survival, in other cases, complete alteration of the complex 
is needed for tumorigenesis (Knudson’s two-hit theory) [15,39]. 
Thus, even if a SL relationship is identified between two genes, 
unless the altered gene is completely inactivated, the relation
ship may not be strong enough. Dual inhibition of the initial 

gene and the SL partner may be needed to achieve an effec
tive therapeutic response (Figure 4).

In addition, an interesting case is that of TIP60 (Tat- 
interactive protein 60-kDa, also known as KAT5 or Lysine 
Acetyltransferase 5), a haploinsufficient tumor suppressor 
gene [40,41] whose expression is required for cell survival. It 
is often downregulated in several cancer types such as breast 
and colon [41,42], and it has been confirmed that its complete 
inhibition leads to apoptosis. This is not only the case when 
TIP60 expression is already suppressed, but also in cases 
where it is upregulated instead, such as in anaplastic thyroid 
cancer cells [43]. While targeting only TIP60 may offer 
a therapeutic approach for many cancer types, TIP60 inhibition 
has also been explored in refractory cancer cells in combina
tion with other treatments. For example, in cisplatin-resistant 
squamous cell carcinoma cells [44], TIP60 overexpression upre
gulates ΔNp63α protein, promoting such resistance, while its 
inhibition sensitizes the cells to the cisplatin treatment. 
Similarly, in glioma cells, it has been shown that downregulat
ing TIP60 increases sensitivity to ionizing radiation [40]. 
Therefore, to properly exploit TIP60 as a therapeutic target, it 
is key to understand these tissue- and cancer-specific roles.

Figure 4. The Goldilocks phenomenon. (A) upon Gene 1 acquiring an alteration, its expression diminishes; however, the expression levels are within the required 
values to ensure the cell’s survival. (B) Gene 1 can be targeted to completely inhibit its expression, also in combination with Gene 2 inhibition if they are a SL pair. 
(C) In some cases, the cells will rescue Gene 1 by inducing a second alteration in Gene 2 (SR). In those cases, the new adaptation may have made the cells to become 
dependent on the given treatment (D), so stopping treatment (E) leads to cell death. In the figure, filled genes represent expressed genes, clear genes represent 
reduced expression levels, and empty genes with a dashed line indicate complete loss of expression, the yellow asterisk marks an alteration, and the syringe 
represents the treatment.
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The Goldilocks or expression-restricted anomaly has also 
been described in relation to Polycomb Repressive complexes. 
In Drosophila, the level of highly conserved histone modifica
tion H2Aub1 (Histone H2A monoubiquitination) is a key reg
ulatory element in cancer, controlled just-right via PRC1 
(Polycomb repressive complex 1) and PR-DUB (Polycomb 
repressive deubiquitinase) to balance gene repression [45,46].

In the case of PRC2, EZH2 (Enhancer of Zeste Homolog 2) 
gain-of-function mutations in lymphoma increase H3K27me3 
(tri-methylation of lysine 27 on histone H3 protein) levels. 
However, treatment with PRC2 inhibitors results in 
a secondary mutation that ensures cell survival. Surprisingly, 
when the treatment is removed, hypermethylation surpasses 
the tolerable limit, provoking cell death, as the cells become 
dependent on the drug to maintain the balance necessary for 
survival [47,48].

While the Goldilocks phenomenon may regulate survival 
under normal conditions, it could also respond to a synthetic 
rescue adaptation. However, in this case, a secondary change 
in external conditions might limit cell survival (Figure 4).

4. Interplay of epigenetics and chromosomal 
changes in synthetic lethality

While chromatin remodeling complexes represent a well- 
defined axis of epigenetic vulnerability, additional layers of 
epigenetic regulation—such as DNA methylation, histone 
modifications, and structural genomic changes—also contri
bute to SL interactions, thereby expanding the therapeutic 
landscape. An illustrative example of how epigenetic and 
structural alterations converge to create SL vulnerabilities is 
the case of TACC2 (Transforming Acidic Coiled-Coil Containing 
Protein 2) in esophageal cancer. Loss of TACC2 expression, 
driven by either copy number alterations or promoter hyper
methylation, results in the repression of CDK1A, creating 
a dependency on CDK activity. In this context, SL arises from 
the inhibition of CDK1/2, which proves selectively toxic in 
TACC2-inactivated cells. The proposed therapeutic strategy 
includes either pharmacological CDK inhibition or combined 
approaches involving CDK inhibitors and siRNA-mediated tar
geting of TACC2 [49].

