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Systemic sclerosis (SSc) is a chronic autoimmune disease with multi-organ involvement. Historically,
SSc classification has focused on the type of skin involvement (limited versus diffuse); however, a
growing evidence of organ-specific variability suggests the presence of more than two distinct
subtypes. We propose a semi-supervised generative deep learning framework leveraging expert-
driven definitions of organ-specific involvement and severity. We model SSc disease trajectories in the
European Scleroderma Trials and Research (EUSTAR) database, containing 14,000 patients across
67,000 medical visits, and identify clinically meaningful subtypes to enhance patient stratification and
prognosis. We systematically evaluate the model’s predictive accuracy, robustness to missing data,
and clinical interpretability. We identified five patient clusters, separating patients based on the degree
of organ involvement. Notably, a subset with limited skin involvement still showed high risks of lung
and heart complications, underscoring the importance of data-driven methods and multi-organ
models to complement established insights from clinical practice.

Systemic sclerosis (SSc) is a chronic autoimmune disease marked by pro-
gressive fibrosis and vascular abnormalities in the skin and multiple internal
organs such as the lungs, heart, kidneys, and gastrointestinal tract (GT)".
These multi-organ manifestations vary widely among patients in terms of
frequency, onset, and severity, leading to significant morbidity and
mortality’. Despite known clinical markers, such as skin involvement
(limited cutaneous vs. diffuse cutaneous) and autoantibodies (e.g., anti-
centromere, anti-topoisomerase I), it remains unclear which organs will

become affected over time and how these manifestations might influence
subsequent disease progression’. Early detection of at-risk individuals is
therefore crucial for managing disease severity and potentially slowing
progression’”.

Traditional classification of SSc relies primarily on the extent of skin
involvement: limited cutaneous SSc (1cSSc) is characterized by restricted
areas of skin thickening, whereas diffuse cutaneous SSc (dcSSc) involves
more widespread skin changes and often correlates with a higher risk of
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internal organ complications'. Specific autoantibodies also serve as
important biomarkers for SSc diagnosis, organ involvement, and disease
progression™. While anti-centromere antibodies (ACA) are predominantly
linked with 1cSSc and a higher likelihood of pulmonary arterial hypertension
(PAH), anti-topoisomerase I antibodies (ATA) are often associated with
dcSSc and an increased risk of interstitial lung disease (ILD), and anti-RNA
polymerase III antibodies (ARA) are associated with rapid skin thickening,
and increased risk of renal crisis’. However, because SSc involves complex,
overlapping pathologies in multiple organs, subtyping remains a challenge;
many crucial aspects of disease progression are not captured by skin-based
classification alone’.

Recent work has leveraged artificial intelligence (AI), particularly
deep learning (DL), to address the complexity of diseases with hetero-
geneous and longitudinal clinical data’ and identify patient subgroups
with similar disease evolution'®". Fully unsupervised models detect
latent (i.e. unobserved) patterns without any labels'’, while supervised
approaches rely heavily on labeled outcomes. Neither paradigm alone is
ideal for SSc, where labels (e.g., organ-specific damage) may be incom-
plete or imprecise, yet expert knowledge exists regarding clinically
relevant markers and trajectories. Consequently, semi-supervised or
hybrid methods have emerged as a promising alternative, combining
partial labels and domain knowledge to guide latent representation
learning'*'"". Most prior ML-based research for SSc has focused on single-
organ complications, such as ILD", or is limited by sample sizes'".
A multi-organ model is needed to capture the true disease complexity
and identify subtle, high-risk patient subgroups that might otherwise be
overlooked".

In this work, we propose a semi-supervised deep learning framework
for analyzing and clustering multi-organ trajectories in SSc, leveraging the
largest global SSc registry from the European Scleroderma Trials and
Research (EUSTAR) group'’. We build on a previously developed temporal
variational autoencoder-based model>"*"* tailoring it to SSc and incor-
porating novel expert-guided definitions for two key dynamics, organ
involvement and severity, each validated in a prior clinical study". We model
eight organs commonly affected by SSc: the skin, digital ulcers (DU), joints,
muscles, lungs, heart, kidneys, and gastrointestinal tract (GT), and learn
interpretable representations of patient disease trajectories. We then cluster
these learned embeddings to identify clinically meaningful subtypes that
may transcend conventional skin-based classification schemes. Figure 1
summarizes our approach.

Our key contributions include:

* Deep multi-organ SSc model: Development of a semi-supervised
generative deep learning approach to model eight clinically relevant
organs, capturing both involvement and severity over time, while
merging data-driven discovery with expert clinical insights.

e Deep SSc subtyping: Development of a hierarchical clustering
approach for patient trajectories that highlights under-recognized
high-risk subgroups and goes beyond traditional SSc subtyping.

* Large-scale evaluation: Demonstrating predictive accuracy and gen-
eralizability through comprehensive training and evaluation on over
14,000 patients and 67,000 visits from the EUSTAR registry.

* Clinical decision support: Demonstrating how additional features of
our framework, such as patient similarity and predictive clustering, can
support clinical decision-making and personalized medicine.

Results

As detailed in section "Training", we performed five-fold cross-validation
(CV). We then trained a final model for each of the five folds, resulting in 5
final models. We specifically analyzed the model trained on the first fold and
used the remaining models to assess result stability, particularly in terms of
performance on unseen test data to evaluate generalizability. We support
our disease subtyping approach with several analyses: (1) We first evaluate
the model’s ability to reconstruct or predict the organ-related variables G
(defined in section "Model overview and notations")and its robustness to
missing data. (2) Next, we examine how different features and labels shape

the structure of the latent space, (3) followed by an in-depth analysis of the
identified disease subtypes through hierarchical clustering. We conclude by
discussing how various model components can support clinical decision-
making.

Predictive performance
We compared our approach against several baselines, including both ML
and non-ML approaches in predicting the organ variables in G:

e Ours - without feature masking: Uses the same architecture as our
final approach but does not explicitly train for missing data imputation,
unlike our main model, which uses feature masking (i.e. masks 20%
randomly during training) and learns to reconstruct missing data (see
subsection "Handling missing data"). As a result, this model is opti-
mized purely for prediction rather than also for learning missing
variables, and we expect it to perform slightly better on complete
datasets.

* Multilayer Perceptron (MLP): A non-temporal model using only the
most recent clinical measurements (unlike our model, which considers
the full patient history). It is optimized purely for prediction, and does
not learn latent trajectories.

* Non-ML baselines: Distribution-based predictions/heuristics are
included to provide a benchmark for the general capabilities of ML
models.
 Patient-specific: Predicts the future value of a variable based on its

current value
*  Cohort mean: Uses the cohort mean of the feature as prediction.

Table 1 presents the Mean Absolute Error (MAE) for continuous
variables and weighted F; score for categorical variables for each model,
averaged across five CV folds. Our final model and the variant without
feature masking (i.e. missingness training) perform similarly and slightly
outperform the MLP model. All ML models strongly outperform the non-
ML baselines. Moreover, in Supplementary Table 4, we show that our
approach outperforms all other models in terms of robustness to miss-
ing data.

Latent space analysis: ground truth vs. reconstructed values

As detailed in section “Model Architecture”, our model is trained to project
raw patient trajectories into a latent (i.e. unobserved) space. In this section,
we examine and interpret these latent representations. To facilitate the
analysis, we computed the 2-dimensional UMAP”’ decomposition for each
time point in the latent trajectories, providing a visualization aid for the
latent space. In the resulting UMAP plots (for instance Fig. 2), each point
corresponds to a patient at a specific time. By overlaying the UMAP plots
with color-coded clinical measurement values, labels, or clusters, we can
intuitively visualize patient trajectories, cluster patterns, and feature/label
distributions within the latent space.

