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ARTICLE INFO ABSTRACT

Keywords Introduction: The gut-liver axis regulates metabolic homeostasis, with bile acids (BAs) serving as key signalling
Bile ﬂ_CidS ) molecules. BA dysregulation is implicated in metabolic dysfunction-associated steatotic liver disease (MASLD)
Gut-liver axis and metabolic dysfunction- and alcohol-associated liver disease (MetALD), yet consistent identification of BA

Liver disease : s . . . .
markers and their mechanistic roles across different stages of these diseases remain elusive.

Methods: We integrated three complementary studies to examine BA dysregulation: a population-based cohort
(1522 females from TwinsUK with serum BA and liver biomarker data), a clinical cohort (30 patients with
steatotic liver disease, fibrosis stages FO-F4, and 4 controls), and rodent models (20 rats with MASLD/MetALD vs.
9 controls). BA profiles were quantified via LC-MS.

Results: The primary bile acid taurocholate was consistently correlated with liver pathology: in TwinsUK, it
associated with ALT (p [95%CI] 1.81 [1.27, 2.36], FDR < 0.05) both overall and when stratifying for age (<65
years, n = 923; >65 years, n = 599); in the clinical cohort, it was associated with F3 fibrosis (OR [95%CI] 8.56 x
1071°[3.80 x 10713, 1.93 x 107%], FDR < 0.05); and in rodents, it was associated with MASLD/MetALD (OR
[95%CI] 2.86 [1.17, 9.51], FDR < 0.05). The secondary bile acid taurochenodeoxycholate was associated with
both early (FO, OR [95%CI] 13.63 [1.04, 179.17], p < 0.05) and advanced stages of disease (rodents, OR [95%
CI] 15.41 [2.94, 311.82], FDR < 0.05).

Conclusion: Taurocholate and taurochenodeoxycholate emerge as consistent BA markers across liver disease
stages, suggesting BA metabolism as potential therapeutic targets. This multi-model study bridges knowledge
gaps in BA-driven mechanisms, informing personalised strategies for SLD management.

Gut microbiome
Metabolomics
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1. Introduction

The gut-liver axis represents a bidirectional communication system
that regulates metabolic homeostasis and influences disease progres-
sion, including inflammaging and frailty [1,2]. Within this axis, bile
acids (BAs) serve as essential signalling molecules, functioning both as
digestive surfactants and metabolic regulators [1]. Disrupted BA ho-
meostasis drives and results from liver disease progression. Importantly,
ageing is accompanied by physiological changes in liver function, gut
microbiota composition, and bile acid metabolism, which may predis-
pose older adults to BA-related liver dysfunction [2,3].

In steatotic liver disease (SLD) and rodent models of liver injury,
shifts in primary and secondary BA profiles coincide with gut microbial
changes [4,5]. Three patterns emerge: (i) elevated specific BAs correlate
with liver damage, (ii) primary-to-secondary BA ratios shift with disease
severity, and (iii) these alterations align with microbial alterations.
Fibrosis, a hallmark of chronic liver disease, progresses from stage
0 (none) to stage 4 (cirrhosis), providing a standardised measure of liver
injury severity. These dynamics highlight BAs as potential biomarkers
and therapeutic targets. Indeed, our prior work identified iso-
ursodeoxycholate, a secondary BA, as a marker of cardiometabolic risk,
linked to hepatic steatosis and liver enzymes [6]. Targeting BA meta-
bolism holds therapeutic potential, exemplified by ursodeoxycholic
acid, which reduces BA pool toxicity and inflammation [7].

This study builds on these findings, integrating population-based and
clinical cohorts with rodent models to examine BA dysregulation across
liver disease contexts. This multi-faceted approach enables cross-
validation, aiming to uncover consistent BA markers and therapeutic
targets. Given the interplay between aging, bile acid regulation, and
liver resilience, this work provides critical insights into how age-related
changes may amplify susceptibility to liver disease. By exploring BA
metabolism and liver pathology interplay, we seek to identify shared
mechanistic pathways and common bile acid alterations across pro-
gressive liver disease phenotypes to deepen our understanding of BA-
driven mechanisms.