Another recent study identified PELO (Pelota MRNA 
Surveillance and Ribosome Rescue Factor) as a potential ther
apeutic target in cancers harboring large deletions in chromo
some 9p21.3 or exhibiting microsatellite instability (MSI-H). 
Through large-scale CRISPR (Clustered Regularly Interspaced 
Short Palindromic Repeats) knockout screens, PELO was iden
tified as a dependency in tumors with a disrupted superkiller 

complex (SKIc) function, either from stabilizer gene FOCAD 
(Focadhesin) loss or SKI3 (SKI3 Subunit of Superkiller 
Complex) mutations. PELO and SKIc analogous roles in 
mRNA degradation outline a synthetic lethal interaction 
where PELO inhibition may be exploited therapeutically in 
a substantial subset of tumors, including those resistant to 
immune checkpoint inhibitors [50].

The interplay between epigenetic enzymes and cellular 
stress pathways also gives rise to synthetic lethal vulnerabil
ities, as illustrated by the functional crosstalk between 
DNMT3A (DNA (cytosine-5)-methyltransferase 3A) and HDAC6 
(Histone deacetylase 6) in lung cancer. In this setting, DNMT3A 
has been identified as a synthetic lethal partner of HDAC6 in 
a HIF-1 (Hypoxia-Inducible Factor 1)-dependent manner, 
underscoring how epigenetic dysregulation can modulate 
hypoxia-adaptive signaling. Notably, this interaction appears 
to be specific to DNMT3A, as other members of the DNMT 
family do not display the same dependency. The combined 
loss of DNMT3A and pharmacological inhibition of HDAC 
activity triggers cell death via upregulation of VHL (Von 
Hippel–Lindau) and the subsequent downregulation of HIF-1, 
disrupting hypoxia-driven survival mechanisms [51].

5. Computational methods for synthetic lethality 
prediction

Several screening methods have been employed to identify 
clinically relevant SL partners, based on gene silencing strate
gies such as knockdowns or knockouts. RNA interference 
(RNAi) screens use small interference RNA (siRNA) or short- 
hairpin RNA (shRNA) in cancer and non-cancer cell lines to 
knockdown single genes (e.g., project DRIVE [52]); while 
CRISPR-based systems can knockout single or multiple genes, 
(CRISPR inhibition, CRISPRi) or mimic gain-of-function events 
(CRISPR activation, CRISPRa) in cell lines, which may be grown 
as 2D or 3D cultures, or even in in vivo models [2,53,54].

The results from such experiments represent valuable 
information regarding gene-gene interaction as a key 
resource for SL prediction. Large databases compile these 
gene-gene interactions (Table 2). The largest database to 
date for human cell lines is the Cancer Dependency Map 
project (DepMap) [55], which includes data from the Score 
[53] and Achilles projects from the Sanger Institute (315 
CRISPR cell lines, and 966 drug screen cell lines) and the 
Broad Institute [55] (1064 CRISPR cell lines, and 915 drug 
screen cell lines), respectively. Alternatively, CellMap collects 
data from yeast screenings (7,837 genes) [56], providing 
a global genetic interaction network [57]. Specifically created 

Table 2. Databases for cell line-based pharmacological perturbation screenings.

Database Screening/Analysis method Data Type Database publication

DepMap CRISPR, RNAi (Achilles, Score) Gene dependency data across cancer cell lines Tsherniak et al. [55]
Project DRIVE RNAi, shRNA Gene knockdown data from cancer cell lines McDonald et al. [52]
Score CRISPR (Sanger Institute) Gene knockout screens in cancer cell lines Behan et al. [53]
Achilles CRISPR (Broad Institute) Gene essentiality screens across diverse cancer 

types
Tsherniak et al. [55]

CellMap Yeast genetic screening Genetic interaction networks in yeast Costanzo et al. [56]
SynLethDB 

3.0
Multiple (CRISPR, RNAi, literature curation, computational 

predictions)
Synthetic lethality gene pairs across species Wang et al. [58]; Guo et al. 