As discussed in section “Predictive Performance”, we train our model
to infer values for missing variables. Fig. 2 shows a side-by-side UMAP
visualization comparing the ground truth for masked values (i.e. not pro-
vided as input to the model) and the corresponding model reconstructions
for two features related to lung fibrosis. The close alignment between ground
truth and reconstructed values illustrates that the model reliably imputes
missing data. Notably, this applies to all variables, whether available or not,
thereby enriching the latent embeddings beyond what is present in the raw
inputs. Supplementary Fig. 5 further demonstrates how the model learns to
“fill in"gaps in the latent space.

Latent space regions

We observe that patients with different disease manifestations are
mapped to distinct regions within the latent space. By overlaying
the UMAP plots with specific feature values, we can identify the areas
corresponding to different patient types, and gain insight into which
features most strongly influence the latent space separation. In Fig. 3,
the latent space is color-coded based on feature values inferred by our

npj Digital Medicine | (2025)8:563


www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-01962-y

Article

1. A. Literature review |[T] B. Steering committee C. Database
Identify medical definitions of Q]Q Patient variable extraction
involvement & severity stage for Q‘Q from EUSTAR database
« Skin
+ Digital Ulcers VARIABLE
* Joints
Selection of one final
. Muscles ) efiniton perorean > SELECTION &
* Interstitial Lung Disease a b
. Heart and per label DATA
* Kidneys
* Gastrointestinal tract PREPARATION
Database preprocessing and
All variables from Variables selected by split into training/validation
clinical studies expert consensus (85%) and testing (15%) sets
2.
Encoder Guidance B. Encoder Decoder MODEL
4 e Decoders s [ ' '
For a given patient:
. e Z1x & miy : clinical variables
i L] until time of predicti
prediction t &
i LSTM ¢ |LSTM : corresponding missingness
+ + | mask
Z1.T e s:demo, hi iabl
. S grapnic variables
) MLP | s52=2225=2=25z25z5=: el lissssss; isssss) MLP | s o zi.7 :inferred latent
£ . £ trajectories until final time T
MLPs  ILT iz : .
& 2 * gi.r :organ-related variables
EEEEE — EE ] — until final time T
time time

All test data:
2109 patients

1%t hierarchy of clusters

2" hierarchy of clusters

562 patients

649;:;9"!5 332 patients

Fig. 1 | Overview of the study pipeline. 1. Variable selection process and database
preprocessing. 1. A We first screened the medical literature to identify clinical
definitions of involvement and severity for each studied organ, and extracted the
relevant variables X from the database. 1. B Next, a steering committee of 10
rheumatologists reached an expert consensus to select the most relevant clinical
definitions, yielding a more restricted subset of variables G C X. 1. C Patient data is
collected from various EUSTAR-affiliated centers and aggregated by the EUSTAR
group. The database is preprocessed and is randomly split into an 85% training set,
used for model development and hyperparameter tuning, and a 15% test set for hold-
out evaluation. 2. Semi-supervised model architecture. The encoder network pro-
cesses longitudinal clinical measurements, x;., up to a time-point ¢, concatenated
with the corresponding missingness indicator mask ., and static patient

DISEASE
SUBTYPING

Perform disease subtyping
for patients in the test set by
applying the hierarchical
clustering framework to the
computed patient
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trajectories 21.7
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demographic information s. It learns the distribution of the full latent trajectory z.7,
where T is the time of the last available visit in the registry. 2. A The guidance
decoders, each assigned to a specific variable in G, take as input a predefined allo-
cated subset of the dimensions from a sampled z;.r (one allocated subset per organ)
and predict the distribution of the corresponding medical variables. 2. B The
unsupervised decoder takes a sampled z,.7 (all dimensions) and is trained to
reconstruct the input x;.,.. 3. Hierarchical clustering for disease subtyping in the
learned latent space. Our method first divides the cohort into two main clusters—
mild and severe trajectories—then further subdivides the mild cluster into two
subtypes and the severe cluster into three subtypes. Abbreviations: Long Short-Term
Memory Network (LSTM), Multilayer Perceptron (MLP).

model, revealing a clear separation concerning “HRCT: Lung fibrosis”
(true vs false) and the “Cutaneous SSc” (limited vs diffuse). Additionally,
a subset of the patients with Digital Ulcers is mapped closely together,
and we can distinctly identify regions associated with Esophageal
symptoms. Additional plots and discussion for other variables are pro-
vided in Supplementary Note 5.

Hierarchical disease subtyping: first hierarchy of clusters

To perform disease subtyping, we followed the hierarchical clustering
approach described in section “Trajectory Clustering”. We identified two
primary clusters, and then further subdivided each of these into more
granular subtypes. The first hierarchy of clusters distinguishes between
patients with milder and more severe disease trajectories. The second level
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divides the mild group into two subtypes and the more severe group into
three subtypes (Fig. 1 Panel 3.). In the following, we provide a detailed
description of each cluster, followed by a discussion on the differences
between clusters, highlighting the key variables driving cluster separation.
For every organ, we plotted the empirical involvement and severity curves
by averaging the model-inferred probabilities across all patient visits
belonging to a given cluster at each follow-up visit.

In the first hierarchy of clusters, patients are split into two clusters (Fig.
4): a mild cluster (green) and a severe cluster (purple).

 Mild Cluster (green): Patients have moderate to high probabilities of
GT, heart and skin involvement, and an increasing likelihood of DU.
They have a low risk of severe symptoms across all organs.

* Severe Cluster (purple): Compared to the mild clusters, patients have a
higher likelihood of lung involvement, and exhibit high severity of skin
symptoms. Severity is additionally elevated for both heart and lung
symptoms.

These observations align with established SSc subtypes based on
skin severity (limited vs. diffuse/severe)’" and previous findings linking

Table 1 | Predictive performance

Continuous (MAE) Categorical

(weighted F,)

Ours 0.436 +0.006 0.879 +0.002

MLP 0.464 +0.003 0.872 +0.003

Ours — without feature  0.439 + 0.006 0.883 +0.004

masking

Cohort mean 0.572 +0.009 0.756 + 0.000

Patient-specific 0.522 +0.008 0.677 +0.000

We compare our final model ("Ours”) to multiple ML and non-ML-driven baselines in terms of
predictive performance for variables in G. We computed the Mean Absolute Error (MAE) for
continuous variables and the weighted F; score for binary/categorical variables.

severe skin involvement with earlier, more frequent internal-organ
complications™** as well as more pronounced ILD*. Supplementary
Fig. 11 compares the average feature values over time in both clusters.
Overall, patients in the severe cluster exhibit higher modified rodnan
skin scores (mRSS), more dyspnea, increased lung fibrosis (on HRCT
and X-ray) and lower forced vital capacity (FVC) compared to those in
the mild cluster.

Second hierarchy of clusters

This hierarchy further subdivides the clusters: the mild disease trajectory
cluster is split into two subtypes (pale and dark green, Fig. 5A.), while the
severe disease trajectory cluster is divided into three subtypes (pale blue,
dark blue, and red, Fig. 5B.).

Figure 5A. shows the average label values over time for the patients
categorized in the two mild disease subtypes. In particular, the clusters have
the following characteristics:

+ Pale Green Cluster: Patients in this cluster have a high likelihood of
skin involvement (non-severe). They have moderate probabilities of
heart and GT involvement and experience an increasing probability of
DU involvement over time. The probability of severe involvement
remains low for all organs.

* Dark Green Cluster: Patients have a comparatively higher likelihood
of heart but particularly GT involvement. Additionally, there is com-
paratively faster rise in kidney involvement. Symptom severity remains
low across organs.

