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Abstract
Digital Pathology (DP) revolutionizes the diagnostic workflow. Digitized scanned slides enhance operational efficiency 
by facilitating remote access, slide storage, reporting and automated AI image analysis, and enabling collaboration and 
research. However, substantial upfront and maintenance costs remain significant barriers to adoption. This study evaluates 
DP’s financial and qualitative value, exploring whether the long-term financial benefits justify investments and addressing 
implementation challenges in large public and private European laboratory settings. A targeted literature review, semi-
structured interviews, surveys, and a net present value (NPV) model were employed to assess DP’s impact on clinical prac-
tice and laboratory financials. Qualitative findings validate the key benefits of DP, including optimized workflow, enhanced 
logistics, and improved laboratory organization. Pathologists reported a smooth integration, improved training, teaching, 
and research capabilities, and increased flexibility through remote work. Collaboration within multidisciplinary teams was 
strengthened, while case examination efficiency and access to archival slides were notably improved. Quantitative results 
indicate that DP demonstrates strong financial potential, achieving cost recovery within 6 years. DP investment results in a 
7-year NPV of + €0.21 million (m) driven by increased productivity and diagnosis volumes. Although the high upfront costs 
for scanners, training, and system integration pose a significant barrier to the adoption of DP, larger institutions are better 
positioned to leverage economies of scale. This study underscores the importance of sustained financial support to cope with 
the initial investment and regional collaboration in driving widespread adoption of DP. Expanding reimbursement policies 
for pathology procedures could significantly reduce financial barriers.
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Introduction

Pathology is a cornerstone of precision medicine as it plays 
a critical role in enabling accurate disease diagnosis and 
guiding treatment decisions through the integration of his-
topathology and biomarker testing [1, 2]. The increasing 
complexity of diagnostic tasks in pathology, driven by the 
need for additional morpho-biological information to sup-
port personalized patient management, and combined with 
a global shortage of pathologists, poses a significant chal-
lenge to realizing the full potential of personalized medi-
cine [3], primary research. In this context, DP provides 

transformative solutions by optimizing workflows, enabling 
collaboration, and addressing the demand for highly special-
ized diagnostics while maintaining acceptable turnaround 
times (TAT) [4–12].

Digital pathology facilitates remote access and stream-
lined storage and analysis of slides via specialized software 
solutions. These advancements support cross-laboratory 
and international collaboration, remote consultations, and 
progress in research [4–7, 9–14]. Furthermore, DP lays 
the foundation for the integration of artificial intelligence 
(AI)-powered tools, referred to as computational pathology 
(CP), which enhance diagnostic accuracy, predictive mod-
eling, and treatment planning. These AI applications hold 
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significant promise for advancing pathology and precision 
medicine [15–19].

However, the implementation of DP in real-world clinical 
practice faces several challenges, with the financial burden on 
healthcare institutions being a primary concern [3, 20–22]. Costs 
may vary depending on multiple factors, such as laboratory size, 
expertise, operations, selection of technology, and purchasing 
power, but the initial investment and operational costs remain 
substantial [3, 21, 23]. All of these costs, combined with unclear 
short-term benefits, may disincentivize its adoption.

Nonetheless, DP’s long-term financial advantages, 
including improved operational efficiency (e.g., reduced 
additional IHC orders, higher case volumes with fewer or 
stable resources) and workload distribution (e.g., working 
hour savings, TAT decreases, courier/travel expenses sav-
ings), may outweigh these challenges [3, 7, 10, 12, 24].

This research assesses DP’s financial and qualitative 
value, while addressing key implementation challenges in 
Europe. It explores whether long-term financial benefits jus-
tify investments in DP by analyzing initial costs alongside 
long-term benefits and considers the perspectives of patholo-
gists and technicians to provide a comprehensive view of 
DP’s impact on clinical practice.

Methods

Targeted Literature Review (TLR)

A TLR was conducted to identify the key aspects of DP 
implementation, including costs, revenue drivers, and impact 
metrics. This informed an interview guide validated by inter-
national key opinion leaders (KOLs) in Pathology.

Primary research during and post‑laboratory visits

Laboratory visits at eight hospitals across five countries 
(UK, Germany, France, Spain, Italy) assessed DP impacts. 
Interviews and surveys collected data on funding, imple-
mentation, challenges, and outcomes. Financial data were 
provided during or post-visits, with anonymized surveys 
capturing additional qualitative insights (Table 3—Supple-
mentary Material).