2. Methods

Study design: This multi-model study integrated three comple-
mentary approaches — a population-based cohort, a clinical cohort, and
rodent models to examine BA dysregulation in liver disease, enabling
cross-validation of consistent BA markers across paradigms. This design
enabled triangulation across distinct yet complementary models,
capturing subclinical variation in the general population, clinical stag-
ing in patients with SLD, and mechanistic insights in rodents, enhancing
confidence in shared BA associations.

2.1. Human populations

Population-based cohort: Participants from the TwinsUK Registry
[9] (1522 females, mean age 58.4 + 14.4years, body mass index (BMI)
25.8 + 5.1 kg/rnz), provided informed written consent, with ethical
approval from the St. Thomas’ Hospital REC (REC Ref: EC04/015).

Serum BA levels were quantified via untargeted LC-MS/MS by
Metabolon Inc. (see [6]). Clinical biomarkers of liver function — alanine
transaminase (ALT), a sensitive indicator of liver cell injury, aspartate
transaminase (AST), a marker of hepatocellular damage, total bilirubin
(elevated in liver dysfunction), and urea (reflecting liver synthetic ca-
pacity and protein metabolism) — were assessed in serum samples
collected within 12 months of metabolomics profiling [10]. We also
undertook a sensitivity analysis stratified by age (<65 years, n = 923;
>65 years, n = 599) to explore whether associations between BAs and
liver biomarkers were consistent across strata.

Clinical cohort: Participants with SLD were recruited from the Vall
Hebron University Hospital, Barcelona, Spain — (IRB approval PR(AG)
388/2021) [11], including 4 controls and 30 outpatients (56.2% female,
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mean age 56.3 + 14 years, BMI 33.1 + 8.4 kg/m?) across fibrosis stages
FO-F4 (Fig. 1A). Plasma BA levels were quantified, using a targeted
LC-MS/MS method that profiled 14 BAs [12].

2.2. Animal models

Rodent models were used to investigate BA dysregulation in meta-
bolic liver disease. We included 10 rats with metabolic dysfunction-
associated steatotic liver disease (MASLD), 10 rats with metabolic
dysfunction- and alcohol-associated liver disease (MetALD), and 9
healthy controls. As there were no statistically significant differences in
individual bile acid levels between MASLD and MetALD (p > 0.05,
Wilcoxon rank-sum), these groups were combined for comparisons
against controls. Furthermore, the MetALD rat model was induced with
low-dose alcohol (10% ethanol), representing mild exposure that falls
within the same clinical and pathophysiological spectrum as MASLD
[13].

2.3. Statistical analysis

All statistical analysis was conducted in R (version 4.4.1) [8].

Statistical comparisons were performed using a combination of
linear mixed models, multinomial regression, and Firth’s penalized lo-
gistic regression, depending on cohort structure and data type. In the
population-based cohort, linear mixed models were used to evaluate
associations between individual BAs and liver function biomarkers
(ALT, AST, bilirubin, urea), adjusting for age and BMI as fixed effects
and family relatedness as a random effect to account for twin structure.
In the clinical cohort, associations between BA levels and liver fibrosis
stages (FO-F4) were assessed via multinomial logistic regression, with
healthy controls as the reference, adjusting for age, sex, and BML In
rodent models, Firth’s penalized logistic regression was used to handle
small sample sizes and separation bias in modelling the odds of liver
disease (MASLD/MetALD) versus controls based on BA levels. False
discovery rate (FDR) correction was applied across all models to account
for multiple comparisons.

3. Results

The descriptive characteristics of the three study samples are
included in Table 1.