In summary, patients in the pale green cluster generally experience
the mildest disease, while those in the dark green cluster exhibit slightly
increased risks—particularly for GT and heart involvement. These
patterns suggest that even among patients with limited (i.e. non-severe)
skin involvement, a subgroup exists with higher probabilities of GT
and cardiac issues™. The dark green cluster shows an increasing trend
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Fig. 2 | Ground truth versus reconstructed data. UMAP decompositions of the
latent space are overlaid, respectively, with ground truth values (left) and model-
reconstructed values (right) for lung fibrosis features. Plotted data points correspond

to values that were masked (not provided to the model), demonstrating its ability to
impute missing information.
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Fig. 3 | Regions of the latent space. Latent space UMAP decomposition overlaid with reconstructed feature values.
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Fig. 4 | First hierarchy of clusters. The cohort is divided into mild (green) and severe (purple) disease trajectories. Below the UMAPs, we show the average label values over
time in each cluster. The label trajectories highlight lung and skin involvement as key differentiators.

in dyspnea, lower eGFR, and more frequent esophageal symptoms
and recurrent DU (Supplementary Fig. 12). Figure 5B. shows the
average label values over time for the patients categorized in the more
severe disease subtypes. In particular, the clusters have the following

characteristics:

* Pale blue cluster: Patients in this cluster experience high probabilities
of severe skin involvement, with slightly increased severity of lung
symptoms. Given overall high organ involvement, these patients show
prototypical characteristics of diffuse cutaneous SSc, with elevated risks

for heart, ILD, GT, and DU*.
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Fig. 5 | Second hierarchy of clusters. A Mild Disease Subtypes. Patients with milder
disease trajectories are further divided into two subtypes. The dark green cluster
shows slightly higher probabilities of skin, heart, and GT involvement compared to
the pale green cluster. B Severe Disease Subtypes. Patients with severe disease

B. Severe Disease Subtypes

trajectories are subdivided into three subtypes: pale blue, dark blue, and red. The pale
blue cluster is marked by severe skin involvement; the dark blue cluster by pro-
nounced heart and lung involvement; and the red cluster by combined skin, GT,
lung, and heart involvement.

* Red cluster: Compared to the pale blue cluster, patients experience
elevated but slightly lower skin severity, with higher severity of heart,
lung, GT and DU symptoms. These diffuse cutaneous SSc patients are
at high risk for multi-organ complications.

 Darkblue cluster: Patients in this cluster have even lower skin severity,
while still experiencing elevated levels of heart and lung symptoms.
Importantly, using the current disease classification criteria based on
skin severity, these patients may be overlooked despite facing a high
risk of multi-organ complications™.

In summary, while all three severe subtypes show high probabilities of
skin involvement, only the pale blue and red clusters exhibit severe skin
manifestations. Importantly, patients in the dark blue cluster may be
overlooked due to their limited skin manifestations, even though they face
high mortality risk from ILD and heart complications™”’. Feature com-
parisons (Supplementary Fig. 12) show that the dark blue cluster has a
higher likelihood of lung fibrosis on HRCT or X-ray, while the red cluster is
more prone to esophageal or stomach symptoms. Both the red and dark blue
clusters experience increasing dyspnea over time, and the pale blue cluster
maintains higher eGFR levels compared to the other two groups.

In summary, cluster separation is primarily driven by lung, skin, heart,
and gastrointestinal involvement. For mild trajectories, two clusters
emerged—both with low probabilities of severe organ involvement, though
one exhibits slightly higher overall organ involvement. Three subtypes of
severe trajectories were identified: one cluster shows a high likelihood of
severe skin involvement with minimal severe involvement elsewhere, while
the other two present increased probabilities of severe lung and heart
complications. Notably, we identified a high-risk cluster (dark blue) with
limited skin severity.

Cluster stability

As described in subsection “Handling missing data”, we performed 5-fold
CV, producing five models each trained on different subsets of the training
data. Wealso reserved a hold-out test set—not included in the CV process—
for an independent clinical evaluation of the clustering results. To assess
how consistently the clusters formed across these models, we examined
which features most strongly contributed to cluster separation. Specifically,
for each cluster and each model, we computed the average value (or class
probability) of every feature and then calculated the standard deviation of
these averages across the clusters. A higher standard deviation indicates a
greater influence on cluster separation. Ranking the features by this standard
deviation revealed that the same subset of features consistently drove
clustering across models. The bar charts in Fig. 6 illustrate the standard
deviation of feature values, with larger bars indicating more pronounced
variability across clusters and error bars capturing variation among the five
models. Notably, the error bars are generally small, suggesting strong con-
sistency in feature ranking across the models. These findings also confirm
the trends discussed in section “Hierarchical Disease Subtyping: First
Hierarchy of Clusters”, where skin- and lung-related features are the pri-
mary drivers of cluster separation.

Clinical decision support system

Using our trained model, we can build a clinical decision support system
that enables predicting future patient latent trajectories and early identifi-
cation of disease subtypes. By comparing predicted cluster assignments at
different stages of a patient’s journey to the final cluster assignment—after
all medical visits have been encoded—we can anticipate the most likely
disease subtype early in the disease course. Figure 7 illustrates these cap-
abilities within a CDSS for a sample patient:
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Fig. 7 | Clinical decision support system. A The model predicts future latent
trajectories and assigns patients to likely severity subtypes. For an index patient, it
visualizes their latent trajectory and predicted disease progression (start at the X).
B Similar trajectories to the index patient can be identified using k-nearest neighbors

(start at the X). C Medical feature trajectories of the retrieved similar patients can be
visualized and compared. D Organ involvement trajectories of these similar patients
can also be visualized and compared.

 Panel A: Predicted (in blue) versus final (in red) latent trajectory, with
corresponding cluster assignments.

* Panel B: Final trajectory alongside nearest neighbors.

* Panel C: Trajectories of key clinical variables for the patient and nearest
neighbors.

 Panel D: Trajectories of selected medical labels for the patient and
nearest neighbors.

For this patient, the CDSS suggests they likely belong to the purple
subtype, characterized by a high risk of severe skin involvement (Fig. 7A.).
Similar patients are located in regions with likely lung fibrosis and eso-
phageal symptoms (Fig. 7B.). Moreover, as shown in Supplementary
Fig. 15b, predicting cluster assignment at various stages of a patient’s
journey to the final cluster yields a high F; score (around 0.8),

demonstrating the model’s effectiveness in early severity stratification.
This capability allows clinicians to intervene sooner, potentially mitigat-
ing organ involvement. Furthermore, following the procedure in section
“Trajectory Clustering”, our model identifies the top-k similar patient
trajectories (here, k = 3) to any given patient from the test set. Clinicians
can leverage this feature to compare disease progressions, offering insights
into a patient’s likely trajectory.

Discussion

In this work, we introduced a semi-supervised generative deep learning
model that leverages expert-defined disease criteria to capture the com-
plexity of systemic sclerosis across eight organs. Our approach uncovered
five distinct hierarchical SSc subtypes spanning a mild-to-severe spectrum
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(Fig. 5). Among the two “mild” subtypes, one cluster showed only little
involvement, whereas the other displayed higher tendencies for GT and
heart issues. In the “severe” subtypes, we found one cluster aligned with a
classic diffuse disease profile and elevated multi-organ involvement, another
marked by pronounced multi-organ severity, and a particularly noteworthy
cluster with limited skin involvement yet elevated risks of lung and heart
complications. This highlights the shortcomings of relying on skin pheno-
types alone.

These findings underscore the clinical utility of combining
expert-guided label definitions with data-driven representation
learning. By leveraging even partially labeled information, the model
aligned learned trajectories with known clinical patterns, while also
revealing less apparent subtypes that may carry significant morbidity
risk. Overall, our approach moves beyond skin-based distinctions,
offering a framework for translating complex patient data into inter-
pretable, actionable insights to support personalized clinical decision
support.