Net Present Value (NPV) model

The model assesses DP’s financial benefits and costs, focus-
ing on NPV over a 7-year forecast for seven pathology 
departments, with 81.4% (44.5 to 100.0%) of cases digitized. 
It includes case volumes, reimbursement, personnel metrics, 
and infrastructure investments across base, best, and worst 
scenarios. Productivity gains and natural growth (2.06%) 
[25] are factored in, excluding benefits and investments 

non-DP-related and asset amortization. A 5% discount factor 
is applied, and the asset lifespan is in line with the forecast 
horizon [23, 26, 27], ensuring realistic financial projections 
based on global trends and primary data (Table 10—Sup-
plementary Material).

Results

Qualitative data

Qualitative insights were gathered through interviews with 
key stakeholders from each laboratory, including pathology 
department directors, specialist pathologists, pathology resi-
dents, technicians, IT staff, and accounting personnel. Addi-
tional feedback was obtained via surveys, with responses 
from 45 pathologists and 47 technicians (Tables 4–9—Sup-
plementary Material).

The laboratories participating in the analysis vary in 
several aspects, including funding sources (private/public), 
number of pathologists and technicians, areas of specializa-
tion, and timeline of digitization. Despite these differences, 
all laboratories are part of major academic hospitals, charac-
terized by a high volume of activity and highly skilled work-
force. Further details about each laboratory are provided in 
Table 3 of the Supplementary Material.

Pre‑implementation phase—context, funding, 
and procurement

Laboratories implemented DP primarily to modernize work-
flows and to prepare for CP integration. Private sector initia-
tives were also driven by the need to optimize resources and 
scale operations. Funding sources included the European 
Union, charity, and governmental and private sources, often 
supplemented by hospital budgets.

Procurement methods differed by funding source: public 
funding involved open tenders, while private funding allowed 
for direct negotiations with the manufacturers. Most laborato-
ries tested equipment before finalizing selections, focusing on 
image quality, user-friendliness, interoperability, integration 
ease, cost, customer service, and peer feedback. Cost reduc-
tions were achieved through grouped purchases, extended 
maintenance periods, and vendor agreements for showcasing 
DP setups or providing on-site technical support.

Implementation phase—process and challenges

Laboratories validated DP equipment, and technicians received 
training from the manufacturers. Most laboratories completed 
or plan to complete their transition within 6 to 18 months, 
but adopted various approaches for integrating DP into daily 
workflows:
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•	 Full and immediate: Three laboratories switched entirely 
to DP across all specialties at once.

•	 Gradual, specialty-by-specialty: Four laboratories tran-
sitioned gradually, validating each specialty.

•	 Flexible: One allowed continued microscope use for 
pathologists preferring a gradual adaptation.

None of the laboratories has digitized cytology, one 
has digitized in situ hybridization (ISH), and another has 
digitized immunofluorescence. The transition was generally 
straightforward for the staff, with reported initial workload 
increases due to parallel workflows (mostly in laboratories 
that transitioned gradually), and slower performance during 
adaptation.

Common challenges included technical integration and 
change management. Laboratory information system (LIS) 
integration required high-speed access to whole slide images 
(WSIs), multi-user functionality, and seamless communi-
cation with scanners and storage systems. Integration with 
staining machines and labeling and tracking systems proved 
difficult as well, primarily due to the lack of standardized 
interoperability protocols. Change management challenges 
arose as some staff resisted adjustments to the new routine 
practices, although most embraced the transition.

Additionally, storage was an important concern for 
laboratories. They have adopted different storage options 
for WSIs based on factors such as slide volume, budget, 
IT infrastructure, and preferred storage modalities. These 
options range from on-site and off-site storage to cloud-
based systems or centralized storage solutions for labora-
tory networks, with varying storage capacities to adapt to 
their needs.

Impact on laboratory logistics and workflow 
optimization

Pathologists and technicians reported positive impacts resulting 
from DP implementation, including reduced risks of slide loss, 
damage, misfiling, and misreporting. Introducing a labeling and 
tracking system streamlined workflows by minimizing manual 
data entry and improving organization. In addition, DP created 
a more structured workspace, enabled instant access to archived 
slides for research, teaching, and diagnostics, eliminated the 
need for slide triaging for each pathologist, as well as the han-
dling and circulation of slide trays, etc.