[59]
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for SL, SynLethDB and its latest update SynLethDB 3.0 offer 
a comprehensive collection of SL gene pairs in multiple spe
cies from various sources, including biochemical assays, pub
lic databases, computational predictions, and manually 
curated data from literature and text mining [58,59]. It has 
51,411 known SL pairs for all 5 species, and over 1,777,000 
predicted pairs. An overview of available databases for phar
macological perturbation screenings is presented in Table 2 
[52,53,55,56,58,59].

These databases serve as valuable resources for compu
tational prediction models aimed at overcoming the inher
ent limitations of experimental screenings, which are often 
time-consuming and unrealistic due to the highly combi
natorial nature of SL gene pair analyses. Several distinct 
methods have been developed to identify SL relationships, 
integrating biological knowledge as needed [60,61].

Hypothesis-based methods require prior knowledge to pre
dict SL, such as identifying SL pairs that are co-expressed but 
presenting mutually exclusive alterations to avoid cell death. 
Specific pipelines have been developed for these methods, 
such as DAISY (Data mining Synthetic lethality [62]), which 
applies three parallel statistical inference strategies to cancer 
genomic data, MiSL (Mining Synthetic Lethals [63]), which 
identifies SL partners for specific mutated genes in pan- 
cancer data from The Cancer Genome Atlas (TCGA), and ISLE 
(Identification of clinically relevant Synthetic Lethality [64]), 
which mines TCGA data to predict drug responses. While 
these methods are relatively straightforward, they are limited 
by the known SL pairs available in the databases. In contrast, 
network-based methods are more extensive, analyzing pro
tein-protein interactions or signaling networks. For example, 
IDLE (Identifying Dosage Lethality Effects [65]), predicts SDL 
from metabolic models, while Fast-SL [66] identifies SL in 
metabolic networks. These and similar methods are discussed 
in more detail in several publications [60,61].

The advancement in machine learning (ML) has led to the 
development of various algorithms for SL prediction. Most fall 
under the scope of supervised ML, which identifies patterns 

from labeled observations (known SL or non-SL pairs), learning 
the relationships between the input values and this label to 
subsequently recognize them in new observations. These 
algorithms integrate multi-omics data from the abovemen
tioned databases (Table 2), along with SL key traits, such as 
gene co-expression and the presence or absence of mutually 
exclusive alterations to predict novel SL pairs.

Within ML, deep learning (DL) methods represent a more 
intricate subset that identifies nonlinear relationships across 
multiple layers, often building graphs or networks that mimic 
cellular systems. This allows DL methods to better capture SL 
relationships beyond paired genes. Nevertheless, both ML and 
DL approaches require known SL and non-SL pairs to be properly 
trained and are typically improved by incorporating other biolo
gical knowledge, such as protein-protein interactions or pathway 
data. Some methods, like matrix factorization (MF), can be imple
mented in an unsupervised manner, overcoming the need for 
labeled data [60,61,67–71]. A summary of SL computational 
methods is presented in Table 3 [62–66,68–84].

5.1. Computational modelling

To fully explore SL relationships, it is crucial to identify targe
table SL partners and potential drugs that can act against 
them. High-throughput perturbation screening experiments 
have been performed in several cell lines in order to uncover 
vulnerabilities from multi-omics data across diverse cancer 
types. Notable initiatives, such as PRISM [85], the Genomics 
of Drugs Sensitivity in Cancer (GDSC) [86,87], and the Cancer 
Therapeutic Response Portal (CTRP) [88], have contributed to 
this effort. However, although this data has been integrated in 
some of the previously mentioned computational methods 
(e.g., DAISY [62], MiSL [63], and ISLE [64]), it is often only 
included in the refinement steps and is not fully leveraged. 
This is largely because most approaches primarily focus on 
multi-omics data and do not fully capitalize on the perturba
tion data’s potential [89,90].

Table 3. Summary of SL computational methods.