The primary limitation of our approach stems from the challenge of
modeling highly imbalanced and sparse datasets. We observed that organ
dynamics with highly imbalanced data tended to have less impact on sub-
typing, suggesting the need to investigate techniques like re-weighting
minority classes during training. Alternatively, a more targeted model could
be developed, focusing only on specific labels rather than the holistic
approach used in this study.

Next, we plan to leverage the learned latent trajectories to answer
questions specific to particular patient subsets, for instance, patients who
develop ILD early in the disease course. By pretraining our model on the full
dataset and subsequently clustering only within the ILD cohort, we can
uncover ILD-specific subtypes.

Furthermore, our choice of five clusters, although guided by both
mathematical and clinical validation, should not be interpreted as a defi-
nitive “ground truth”. For more fine-grained results, a similar hierarchical
strategy could be extended through further sub-clustering, potentially
revealing additional patterns in sparser organ dynamics.

Finally, the present study is purely retrospective, relying on observa-
tional patient data. A key limitation is the absence of a healthy-control
reference: the EUSTAR registry does not enroll unaffected individuals, and
no external cohort provides longitudinal, organ-specific assessments of
comparable granularity. As a result, our analysis is confined to delineating
phenotypic heterogeneity within the SSc population rather than bench-
marking these trajectories against normative patterns. A possible next step
would be to conduct a silent prospective evaluation in clinical practice to
assess how well the model supports rheumatologists’ decision-making in
real-time.

Methods

Analyzing and comparing raw longitudinal patient trajectories presents
significant challenges due to heterogeneity, temporality, missingness, and
biases’. To overcome these issues, we propose a two-stage approach. First,
we develop a deep learning model to transform raw, heterogeneous data into
smoother temporal patient representations. These refined representations
are then used for disease subtyping through temporal clustering. Supple-
mentary Note 11 summarizes the key machine-learning concepts refer-
enced in this work.

Cohort description

We use SSc patient data from the European Scleroderma Trials and
Research group (EUSTAR) registry (database export from June 1, 2022),
a comprehensive dataset detailed in refs. 17,27. This study was con-
ducted in accordance with the Declaration of Helsinki and was approved
by the local ethical committees of the participating EUSTAR centers. All
patients provided written informed consent for their data to be used
for research purposes as required by the local ethics committees for
this study. The project was approved by the EUSTAR board (project
number: CP125).

After preprocessing, the database comprises 14, 060 patients and 67,
894 medical visits, averaging approximately 4.8 medical visits per patient,
see Supplementary Fig. 2 for the distribution of the number of patient visits.
We included demographic variables such as gender and age, along with
temporal variables measuring the disease progression across different
organs, following the variable selection approach detailed in section
“Variable selection for organ-specific definitions”. Moreover, Supplemen-
tary Note 2 provides additional details about the database, such as feature
distribution plots (Supplementary Figs. 3 and 4 and Supplementary Tables
2 and 3) and a list of variable names with brief descriptions (Supplementary
Table 1). To facilitate comparison with other EUSTAR studies, we retained
the original variable names from the EUSTAR database when they were
sufficiently clear.

We excluded patients with fewer than two or 15 and more medical
visits and removed outliers. Additionally, all patients included in the analysis
were 18 years or older. Patients with at least 15 medical visits were excluded
to avoid biasing the model towards a few heavily sampled trajectories. A
consort diagram describing patient inclusion during the different steps of
our analysis is shown in Supplementary Fig. 1. Prior to model training or
application, continuous variables were standardized, and categorical vari-
ables were one-hot encoded.

Variable selection for organ-specific definitions

For each organ, we model two dynamics: (a) involvement and (b) severity
stage (if applicable), representing organ-specific outcome labels. These labels
are computed based on clinical definitions (i.e. list of criteria) applied to a set
of organ-specific variables recorded in the dataset.

More specifically, to create these labels, (1) we first reviewed the lit-
erature to compile all clinical definitions for each organ, usually ending up
with multiple definitions per label (i.e. definitions for organ involvement
and organ severity). (2) We then identified the relevant clinical variables
available in the EUSTAR database (list of variables per definition), resulting
in an extensive set of input variables X to describe organ dynamics. (3) In the
second stage, a steering committee of ten SSc experts from various EUSTAR
centers selected the most clinically relevant definition for each organ and
label”. The final definitions are provided in Supplementary Note 3, and this
process yielded a refined subset of EUSTAR variables G C X, derived from
the final definitions. A complete list of variables in X and G is available in
Supplementary Note 2. Panel 1 in Fig. 1 illustrates the variable selection
process of our study. Note that autoantibody profiles were intentionally
omitted, as their prognostic value in SSc is already well-documented, and
our objective was to derive patient subtypes exclusively from longitudinal
organ-specific trajectories.

Model overview and notations

For each patient, our model learns to summarize raw medical measure-
ments into organ-specific representations that encode both the presence and
severity of organ involvement. A sequence of these representations yields a
longitudinal trajectory for every patient, and clustering those trajectories
uncovers five distinct SSc phenotypes, each with a characteristic pattern of
multi-organ disease. Following standard ML practice, we develop and tune
the model on a training partition of the data and reserve an independent test
set for final evaluation, confirming that the identified phenotypes generalize
to previously unseen patients. See Supplementary Note 11 for an overview of
the key ML concepts.

As outlined in section “Variable selection for organ-specific defini-
tions”, the temporal input variables set X comprises a broad range of clinical
measurements related to organ dynamics. Furthermore, a more refined
subset of these variables, G C X, reflects the latest medical knowledge on
organ impact in SSc. These variables are continuous, binary, or categorical,
with all categorical variables being ordinal. For each patient, let x := x;.,r € X
and g:= g7 € G, where x € R”*T and g € RP* represent the temporal
clinical measurements, T is the index of the most recent measurement (i.e.
last available in the database), and D and P are the number of variables in X
and G respectively. Additionally, we define m := m;.; € M, where m €
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RP*T is a boolean mask indicating the availability of clinical variables. We
also incorporate N static demographic variables s € S, s € R™. Our goal is to
model the distribution of L latent, i.e. unobserved, variables z := z,.; € Z,
where z € R, that generate the observed X and G conditioned on .
These latent variables should contain the key information necessary to
reconstruct X and predict G.

Model architecture

We adopt a probabilistic approach leveraging and adapting the well-
established variational autoencoder (VAE) framework'” to learn inter-
pretable latent (unobserved) temporal organ-specific representations. Our
method is designed to model organ behaviors in SSc by learning from the
entire dataset while separately modeling each organ, thereby facilitating the
analysis of organ-specific dynamics. We build on our prior deep probabil-
istic model', in which we designed a temporal VAE-based approach to
model the behavior of three organs (lungs, heart, and joints) in SSc to
perform online patient monitoring. A key design element is “guiding”
distinct latent dimensions for each organ (i.e. non-overlapping subsets of
dimensions of the z vector), ensuring each subset of the latent dimension
learns specialized organ-specific trajectories. In ref. 14, we used preliminary
label definitions to guide these dimensions in a semi-supervised manner,
training separate networks to predict all clinical variables. Here, we instead
focus on learning predictive latent processes specifically for the organ-
related variables G, with final label definitions aimed at improving disease
subtyping.