While DP added tasks such as scanner loading and scan-
ning, laboratories adapted by using high-capacity scanners 
for overnight bulk scanning and smaller scanners for urgent 
cases during the day. For multi-site laboratories, DP elimi-
nated delays from physical slide transportation, allowing 

immediate access to WSIs post-scan. Enhanced quality 
control (QC) measures ensured smoother diagnostics and 
higher quality outputs.

Some disadvantages were noted, including reliance on 
digital systems, where failures could disrupt workflows. 
Early technical issues, especially with QC and scanning, 
caused delays, requiring rescanning of slides. Additionally, 
DP led to implementing extra quality control measures for 
slides and placed greater emphasis on maintaining high-
quality standards throughout the entire process (e.g., block 
cutting and applying cover slips to glass slides), initially 
extending processing times. However, as systems became 
better integrated and personnel more familiar with handling 
issues, these challenges were mitigated.

Pathologists’ perceptions of DP: key benefits 
and challenges

Pathologists reported a highly positive perception of DP 
(Fig. 1), preferring it over traditional microscopy after a 
smooth adjustment period of a few weeks to 3 months in 
most cases.

They noted enhanced daily practice through improved 
efficiency, patient case examination, and ergonomics (e.g., 
reduced back strain and visual fatigue). While pathologists 
were unable to estimate the efficiency gains, faster access to 
slides, simultaneous viewing of multiple slides, and easier 
archive access were cited as significant time-saving benefits. 
Additionally, pathologists highly appreciated the flexibility 
offered by DP, especially in terms of remote working, as it 
enhanced their work-life balance.

Digital pathology improved collaboration by enabling 
second opinions from colleagues during off-hours or across 
hospitals/countries and simplifying multidisciplinary team 
(MDT) meeting preparation. However, laboratories without 
a common digital network faced challenges securely sharing 
WSIs in formal consultations.

Digital pathology facilitated teaching and research by 
allowing simultaneous image reviews with trainees and 
easier access to archival slides. Additionally, DP-enabled 
laboratories attracted pathologists more easily, addressing 
workforce shortages with temporary remote support and 
flexible work options. Remote practicing was particularly 
valued in the context of service crises such as the recent 
COVID-19 pandemic [28]. However, remote work flexibility 
occasionally led to extended working hours.

Despite overall satisfaction, pathologists noted limitations 
in visualizing specific details, such as depth perception and 
clarity in certain tissues (e.g., hematology, adipose tissue), 
although these differences rarely impacted the diagnosis.
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Technicians’ perceptions of DP

Technicians found the DP transition manageable, noting that 
it replaced old tasks with new ones without significantly 
increasing workload. Automation of tasks such as data entry 
and slide triaging streamlined workflows, with reported effi-
ciency gains ranging from 10 to 60% (Fig. 2).

Some technicians felt DP added workload in slide QC and 
required more careful preparation. Delays due to rescanning 
were noted as well. Additionally, remote work for patholo-
gists reduced direct interactions with technicians, limiting 
real-time feedback and engagement.

Current state of Computational Pathology (CP) 
implementation

Most laboratories interviewed have limited CP tools, often 
using only those integrated within the image management 
systems (IMS) for tasks such as a Ki67 analysis. According 

to pathologist input, stand-alone CP tools are generally 
costly. When available, they are funded through research 
grants or vendor collaborations, making their long-term use 
uncertain without dedicated reimbursement. Although CP 
tools could be expensive, many pathologists expressed inter-
est in adopting them but highlighted barriers, such as a lack 
of reimbursement, high per-use costs, and a greater need for 
algorithm validation.

Financial outcomes: long‑term financial benefits—
NPV model outcomes

In the following section, we present and discuss the results 
of the model data collection obtained from the participat-
ing laboratories. The model synthesizes the input data by 
averaging inputs across the laboratories. Detailed insights 
into the data inputs and their distribution are provided in 
Table 11, located in the supplementary materials section.

Fig. 1   Results of the survey assessing the pathologists’ perceptions of the impact of digital pathology (n = 45)

Fig. 2   Results of the survey 
assessing the technicians’ per-
ceptions of the impact of digital 
pathology (n = 47)
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Investments needed

Implementing DP requires substantial financial commit-
ments, including setup costs, recurring expenses, and main-
tenance. The model captures a 7-year discounted €2.22 
million (m) investment in hardware, €1.42 m in software, 
€1.12 m in IT infrastructure and storage, and €0.32 m in 
personnel to ensure a sustainable DP workflow during the 
7-year period considered (Table 1).