Model type Model Model name Model publication

Statistical methods DAISY Data Mining SL Jerby-Arnon et al. [62]
MiSL Mining Synthetic Lethals Sinha et al. [63]
ISLE Identification of clinically relevant SL Lee et al. [64]
SiLi Statistical inference-based SL identification Yang et al. [72]

Network methods IDLE Identifying Dosage Lethality Effects Megchelenbrink et al. [65]
Fast-SL Fast SL Pratapa et al. [66]

Classical ML methods SL2MF Matrix factorization model for SL prediction Liu et al. [69]
GRSMF Graph regularized self-representative matrix factorization Huang et al. [70]
CMFW MF with a matrix-specific weight (W) Liany et al. [71]
DiscoverSL Discover SL Das et al. [73]
CMF Collective matrix factorization Singh and Gordon [74]

Deep learning methods DDGCN Dual-dropout graph convolutional network Cai et al. [68]
KG4SL Knowledge graph for SL Wang et al. [75]
KR4SL Knowledge Graph Reasoning for SL Zhang et al. [76]
SLKG Synthetic Lethality Knowledge Graph Zhang et al. [77]
GCATSL Graph contextualized attention network for SL Long et al. [78]
SLMGAE SL Multi-view Graph Auto-Encoder Hao et al. [79]
MGE4SL Multi-Graph Ensemble Neural Network for SL Lai et al. [80]
SLGNN Synthetic Lethality knowledge graph neural network Zhu et al. [81]
PTGNN Pre-Training Graph Neural Networks Long et al. [82]
PiLSL Pairwise interaction learning-based graph neural network Liu et al. [83]
NSF4SL Negative-sample-free contrastive learning for SL Wang et al. [84]
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To better use the available perturbation data, several new 
computational approaches have been developed, many of 
which integrate single-cell RNA-seq (scRNA-seq) data. Some 
methods, such as scGen [91], scVIDR [92], and CellOracle [93], 
are broadly aimed at perturbation prediction, while others, like 
beyondcell [94], scDEAL [95] and scRank [96] are specifically 
designed for drug-response predictions. Thanks to their 
novelty, most of these models are continually updated. 
However, incorporating scRNA-seq data adds an extra layer 
of complexity and often disregards existing data.

As highlighted by Srivatsa et al. [89], perturbation data is 
frequently used as a validation tool rather than as a predictive 
resource for SL interactions. They propose a novel framework 
that combines mutated genes with perturbed genes to predict 
SL based on drug response, aiming to better harness the 
power of perturbation data in therapeutic contexts.

6. Future perspectives

In this work, we show that several approaches, both wet-lab 
and computational, have been developed to predict synthetic 
lethality. However, despite the amount of knowledge gained 
from screening methods and their computational integration, 
there is still much work to be done. In many cases, the 
proposed SL pairs are not yet being used as therapeutic 
targets, even though clinical trials involving these targets 
have been—and continue to be—conducted.

In wet-lab methods, detailed information can be obtained 
at multiple levels for the studied SL pairs within specific cancer 
types, ranging from cell lines to in vivo models. However, one 
of the key challenges in identifying SL is defining bona fide 
negative pairs—genes that cannot exhibit an SL relationship. 
It is quite difficult to prove through perturbation screenings 
(as done to determine SL pairs) that these genes are entirely 
unrelated, especially accounting for the complex network 
interactions between genes.

On the other hand, while in silico methods offer signifi
cantly faster and cheaper exploration of multiple gene combi
nations in a shorter time, they are dependent on existing data, 
which may not always be available for a given cancer type or 
specific omics data. Wet-lab identification efforts do not 
always translate into computational resources, creating a gap 
in the data available for computational methods. This limita
tion is especially pronounced in DL models, which require vast 
amounts of data. The lack of negative-labeled data further 
restricts model performance, as many algorithms require 
both positive and negative cases for proper training. 
Nevertheless, some strategies are being developed to over
come these challenges, such as NSF4SL (Negative Sampling 
Free for SL), which avoids the use of negative pairs [84].

Unfortunately, the disconnect between computational meth
ods and biological data fuels a feedback loop. As DL algorithms 
often function as black boxes, they are often overlooked by the 
biological community due to their poor interpretability. 
Simultaneously, commonly used data repositories such as TCGA 
and DepMap continue to grow, but the ML methods themselves 
are not always kept up to date [60,84]. To bridge this gap between 
wet-lab experiments and computational models, careful curation 

and preprocessing of data is essential. Integrating as much avail
able data as possible and exploring gene networks holistically 
could provide valuable insights (Figure 5). Future studies should 
focus on a dual outcome: not only identifying SL pairs but also 
considering how results obtained in experimental settings would 
be used to train or validate computational methods, or how genes 
predicted by these models should be experimentally tested, 
respectively. In this context, more interpretable ML methods 
could better help predict synthetic lethality in ways that are 
both understandable and reproducible, while allowing for bidirec
tional sharing of new data.