We model eight organs (previously three), adapting the archi-
tecture to handle higher dimensionality and missing data. As in ref. 14,
we dedicate separate latent dimensions to learn each organ’s dynamics
(see Fig. 1). Following the bottleneck principle, the model is trained to
reconstruct the variables in X. Additionally, we implement individual
multilayer perceptrons (MLPs) as “guidance” networks for each vari-
able in G. These networks receive the organ-specific latent subsets and
learn to reconstruct and predict the current and future values of their
respective variables. Intuitively, we integrate these organ-specific
medical definitions as partial labels to guide the latent space for each
organ dimension. We also train our model using an additional mask
(denoted feature masking) by randomly dropping 20% of the input
features to make the model more robust in reconstructing missing data
(see subsection "Handling missing data"). In summary, for each patient,
given xy,, 5, M., and gy.,, the model learns the distribution of z;.7 and
uses a sampled z to reconstruct and predict x;.; and g;.. The encoder
network relies on MLPs and Long Short-Term Memory networks
(LSTMs)*, while the decoder and guidance networks are independent
MLPs (Fig. 1). A separate neural network models the prior distribution
of z (not shown in Fig. 1).

Handling missing data

The model expects a fixed-length input vector, so unobserved measure-
ments are initially filled with cohort means computed on the training split.
We then supply an accompanying missingness mask m that flags every
imputed entry. The encoder, therefore, sees two channels per variable: its
(possibly imputed) value and its missingness mask (i.e. boolean indi-
cator). During training, the reconstruction/prediction loss is computed
exclusively on observed values; imputed placeholders are ignored. In
addition, we randomly drop 20% of the observed inputs in every mini-
batch ("feature masking”). This forces the decoder to learn the joint
structure of the data and produces reliable model-based imputations. All
analyses, therefore, operate on the reconstructed time series, preventing
bias from simple mean imputation even for variables with very high
missingness. A detailed ablation showing the resulting robustness is
reported in Supplementary Table 4.

Training
We first split the full dataset into training and validation (85%) and test
(15%) sets; the training portion was used exclusively for model development

and tuning, while the test set remained untouched until final evaluation. We
then performed five-fold cross-validation (CV) on the training data: the
training set was divided into five equal folds, and in turn, one fold served as a
validation set while the model was trained on the other four. Within each
training split, we executed a random search over hyperparameter combi-
nations, selecting the configuration that minimized validation loss. This
procedure yielded five separate final models, one per fold. To assess the
stability and consistency of the results, each of the five models is then
evaluated on the independent 15 % hold-out test set that was never seen
during training and tuning,

To train our model, we adapted the objective function from
refs. 14,18 to our specific setting. We outline the key aspects of the
optimization process here and refer the reader to ref. 14 for detailed
computational information. Consider observational patient data x;.r,
gi.rand s, where T is the index of the most recent clinical measurement.
For each time step t=1, ..., T, given x;.,, the model is trained to predict
the distribution of the full latent trajectory z;.;. Using a sample of this
latent distribution, the guidance decoders are then trained to reconstruct
and predict g,.r, minimizing the cross entropy loss for binary or cate-
gorical variables and the mean squared error (MSE) for continuous
variables. Similarly, the decoder is trained to reconstruct x;., given z;.1,
also using cross-entropy or MSE depending on the variable type. The
model learns the distribution of the latent space by minimizing the
Kullback-Leibler (KL) divergence, a regularization term that aligns the
prior assumptions about the latent space with the distribution learned by
the encoder. Following the approach in ref. 14, we assume a Gaussian
distribution with constant variance for continuous variables, Bernoulli
or categorical distributions for binary and categorical variables, and a
Gaussian prior distribution for the latent space. During the model
training, the parameters of these predefined distributions are learned
and optimized.

Importantly, when computing the loss, we only include the observed
(non-missing) variables. This ensures that the model is not trained to
reconstruct imputed data, reducing potential bias. Furthermore, to enhance
the model’s ability to handle missing data, we randomly mask 20% of the
available clinical measurements in each batch during each training epoch.
We use the Adam™ algorithm with mini-batch processing to optimize the
objective function.

Trajectory clustering
For clustering, we used k-means with dynamic time-warping (DTW)
distance® on the learned latent patient trajectories. DTW allows us
to align patient trajectories with varying length. After model training,
k-means centroids were learned only on the embeddings from the
training data. The 15 % hold-out cohort was subsequently projected
into the same latent space and assigned to the nearest centroids.
Reporting cluster characteristics on this unseen test set, therefore,
provides a strictly out-of-sample evaluation of our subtyping
approach. To determine the optimal number of clusters, we varied k
from 2 to 15, and evaluated the clustering performance by computing
the inertia, which measures cluster compactness (Supplementary
Fig. 15a), prompting us to set k = 5. Then, for k € [2, 3,4, 5], we assigned
the test embeddings to the nearest cluster centers. We observed a
natural hierarchy in the clustering process: as k increased, new clusters
were almost perfectly nested within the existing ones (Supplementary
Fig. 14). For instance, when k = 2, let cf and c% be the identified clusters.
As kincreased to 5, ¢ split into two clusters (¢; and ¢3), while ¢ divided
into three clusters (¢, c?, and ¢2). This inherent hierarchy led us to
adopt a strict hierarchical clustering approach for the final cluster
assignment, resulting in more interpretable and clinically meaningful
groupings. Following this procedure, we identified k = 5 main clusters
and identified a natural hierarchy among the clusters.

Similarly, we used a k-Nearest Neighbors method to identify similar
patients (here k=3), retrieving each test patient’s closest trajectories from the
training data (based on the DTW distance).
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Data availability
The raw dataset is owned by the EUSTAR group, and may be obtained by
request after approval and permission from the EUSTAR board.

Code availability
The code is available at https://github.com/uzh-dgbm-cmi/eustar_npj.

Received: 23 April 2025; Accepted: 17 August 2025;
Published online: 01 September 2025

References

1. Denton, C. P. & Khanna, D. Systemic sclerosis. Lancet 390,
1685-1699 (2017).

2. Del Galdo, F. et al. Eular recommendations for the treatment of
systemic sclerosis: 2023 update. Ann. Rheum. Dis. 84, 29-40 (2025).

3. Jaeger, V. K. et al. Incidences and risk factors of organ manifestations
in the early course of systemic sclerosis: a longitudinal eustar study.
PloS one 11, 0163894 (2016).

4. Hoffmann-Vold, A.-M. et al. Setting the international standard for
longitudinal follow-up of patients with systemic sclerosis: a delphi-
based expert consensus on core clinical features. RMD open 5,
000826 (2019).

5. Elhai, M. et al. Stratification in systemic sclerosis according to
autoantibody status versus skin involvement: a study of the
prospective eustar cohort. Lancet Rheumatol. 4, e785-e794 (2022).

6. Nihtyanova, S. . et al. Using autoantibodies and cutaneous subset to
develop outcome-based disease classification in systemic sclerosis.
Arthritis Rheumatol. 72, 465-476 (2020).

7. Fretheim, H. et al. Multidimensional tracking of phenotypes and organ
involvement in a complete nationwide systemic sclerosis cohort.
Rheumatology 59, 2920-2929 (2020).

8. Petelytska, L. et al. Heterogeneity of determining disease severity,
clinical course and outcomes in systemic sclerosis-associated
interstitial lung disease: a systematic literature review. RMD open 9,
003426 (2023).

9. Allam, A,, Feuerriegel, S., Rebhan, M. & Krauthammer, M. Analyzing
patient trajectories with artificial intelligence. J. Med. internet Res. 23,
29812 (2021).

10. Lee, C. & Van Der Schaar, M. Temporal phenotyping using deep
predictive clustering of disease progression. In International
conference on machine learning, 5767-5777 (PMLR, 2020).

11. Chen, I. Y., Joshi, S., Ghassemi, M. & Ranganath, R. Probabilistic
machine learning for healthcare. Annu. Rev. Biomed. data Sci. 4,
393-415 (2021).

12. Kingma, D. P. & Welling, M. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 (2013).

13. Locatello, F. et al. A sober look at the unsupervised learning of
disentangled representations and their evaluation. J. Mach. Learn.
Res. 21, 1-62 (2020).