The total average initial investment, not actualized, 
amounts to €2.15 m. The cost per case drops from €47.1 at 
Year 0 or startup to €6.9 at Year 7 or projection end. Effi-
cient scaling and resource use are crucial to sustaining cost 
reductions and maximizing DP’s economic benefits.

The adoption of DP entails significant upfront costs in 
technology and infrastructure. Hardware investments, par-
ticularly scanners, are the largest expense, comprising a sub-
stantial portion of the budget. High-capacity scanners cost 
approximately €277 thousand (k) each, with five scanners 
initially required. Additional scanners are added for every 
75 k additional slides processed annually (Table 12—Sup-
plementary Materials). Other hardware investments include 
€4 k per workstation at set up.

The IT infrastructure is crucial for supporting the data-
intensive WSI requirements. Over a 7-year period, the yearly 
cost for data storage and IT systems is, on average, €155 k, 
with an initial investment of €278 k, covering multi-tier stor-
age solutions and network upgrades. Additionally, annual IT 
management costs amount to €93 k, highlighting the impor-
tance of robust maintenance. Workstations may incur a one-
time cost of €4,211, depending on the monitor quality grade 
and specialized equipment, such as a pathologist’s digital 
navigation controller for case analysis.

The integration of pathology-viewer software, case man-
agers, and LIS is essential for streamlining workflows and it 
may cost between €73 k and €137 k annually, respectively, 
with an additional €276 k for the initial setup.

Operational costs play a crucial role in sustaining DP sys-
tems, encompassing some key components, such as labor 

costs and maintenance. Labor costs involve hiring scanning 
technicians to manage high-throughput workflows, with each 
additional full-time equivalent (FTE) costing €50 k annu-
ally. Maintenance and IT operations are equally significant, 
with scanner maintenance costing €65 k per year to ensure 
reliability and prevent disruptions. Although facility adjust-
ments may be needed for new technologies, none of the set-
tings in this study required structural changes.

Quantified economical benefits

Implementing DP provides substantial economical and oper-
ational benefits, transforming diagnostic workflows. This 
analysis highlights the key advantages, including increased 
exam volumes, secondary consultations, workforce effi-
ciency improvements, and equipment cost reductions, deliv-
ering a 7-year discounted €5.29 m in total benefits over the 
forecasted period. These include €4.33 m from higher exam 
volumes due to productivity gains, €559 K from secondary 
consultations, €372 k from workforce efficiency improve-
ments, and €32 k from reduced equipment costs (Table 2).

The largest financial benefit comes from increased exam 
volumes driven by improved productivity.

Case volumes, steered by the natural growth and captured 
by means of DP, rise steadily from 56 k in Year 0 to 75 k in 
Year 7, generating economic benefits that grow from €128 k 
in Year 1 to €1.63 m in Year 7. Revenues per case grow pro-
gressively from €1.4 at Year 0 or startup to €24.7 at Year 7 
or end of projection, highlighting the scaling potential of DP. 
Digital pathology enhances throughput and reduces TAT, 
enabling higher volumes without significant labor or infra-
structure increases, thereby maximizing operational output 
and returns.

Furthermore, DP supports secure sharing of anonymized 
slides, boosting secondary consultations. Consultation vol-
umes grew from 2785 cases in Year 0 to 5348 by Year 7, 
with financial benefits increasing from €30 k in Year 1 to 
€167 k in Year 7.

The implementation of DP enhances workforce efficiency, 
enabling organizations to handle growing volumes without 

Table 1   NPV digital pathology investment needed (discounted fig-
ures)

NPV digital pathology investment needed

Data storage and IT infrastructure €1,118,973
Increase in personnel €323,807
Software €1,423,199
Hardware and equipment €2,221,429
Total investment needed €5,087,408

Table 2   NPV digital pathology total benefits (discounted figures)

NPV digital pathology total benefits

Increased exam volumes €4,329,430
Workforce efficiency increase €371,963
Reduction in equipment €31,508
Secondary consultations €559,434
Total benefits €5,292,335
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adding FTEs. This efficiency translates into annual labor 
cost savings, or redistribution, of 0.20 pathologist FTEs 
and 0.80 technician FTEs, totaling €372 k over 7 years. The 
reduction in technician and pathologist FTEs can translate 
into annual savings ranging from €0 to €57 k, reaching up 
to €107 k. It is important to note that the reduction in FTEs 
should not be interpreted as a pure workforce reduction but 
rather as an opportunity to reallocate time to other laboratory 
tasks as captured in the qualitative part of the survey. The 
economic benefit was calculated by multiplying the primary 
data on FTE reduction with the average annual salaries of 
pathologists and technicians per FTE.