Furthermore, incorporating new knowledge into these 
models, particularly in the field of epigenetics, is crucial. 
While many current approaches focus on DNA repair mechan
isms, there is increasing interest in DNA-associated processes, 
such as DNA methylation and chromatin accessibility, studied 
through techniques like ATAC-seq (assay for transposase- 
accessible chromatin). Initially, increased methylation in pro
moter CpG islands was linked to gene silencing, but later 
studies revealed a more complex relationship. For instance, 
positive correlations between methylation and gene expres
sion have been found, especially in gene body or downstream 
regions. Additionally, methylation of enhancer regions, though 
less explored than promoter methylation, may play an impor
tant role in transcription regulation [97–101].

The complexity of methylation marks—both in terms of 
their presence or absence across methylation sites—creates 
a challenging puzzle in gene expression regulation. Further 
studies are needed to understand how gene expression is 
regulated via methylation, first in normal cells to establish 
baseline methylation profiles in normal cells, which can then 
be later compared to cancer cells to identify alterations. By 
integrating this regulatory layer with existing knowledge on 
gene networks, new potential SL pairs can be identified.

Similarly, histone modifications are another key aspect of 
epigenetic regulation that could offer new insights into cell 
regulation and potential therapeutic strategies. Histones, 
beyond serving as scaffolds for DNA packaging, dynamically 
modulate chromatin accessibility through several post- 
translational modifications. Enzymes involved in these pro
cesses are classified as “writers,” “erasers,” or “readers,” 
depending on their role in adding, removing or interpreting 
modifications, respectively (Table 1). Mutations in these 
enzymes and the histones themselves can alter chromatin 
dynamics and present new targets for pharmacological inhibi
tion, potentially revealing additional SL genes.

Therefore, when accounting for all these epigenetic mechan
isms, it is clear that despite its abundance, the use of gene 
expression is largely untapped, since its use has been limited to 
co-expression and differential expression analyses. Underlaying 
mechanisms like copy number alterations, DNA methylation, or 
chromatin accessibility have not been fully leveraged. By establish
ing baseline levels of gene expression in normal versus cancerous 
cells, these mechanisms can be characterized and targeted as the 
root cause of altered expression profiles.

This brings us to the growing attention on epigenetic 
drugs, also known as epidrugs. Epidrugs target enzymes 
involved in epigenetic regulation, such as DNA methyltrans
ferases (DNMT), histone deacetylases (HDAC), histone 
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methyltransferases (HMT) and bromodomain and extra- 
terminal motif proteins (BET). Although several inhibitors tar
geting these enzymes are approved for cancer treatment (e.g., 
DNMTi, HDACi, HMTi), their non-specificity due to the highly 
conserved nature of these enzymes and the dynamic nature of 
epigenetic regulation often lead to off-target toxicities. 
Synthetic lethality offers a promising avenue to reduce these 
off-target effects, as the presence of the acquired alteration in 
cancer cells could reduce toxicity to healthy cells. SL relation
ships can be established between both epigenetic and non- 
epigenetic alterations and an epigenetic target, as exemplified 
by the SWI/SNF and PCR2 complexes discussed earlier.

While current efforts to identify SL interactions often focus on 
specific gene pairs in particular cancer subtypes, it may be time 
to take a step back and reassess the data collected in detail. 
A deeper understanding of the biological systems under study is 
needed, achieved by integrating and interpreting existing data. 
This includes starting with control cases and moving on to dis
ease states. While more data will undoubtedly be helpful, its 
quality is key. Bridging the gap between wet-lab and computa
tional methods will allow us to better understand how they can 
complement each other. As we explore the broader landscape of 
SL, we must characterize gene networks more thoroughly to 
identify new targets. Epigenetic mechanisms are not just another 
layer of regulation, but a critical system that should be fully 
incorporated into SL research.

By reevaluating our current knowledge and exploring novel or 
repurposed drug combinations, we can better harness the poten
tial of SL in cancer therapy. To truly advance the field, the next 
step is not just about pushing forward but ensuring that we build 
a solid foundation-, fone that integrates current insight, strength
ens our understanding of biological systems, and refines our 
methodologies. Only by doing so can we fully exploit synthetic 
lethality and develop more effective, targeted therapeutic 
strategies.
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