14. Trottet, C. et al. Semi-Supervised Generative Models for Disease
Trajectories: A Case Study on Systemic Sclerosis. Machine Learning
for Healthcare Conference. PMLR, 2024.

15. Allam, A. et al. Predicting interstitial lung disease progression in
patients with systemic sclerosis using attentive neural processes-a
eustar study. medRxiv 2024-04 (2024).

16. Bonomi, F. et al. The use and utility of machine learning in achieving
precision medicine in systemic sclerosis: a narrative review. J.
Personalized Med. 12, 1198 (2022).

17. Meier, F. M. et al. Update on the profile of the eustar cohort: an
analysis of the eular scleroderma trials and research group database.
Ann. Rheum. Dis. 71, 1355-1360 (2012).

18. Trottet, C., Schirch, M., Mollaysa, A., Allam, A. & Krauthammer, M.
Generative time series models with interpretable latent processes for
complex disease trajectories. In Deep Generative Models for Health
Workshop NeurlPS 2023 (2023).

19. Hoffmann-Vold, A. et al. Pos0203 evidence-based expert consensus
definition of organ involvement in systemic sclerosis—a eustar study
(2024).

20. Mclnnes, L., Healy, J. & Melville, J. Umap: Uniform manifold
approximation and projection for dimension reduction. arXiv
preprint arXiv:1802.03426 (2018).

21. Varga, J.Systemic Sclerosis (Scleroderma) and Related Disorders
(McGraw-Hill Education, New York, NY, 2018). accessmedicine.
mhmedical.com/content.aspx?aid=1179365261.

22. Herrick, A. L., Assassi, S. & Denton, C. P. Skin involvement in early
diffuse cutaneous systemic sclerosis: an unmet clinical need. Nat.
Rev. Rheumatol. 18, 276-285 (2022).

23. Steen,V.D. &Medsger Jr, T. A. Severe organ involvement in systemic
sclerosis with diffuse scleroderma. Arthritis Rheumatism: Off. J. Am.
Coll. Rheumatol. 43, 2437-2444 (2000).

24. Adigun, R., Goyal, A. & Hariz, A.Systemic Sclerosis (Scleroderma)
(StatPearls Publishing, Treasure Island (FL), 2025), updated 2024 apr 5
edn. Available from: https://www.ncbi.nim.nih.gov/books/NBK430875/.

25. Campochiaro, C. & Matucci-Cerinic, M. Interstitial lung disease in
limited cutaneous systemic sclerosis patients: never let your guard
down (2024).

26. Zanatta, E. et al. Phenotype of limited cutaneous systemic sclerosis
patients with positive anti-topoisomerase i antibodies: data from the
eustar cohort. Rheumatology 61, 4786-4796 (2022).

27. Hoffmann-Vold, A.-M. et al. Progressive interstitial lung disease in
patients with systemic sclerosis-associated interstitial lung disease in
the eustar database. Ann. Rheum. Dis. 80, 219-227 (2021).

28. Hochreiter, S. Long short-term memory. Neural Computation MIT-Press
(1997).

29. Kinga, D., Adam, J. B. et al. A method for stochastic optimization. In
International conference on learning representations (ICLR), vol. 5, 6
(San Diego, California;, 2015).

30. Midiller, M. Dynamic time warping. Information retrieval for music and
motion 69-84 (2007).

Acknowledgements

The authors thank the patients and caregivers who made the study possible,
as well as all involved clinicians from the EUSTAR who collected the data. A
list of contributing centers can be found at https://eustar.org/centers/. C.T.,
M.S., AA., and M.K. received funding from the Swiss National Science
Foundation (grant number 201184) for this work.

Author contributions

A.H. and M.K. devised the study. C.T. and M.S. curated and analyzed the
data and implemented the algorithms. C.T.,M.S., A.A,L.P.,0.D.,AH., and
M.K. analyzed the results. MK, O.D., and A.H. supervised the project. C.T.
wrote the original manuscript draft and prepared the figures. All authors
critically reviewed, edited, and approved the final manuscript.

Competing interests

A.H. has/had consultancy relationship with and/or has received research
funding from or has served as a speaker for the following companies in the
area of potential treatments for systemic sclerosis and its complications in
the last 36 months: Abbvie, Avalyn, CallunaPharma, BMS, Boehringer
Ingelheim, Genentech, Janssen, Merck Sharp&Dohme, Medscape,
Novartis, Pliant therapeutics, Roche and Werfen. A.H. is a CTD-ILD ERS/
EULAR convenor and a EULAR study group leader on the lung in rheumatic
and musculoskeletal diseases.OD has/had consultancy relationship with
and/or has received research funding from or has served as a speaker for the
following companies in the area of potential treatments for systemic
sclerosis and its complications in the last two years: 4P-Pharma, Abbvie,
Acepodia, Aera, AnaMar, Anaveon AG, Argenx, Boehringer Ingelheim, BMS,
Calluna, Cantargia AB, Citus AG, CSL Behring, Galderma, Galapagos,
Hemetron AG, Innovaderm, Lilly, MSD Merck, Mitsubishi Tanabe; Nkarta
Inc., Orion, Pilan, Quell, Scleroderma Research Foundation, EMD Serono,

npj Digital Medicine | (2025)8:563

10


https://github.com/uzh-dqbm-cmi/eustar_npj
http://accessmedicine.mhmedical.com/content.aspx?aid=1179365261
http://accessmedicine.mhmedical.com/content.aspx?aid=1179365261
http://accessmedicine.mhmedical.com/content.aspx?aid=1179365261
https://www.ncbi.nlm.nih.gov/books/NBK430875/
https://www.ncbi.nlm.nih.gov/books/NBK430875/
https://eustar.org/centers/
www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-01962-y

Article

Topadur and UCB. Patent issued “mir-29 for the treatment of systemic
sclerosis” (US8247389, EP2331143). OD is a co-founder of CITUS AG. All
other authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41746-025-01962-y.

Correspondence and requests for materials should be addressed to
Michael Krauthammer.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this

licence, visit http://creativecommons.org/licenses/by/4.0/.
Reprints and permissions information is available at
http://www.nature.com/reprints © The Author(s) 2025
Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