In addition, DP decreases reliance on optical microscopy, 
saving costs on microscope replacement and maintenance. 
The model projects a €32 k in yearly savings over 7 years.

Further considerations, addressing best- and worst-case 
scenarios, are discussed in the Supplementary Materials.

Business case

The DP business case shows a steady improvement in cash 
flow over time, turning positive by Year 3, with the non-
discounted cash flow reaching €1.10 m and the discounted 
cash flow at €0.78 m by Year 7, demonstrating the finan-
cial feasibility of DP adoption (Figs. 4 and 5—Supplemen-
tary Material). Over a 7-year timeframe, it demonstrates a 
slightly positive 7-year NPV value of €0.21 m, with actual-
ized economical quantified benefits totaling €5.29 m and 
an actualized economical investment needed of €5.09 m in 
the studied setting. Figure 3A, B shows that investment in 
hardware and equipment accounts for more than 60% in the 
first year, while the increase in exam sales will drive benefits 
from Year 1 onwards. The sensitivity analysis (Fig. 6—Sup-
plementary Material) reveals growth and case processing 
efficiency as the key NPV drivers.

Fig. 3   Digital pathology yearly 
cash flow (thousands EUR) and 
the proportion of components 
expressed as a percentage of the 
yearly investment needed and 
the yearly benefits. A Digital 
pathology yearly investment 
needed. B Digital pathology 
yearly benefits

 -

 500

 1,000

 1,500

 2,000

 2,500

0%

20%

40%

60%

80%

100%

YEAR 0 YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5 YEAR 6 YEAR 7

Y
ea

rly
 In

ve
st

m
en

t N
ee

de
d 

(E
U

R
)

T
ho

us
an

ds

%
 o

f t
he

 Y
ea

rly
 In

ve
st

m
en

t N
ee

de
d

Data Storage & IT Infrastructure Increase in Personnel

Software Hardware & Equipment

Digital Pathology Investment Needed

 -

 500

 1,000

 1,500

 2,000

0%

20%

40%

60%

80%

100%

YEAR 0 YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5 YEAR 6 YEAR 7

Y
ea

rly
 B

en
efi

ts
 (

E
U

R
)T
ho

us
an

ds

%
 o

f t
he

 Y
ea

rly
 Y

ea
rly

 B
en

efi
ts

Increased Exam Sales Secondary Consultations
Workforce Efficiency Increasee Reduction in Equipment
Digital Pathology Yearly Benefits

B

A



821Virchows Archiv (2025) 487:815–826	

Discussion

Interpretation of qualitative and quantitative 
results

Qualitative finding interpretation

The success of transitioning to DP relies not only on the 
technology itself but on optimizing laboratory processes and 
managing the transition effectively.

A timely transition helps laboratories fully realize DP’s 
benefits more quickly, but depending on different laboratory 
logistics, a staggered or comprehensive rollout approach can 
be used. Many factors affect the transition duration, includ-
ing procurement, delivery, implementation, validation, and 
adoption into the routine workflow. However, hybrid work-
flows, involving both DP and microscopy, may be less effec-
tive as they slow adaptation and increase workload [29]. 
If a staggered approach is chosen, minimizing the overlap 
period is essential. This transition phase typically involved 
substantial process changes, including the standardization 
and modernization of laboratory operations, enhanced focus 
on slide preparation, and the need for personnel to become 
familiar with DP tools, which initially demanded extra time 
and attention. However, following the integration phase, 
these adjustments were seamlessly incorporated into the 
routine practices of the laboratory teams.

Optimizing laboratory processes is key to maximizing 
DP’s potential. Workflow optimization tools, such as voice 
recording, speech recognition, and labeling and tracking 
systems, streamline processes and minimize manual tasks, 
even though these tools operate independently of DP [29, 
30]. Scheduling scanning times, performing QC, and invest-
ing in modern equipment further enhance efficiency [29, 31, 
32]. A stable Internet connection, user-friendly systems, and 
high-quality scanners greatly influence laboratory produc-
tivity and perceptions of DP [29, 31, 32]. Collaboration for 
secondary opinions is a key advantage of DP, particularly in 
networks, such as DigiPatICS or Quirón Salud [33], as these 
networks allow real-time case sharing and review. However, 
achieving this level of integration requires careful planning 
during implementation, including secure network and LIS 
harmonization. Without this groundwork, sharing slides and 
patient data between hospitals can be challenging [33].

There are notable disparities among the countries in 
scope regarding DP implementation, emphasizing the need 
for tailored strategies, aligned with the unique characteristics 
of each healthcare system. Pathologists’ willingness to adopt 
DP is crucial; although some of them can be initially reluc-
tant to adopt DP, most pathologists express high satisfaction 
after experiencing its benefits [3, 29, 34].

Quantitative finding interpretation

Digital pathology implementation presents a transforma-
tive opportunity to modernize diagnostic workflows and to 
address inefficiencies [35]. Developing a strong business 
case is essential for securing investment due to DP’s signifi-
cant upfront costs [36]. However, the long-term financial and 
operational benefits make it a compelling option for prepared 
organizations [21].

This economic analysis demonstrates DP’s financial fea-
sibility, with a 7-year NPV of €0.21 m, and a positive cash 
flow by Year 3. These findings align with previous stud-
ies [7, 37] showing DP’s ability to deliver financial benefits 
through operational efficiencies and reduced ancillary costs 
[3, 38].

Key drivers of financial sustainability include increased 
productivity, higher case volumes, and expanded digital 
case processing. According to literature, this model dem-
onstrates that DP enables institutions to process growing 
case volumes without additional FTEs, thereby optimizing 
time and resources while delivering significant economic 
benefits [3, 35]. By redistributing workloads and reducing 
manual processes, DP maintains diagnostic quality while 
improving efficiency. These labor-related benefits address 
workforce shortages amid rising global demand for skilled 
professionals.

Despite these advantages, DP’s substantial upfront costs 
for hardware, software, storage, and LIS integration remain 
significant barriers [21]. While large laboratory departments 
of academic, tertiary hospitals, and public healthcare set-
tings often leverage public funding to offset costs, smaller 
institutions may struggle, underscoring the need for tailored 
funding strategies.

Storage represents one of the most significant cost driv-
ers, with expenses expected to rise as the required storage 
capacity continues to grow. While storing WSIs provides the 
benefit of rapid access for re-evaluation, retention practices 
differ across laboratories. Some laboratories do not currently 
plan on deleting WSIs, while others adopt deletion policies 
to manage costs. These policies may involve removing WSIs 
after a set period (e.g., 2 or 6 months or longer) or retaining 
only those deemed valuable for teaching or research pur-
poses. If needed, as laboratories are required to retain physi-
cal slides, re-scanning remains a viable option. However, 
pathologists have noted a trend toward decreasing storage 
prices. This reduction could positively impact the financial 
sustainability of DP, potentially improving its NPV.

Still, DP significantly enhances operational efficiency, 
enabling pathologists to process more cases with the same 
resources and achieving an average productivity increase 
of 7.4% [7, 10, 36, 37]. These improvements stem from 
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streamlined workflows, faster access to digital slides, and 
eliminating delays from physical slide handling [39]. In 
addition, this study identifies a 15.30% reduction in turna-
round time, emphasizing DP’s efficiency gains [3]. Moreo-
ver, DP supports rapid sharing of anonymized cases for sec-
ondary consultations, increasing collaborative diagnostics 
by 19%.

Large tenders, often including multi-year service pack-
ages, training, and bundled software, covering case man-
agers, slide viewers, and LIS interfaces, usually involve 
multiple hospitals or laboratories and can enhance institu-
tions’ bargaining power, significantly reducing costs [33]. 
Additional savings may come from hospitals covering IT 
setup and data storage, as these services are typically shared 
across departments.

The future of histopathology: computational 
pathology

There are more than 50 CE-IVD diagnostic CP tools avail-
able to diagnostic pathologists [40]. Digital pathology estab-
lishes a strong foundation for CP, and pathologists working 
in a DP ecosystem are generally receptive to computational 
tools and algorithms that save time and boost efficiency. 
During laboratory visits, many pathologists emphasized 
the importance of CP in realizing the full potential of DP, 
stating, “the main goal of DP is to enable CP.” Supporting 
research underscores this, as CP algorithms have demon-
strated expert-level performance in tasks prone to inter-
observer variability (e.g., diagnosis, grading, mitoses enu-
meration, and subtyping) across therapy areas, such as the 
breast [8, 41, 42], prostate [43], colorectal [44], ovarian [45], 
and lung cancer [46–48].