EUSTAR Collaborators

Ivan Castellvi’, Radim Be¢vai®, Jeska de Vries-Bouwstra®, Florenzo lannone'®, Patricia Carreira'!, Marie-Elise Truchetet'2,
Giovanna Cuomo3, Elena Rezus'#, Francesco Paolo Cantatore'®, Carmen Pilar Simeon-Aznar'®, Magda Parvu'’,
Marta Dzhus'8, Oliver Distler®, Anna-Maria Hoffmann-Vold®>'®, Silvia Bellando-Randone?', Ulrich Andreas Walker?,
Maurizio Cutolo®, Simona Rednic®, Yannick Allanore®®, Carlomaurizio Montecucco?®, Srdjan Novak?, Gabor Kumanovics®,
Przemyslaw Kotyla®, Elisabetta Zanatta®’, Katja Perdan Pirkmajer®', Gianluca Moroncini®, Paolo Air6*, Mislav Radic®,
Alexandra Balbir-Gurman®, Nico Hunzelmann®, Luca Idolazzi*’, Josko Mitrovic®, Christopher Denton*?, Madelon Vonk®,
Jelena Colic*', Joerg Henes*, lvan Foeldvari*®, Gianluigi Bajocchi*, Tania Santiago®, Bojana Stamenkovic*, Maria De Santis*,
Claudia Ickinger®, Lidia P. Ananieva®, Klaus Sondergaard®, Gabriella Szucs®', David Launay®, Valeria Riccieri*,
Andra Balanescu®, Ana Maria Gheorghiu®®, Christina Bergmann®, Luc Mouthon®’, Vanessa Smith®®, Mette Mogensen®,
Marie Vanthuyne®, Juan Jose Alegre Sancho®, Brigitte Granel®?, Carolina de Souza Miiller®®, Svetlana Agachi®, Alberto Cauli®,
Kamal Solanki®®, Eiman Soliman®’, Edoardo Rosato®, Rosario Foti®®, Britta Maurer’®, Marzena Olesinska’’, Nihal Awad,
Sophie Blaise™, Patricia Senet’*, Emmanuel Chatelus™, Ira Litinsky™, Francesco Del Galdo”’, Eduardo Kerzberg™,
Jasminka Milas-Ahic™, Massimiliano Limonta®®, Antonella Marcoccia®', Thierry Martin®, Anna Wojteczek®,
Gabriela Riemekasten®, Lélita da Conceicdo Santos®, Yair Levy®®, Daniel Brito de Araujo®”, Marek Brzosko®,
Oscar Massimiliano Epis®, Petros Sfikakis*’, Ana-Maria Ramazan®', Alain Lescoat®, Marco Matucci Cerinic*®, Julia Spierings*,
Fabiola Atzeni*®, Masataka Kuwana®, Arsene Mekinian®, Mickaél Martin®®, Goncalo Boleto®, Nicoletta Del Papa'®,
Enrico Selvi'”', Marta Mosca'®, Ulrich Gerth'®, Duygu Temiz Karadag'®, Anastas Batalov'®, Knarik Ginosyan'®,
Nune Manukyan'”, Mohammad Naffaa'®, Cristina Maglio'®, Miriam Retuerto'?, Futoshi lwata'"!, Monique Hinchcliff'*?,
Roberto Giacomelli'*®, Francesco Benvenuti'*, Helena Santos Carneiro'*, Esther Vicente Rabaneda'*®, Andrea-

121

Hermina Gyérfi'", Lilian Maria Lopez Nunez'*® a'?, Alejandro Brigante'?',

, Rossella De Angelis'”, Irene Carrion-Barbera
Yasser El Miedany'?, Rong Mu'®, Alexandra Daniel'?*, Amato de Paulis'?®, Chris Derk'%, Lijun Zhang'#, Bogdan Batko'%,
Ivette Casafont Sole'®, Anna Lewandowska-Polak'®, Qingran Yan'®!, Tuncay Duruéz'®, Seda Colak'®,

Janeth Villegas Guzman', Claudia Mora-Truijillo'*, Maria Sole Chimenti'*®, Samah A. El-Bakry'®” & Fatma Alibaz-Oner'®

2'University of Florence, Azienda Ospedaliera Universitaria Careggi, Dept. of Experimental and Clinical Medicine, Division of Rheumatology, Florence, Italy. 22Uni-
verstitatsspital Basel, Dept. of Rheumatology, Basel, Switzerland. 2San Martino Hospital, Laboratory of Experimental Rheumatology and Division of Rheumatology
DIMI Dept. Internal Medicine, University of Genova, School of Medicine IRCCS, Genova, ltaly. 24University of Medicine and Pharmacy luliu Hatieganu Cluj, Clinica
Reumatologie, Cluj-Napoca, Romania. 2°Université Paris Cité, Cochin Hospital, Rheumatology Department, Paris, France. 2%Universita di Pavia e IRCCS Fondazione
Policlinico S. Matteo, Pavia, Italy. 2’CHC Rijeka, Department of Rheumatology and Clinical Immunology, Rijeka, Croatia. 2University of Pécs, Department Of Rheu-
matology And Immunology, Medical Centre, Pecs, Hungary. 2Medical University of Silesia, Voivodeship Hospital No. 5 Sosnowiec, Department of Internal Medicine,
Rheumatology and Clinical Immunology, Katowice, Poland. *°Padova University Hospital, Rheumatology Unit, Padova, Italy. 3'University Medical Center Ljubljana,
Division of Internal Medicine, Department of Rheumatology, Vodnikova 62, 1000 Ljubljana, Slovenia - Patients, Ljubljana, Slovenia. 32Marche University Hospital, Clinica
Medica, Department of Internal Medicine, Ancona, Italy. 33ASST Spedali Civili of Brescia, University of Brescia, Rheumatology and Clinical Immunology Unit,
Brescia, ltaly. 3*University of Split, Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, School of Medicine, University Hospital Center,
Split, Croatia. 35 Rambam Health Care Campus, Rheumatology Institute, Haifa, Israel. 38Universitatshautklinik Koln, Kéin, Germany. 37Univ-:-;rsity of Verona, UoC
Rheumatology, Verona, Italy. *®Dubrava University Hospital, Division of Clinical Imnmunology, Allergology and Rheumatology, Department of Internal Medicine,
Zagreb, Croatia. **Royal Free London and University College London Medical School, Centre for Rheumatology, London, UK. “°Radboudumc, Department of

npj Digital Medicine | (2025)8:563 11


https://doi.org/10.1038/s41746-025-01962-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjdigitalmed

https://doi.org/10.1038/s41746-025-01962-y Article

Rheumatology, Nijmegen, The Netherlands. ' Institute of Rheumatology Belgrade, Belgrade, Serbia. “*Medizinische Universitatsklinik, Abt. Il (Onkologie, Hamatologie,
Rheumatologie, Immunologie, Pulmonologie), Tibingen, Germany. “*Hamburg Centre for Pediatric and Adolescence Rheumatology, Hamburg, Germany. “Struttura
Complessa di Reumatologia - Dipartimento Specialistiche - Azienda Ospedaliera Arcispedale S. Maria Nuova, Reggio Emilia, Italy. “*Centro Hospitalar e Universitario de
Coimbra, Rheumatology Department, Coimbra, Portugal. “®Institute for Treatment and Rehabilitation Niska Banja, Nis, Rheumatology Clinic, Niska Banja, Serbia.
47"|RCCS Humanitas Research Hospital, Rozzano - Milan, Italy. “®Chris Hani Baragwanath Academic Hospital and University of the Witwatersrand Center, Rheumatology
Unit, Department of Medicine, Johannesburg, South Africa. “°V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia. >°Aarhus University Hospital,
Department of Rheumatology, Aarhus, Denmark. 5'University of Debrecen, Faculty of Medicine, Department of Rheumatology, Debrecen, Hungary. ®?Hépital Huriez,
CHU Lille, Lille University, Lille, France. 53Sapienza University of Rome, Rheumatology Clinic, Rome, Italy. 545t, Maria Hospital, Carol Davila, University of Medicine and
Pharmacy, Department of Rheumatology, Bucharest, Romania. >®Cantacuzino Hospital, Carol Davila University of Medicine and Pharmacy, lon Cantacuzino Hospital,
Bucharest, Romania. *®University Hospital Erlangen, Department Internal Medicine 3, Edangen, Germany. 5’Hépital Cochin, Department of Internal Medicine,