However, CP adoption remains limited. High costs, lack 
of reimbursement, and the limited trust pathologists have in 
the current reliability of the algorithm are the main barri-
ers that discourage adoption. Most laboratories access CP 
solutions through research funding initiatives or strategic 
collaborations with developers, but broader adoption will 
require clearer financial incentives and coverage frame-
works. To date, most CP tools have been designed to sup-
port the pathologist’s decision. As algorithms progressively 
integrate into routine care and become more diagnostic than 
supportive [49], prioritization of CP may change.

Call to action: recommendations

Organization into pathology networks

Digital pathology enables telepathology and cross-labora-
tory collaboration. Networks, such as DigiPatICS, Quiron 
Salud, and Pathlake, have achieved enhanced scalability, 

access to subspecialties, data pooling for research and AI 
training, and cost efficiency through centralized storage and 
purchasing power [3, 7]. Moreover, establishing laboratory 
networks could facilitate the adoption of DP in smaller labo-
ratories, by reducing the upfront investment costs, and ena-
bling them to leverage the expertise of larger academic cent-
ers. This approach could enhance the quality of care delivery 
while potentially offering long-term economic advantages. 
While careful planning is essential, organizing into networks 
is highly beneficial.

External funding

Most laboratories implemented DP with external financial 
support from governmental (e.g., KHZG, Innovate UK), 
European (e.g., NGEU), or charity-based funding schemes, 
acting as catalysts for adoption. While our NPV model 
shows DP is self-sustaining with a positive NPV, smaller 
laboratories with fewer cases, no network affiliation, and 
limited funding may face challenges. High initial costs 
remain a barrier, making continuous financial support from 
policymakers crucial for wider adoption.

Reimbursement and coverage for CP

Reimbursement of H&E and IHC diagnostics do not account 
for advanced technologies. Artificial intelligence-driven 
interpretation of immunohistochemistry could enhance accu-
racy and biomarker detection but requires additional finan-
cial support due to high costs [50]. Expanding reimburse-
ment for such solutions could reduce the financial burden on 
laboratories and promote access to innovative diagnostics.

Limitations

The study faced limitations that could affect the finding’s 
accuracy.

First, it focused primarily on public academic laborato-
ries with high case volumes, access to external funding, and 
less emphasis on long-term financial benefits when adopting 
innovation. While two private laboratories were included, 
both were part of larger networks. Smaller or independent 
private laboratories may have different outcomes.

Varying levels of DP implementation across laboratories 
impacted the assessment, as some were still transitioning 
to digital workflows, potentially skewing the NPV model’s 
estimated impact. Additionally, limited access to specific 
data due to confidentiality or unavailable LIS data points 
occasionally led to reliance on staff insights and publicly 
available data, introducing estimation-based variability. Due 
to insufficient data, the model did not include one of the lab-
oratories, resulting in a final total of seven laboratories for 
the quantitative results and eight for the qualitative results.
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Economic benefits from increased case volumes via DP 
were calculated using average reimbursement tariffs from 
primary interviews. While these increases may not directly 
boost budgets or revenue, they underline DP’s ability to han-
dle higher workloads with constant or reduced resources, 
addressing challenges, such as pathologist and technician 
shortages. Informal secondary consultations, common in 
public institutions, could limit the calculated economic 
benefits.

Conclusion

This study confirms that DP delivers significant qualitative 
and financial benefits, including improved workflow effi-
ciency, enhanced teaching and research opportunities, and 
increased flexibility through remote work, addressing work-
force shortages and fostering collaboration.

Financially, DP boosts productivity with higher diagnosis 
volumes, secondary consultations, and commercial partner-
ships, resulting in a slightly positive NPV and long-term 
gains. However, high upfront investments and operating 
costs remain substantial barriers, particularly for laborato-
ries with limited financial resources.

Hence, sustained external funding and expanded reim-
bursement policies are essential to unlock DP’s full poten-
tial. Policymakers should prioritize investments in DP and 
advanced diagnostic tools, such as AI-driven solutions and 
algorithms to foster innovation, alleviate financial chal-
lenges, ultimately leading to improving patient outcomes.
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