Paris, France. *®University of Ghent, Department of Rheumatology, Gent, Belgium. 5°University Hospital of Copenhagen, Department of Dermatology D-40, HS-
Bispebjerg Hospital, Copenhagen, Denmark. *®Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium. 8'Hospital Universitario Dr
Peset, Valencia, Spain. 62Hc">pita| Nord de Marseille, Service de Médecine Interne, Marseille, France. 63Hospital de Clinicas da Universidade Federal do Parana,
Curitiba, Brazil. **Republican Center of Systemic Sclerosis of Nicolae, Testemitanu State University of Medicine and Pharmacys, Chisinau, Republic of Moldova.
85Rheumatology Unit, AOU and University of Cagliari, Department of Medical Sciences and Public Health, Monserrato - Cagliari, Italy. *Waikato University Hospital,
Rheumatology Unit, Hamilton, New Zealand. 8’ Rheumatology and Clinical Immunology Unit, Alexandria Faculty of Medicine, Alexandria, Egypt. ®Sapienza University of
Rome, Department of Translational and Precision Medicine Azienda Ospedaliero-Universitaria Policlinico Umberto 1-Centro di riferimento regionale per la sclerosi
sistemica, Rome, ltaly. ®Centre Catania, UO Reumatologia San Marco Hospital, Catania, Italy. "®Insel Gruppe AG, Universitatsklinik fiir Rheumatologie und Immu-
nologie, Bern, Switzerland. “'National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland. "?Assiut University Hospital, Assiut university,
Rheumatology Department, Assiut, Egypt. “*Grenoble University Hospital, Grenoble Vascular Medicine Department, Grenoble, France. ““Hospital Tenon, Department of
Dermatology, Paris, France. ”?CHU de Hautepierre, Service de Rhumatologie, Centre National de Référence des Maladies auto-immunes et systémiques rares,
Strasbourg, France. "8Centre Tel-Aviv Sourasky, Rheumatology institute, Tel-Aviv, Israel. “Leeds Raynaud’s and Scleroderma Program, NIHR Biomedical Research
Centre, Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, UK. “®Ramos Meja Hospital, Buenos Aires, Argentina. "Clinical Hospital Center Osijek,
Department of Clinical Immunology and Allergology, Osijek, Croatia. 8°Asst Papa Giovanni XXIll, Bergamo, Italy. 8'Centro di Riferimento Interdisciplinare per la Sclerosi
Sistemica (CRIIS), Roma, Italy. #Nouvel Hopital Civil, Clinical Inmunology Internal Medicine, National Referral Center for Systemic Autoimmune Diseases,
Strasbourg, France. 8Medical University Of Gdansk, University Clinical Centre, Department Of Internal Medicine, Connective Tissue Diseases, and Geriatrics,
Gdansk, Poland. 3*Universitatsklinikum Schleswig-Holstein, Klinik fiir Rheumatologie und klinische Immunologie, Liibeck, Germany. 8Centro Hospitalar e Universitario
de Coimbra, Consulta de Doengas, Autoimunes Sistémicas Servigco de Medicina Interna, Coimbra, Portugal. 85Meir Medical Center, kfar-saba, Israel. Universidade
Federal De Pelotas, Pelotas, Brazil. 8Pomeranian Medical University, Ul., Department of Internal Medicine, Rheumatology, Diabetology, Geriatrics and Clinical
Immunology, Szczecin, Poland. 8°ASST Grande Ospedale Metropolitano Niguarda, S.C. Reumatologia, Milan, Italy. *°Athens University Medical School, First Pro-
paedeutic and Internal Medicine, Rheumatology Unit, Athens, Greece. ®'Regional Autoinflammatory, Autoimmune and Rare Diseases Centre (CRBAAR), Spitalul Clinic
Judetean de Urgenta “Sf Apostol Andrei” Hospital, Constanta, Romania. ®Hépital Sud, Service de Médecine Interne & Immunologie Clinique, Rennes, France. ®Vita-
Salute San Raffaele University, San Raffaele Hospital, Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Milan, Italy. **University Medical Center Utrecht,
Utrecht, The Netherlands. ®®University of Messina, Rheumatology Unit, Messina, Italy. ®*Nippon Medical School Hospital, Tokyo, Japan. °’Hospital Saint-Antoine,
Internal Medicine Department, Paris, France. Bpoitiers University Hospital, Department of Internal Medicine, Poitiers, France. % ocal de Sauide Santa Maria, Centro
Académico de Medicina de Lisboa, Rheumatology Department, Lisbon, Portugal. '°®Ospedale G. Pini, UOC Day Hospital Reumatologia, Scleroderma Clinic, Milan, Italy.
101 Azienda Ospedaliera Universitaria Senese (AOUS), UOC Reumatologia, Siena, Italy. '°?Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy. '°*Reha Rheinfelden,
Rheinfelden, Switzerland. '%*Kocaeli University, Department of Rheumatology, Kocaeli, Turkey. '®*Medical University of Plovdiv, University Hospital Kaspela Plovdiv,
Clinic of Rheumatology, Plovdiv, Bulgaria. '®“Heratsi” University Hospital, Yerevan, Armenia. '®’Mikaelyan Institute Of Surgery, Department of Rheumatology,
Yerevan, Armenia. '®Galilee Medical Center, Nahariya, Israel. 1°°Sahigrenska University Hospital, Clinical Rheumatology Research Center, Gothenburg, Sweden.
"1%Complejo Asistencial Universitario de Ledn, Ledn, Spain. '''St. Luke’s International Hospital, Immuno-Rheumatology Centor, Tokyo, Japan. '2Yale Scleroderma
Program, North Haven, CT, USA. '"®Fondazione Policlinico Universitario Campus BioMedico, Rome, ltaly. T"“Ospedale San Bortolo di Vicenza, Medicina Generale,
Vicenza, Italy. ""®Instituto Portugués de Reumatologia, Lisboa, Portugal. '*®Hospital Universitario de La Princesa, IIS-Princesa, Madrid, Spain. ' University Hospital
Disseldorf, Clinic for Rheumatology and Hiller Research Centre, Disseldorf, Germany. 118Ho:spital Universitario Son llatzer, Palma de Mallorca, Spain. 119Polytechnic
University of Marche, “Carlo Urbani” Hospital, Rheumatology Clinic, Ancona, ltaly. '2°Hospital del Mar, Barcelona, Spain. '2!Fundacién Sanatorio Giiemes, Buenos
Aires, Argentina. '?*Egyptian Society for Microcirculation in Rheumatic Diseases, Cairo, Egypt. '?*Peking University Third Hospital, Department of Rheumatology,
Beijing, China. 124Centro Hospitalar de Leiria, Leiria, Portugal. 128niversity of Naples Federico Il, Department of Translational Medical Sciences, Naples, Italy.
128University of Pennsylvania, Division of Rheumatology, Philadelphia, PA, USA. *"The University of Hong Kong-Shenzhen Hospital, Department of Rheumatology,
Shenzhen, China. "*®Department of Rheumatology and Immunology, Specialist Hospital. J. Dietla, Cracow, Poland. "*Hospital Universitari Germans Trias i Pujol,
Barcelona, Spain. '**Rheumatology, Immunology and Internal Medicine Cilinic, Medical University of Lodz, Lodz, Poland. "3'Rendi Hospital, Shanghai Jiao Tong
University, School of Medicine, Shanghai, China. '**Marmara University School of Medicine, PMR Department Rheumatology Division, Istanbul, Turkey. **Gulhane
Training and Research Hospital, Ankara, Turkey. '**Hospital Nacional Dos de Mayo, Lima, Peru. "**Hospital Nacional Edgardo Rebagliati Martins-EsSalud, Lima, Peru.
138Universita degli Studi di Roma Tor Vergata, Fondazione PTV Policlinico Tor Vergata, U.O.C. Reumatologia, Rome, Italy. '3”Ain Shams University, Internal Medicine
Department, Rheumatology Divison, Cairo, Egypt. '**Marmara University, Department of Internal Medicine, Division of Rheumatology, Istanbul, Turkey.

npj Digital Medicine | (2025)8:563 12


www.nature.com/npjdigitalmed

	Deep hierarchical subtyping of multi-organ systemic sclerosis trajectories - a EUSTAR study
	Results
	Predictive performance
	Latent space analysis: ground truth vs. reconstructed values
	Latent space regions
	Hierarchical disease subtyping: first hierarchy of clusters
	Second hierarchy of clusters
	Cluster stability
	Clinical decision support system

	Discussion
	Methods
	Cohort description
	Variable selection for organ-specific definitions
	Model overview and notations
	Model architecture
	Handling missing data
	Training
	Trajectory clustering

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