A heatmap summarising associations between BAs (n = 26) and liver
disease outcomes across the population-based cohort, clinical cohort,
and rodent models is presented in Fig. 1A.

3.1. Cross-cohort bile acid markers

Several BAs emerged as consistent markers across multiple cohorts
demonstrating the value of a multi-model framework for exploring
shared BA associations with liver pathology.

Taurocholate, a primary BA, showed significant associations across
all models. In the population-based cohort, taurocholate positively
correlated with ALT levels (f [95%CI] 1.81 [1.27, 2.36], FDR < 0.05)
both overall and in individuals <65years and individuals >65years
(Fig. 1B), weakly with urea (p [95%CI] 0.10 [0.02, 0.18], FDR < 0.05),
and negatively with total bilirubin (p [95%CI] —0.29 [-0.55, —0.04], p
< 0.05), after covariate adjustment. In the clinical cohort, taurocholate
was associated with F3 fibrosis (OR [95%CI] 8.56 x 107'° [3.80 x
10713, 1.93 x 10°°], FDR < 0.05). In rodent models, it positively
correlated with MASLD/MetALD (OR [95%CI] 2.86 [1.17, 9.51], FDR <
0.05).

These findings support taurocholate’s involvement in liver pathol-
ogy, possibly through enhanced sodium-taurocholate cotransporting
polypeptide (NTCP)-mediated uptake, consistent with studies showing
increased taurocholic acid trafficking and hepatic stellate cell activation
in advanced fibrosis [14].
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Glycocholate, another primary BA, exhibited similar trends,
including consistent associations in age stratified analyses, but lacked a
significant association with urea levels, and its correlation with F3
fibrosis did not survive multiple testing correction. This aligns with
recent reports identifying glycocholic acid as an independent risk factor
for incident liver cirrhosis, though the underlying mechanisms —
potentially involving metabolic acidosis — remain unclear [15].

Taurochenodeoxycholate, another primary BA, was positively
associated with ALT (8 [95%CI] 0.88 [0.31, 1.45], FDR < 0.05) overall
and in individuals <65 years, but not in those >65 years, though the
direction of effect was consistent, and urea levels (p [95%CI] 0.10 [0.02,
0.18], FDR < 0.05) in the population-based cohort and with MASLD/
MetALD in rodent models (OR [95%CI] 15.41 [2.94, 311.82], FDR <
0.05). In the clinical cohort, it showed a nominally significant associa-
tion with FO fibrosis compared to healthy controls (OR [95%CI] 13.63
[1.04,179.171, p < 0.05). Its consistent presence across models suggests
diagnostic value for detecting early-stage dysfunction and tracking
progression to fibrosis and cirrhosis, building on evidence of BA-based
signatures for early NAFLD detection [4]. Notably, taurochenodeox-
ycholic acid, typically non-toxic, may become cytotoxic when phos-
phatidylinositol 3-kinase-dependent survival pathways are disrupted
[16].

The overlap of key BAs across models highlights their relevance in
liver disease. Taurochenodeoxycholate and glycocholate may serve as
early biomarkers, while taurocholate and glycochenodeoxycholate
suggest therapeutic targets for BA homeostasis.
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Table 1
Cohort demographics and clinical characteristics.

Population-based Clinical cohort (n  Animal models

(TwinsUK) (n = 1522) =34) (n=29)

Mean SD Mean SD Mean SD
Age, years 58.4 14.4 56.3 14.0 - -
BMI, kg/m> 25.8 5.1 33.1 8.4 - -
AST, U/L 10.0 5.0 - - - -
ALT, U/L 19.2 9.5 - - - -
Bilirubin, pmol/L 9.1 4.6 - - - -
Urea, mmol/L 5.1 1.6 - - - -

n % n % n %

Sex, female 1522 100 18 52.9 - -
Healthy controls - - 4 11.8 31.0
FO - - 5 14.7 - -
F1 - - 5 14.7 - -
F2 - - 5 14.7 - -
F3 - - 5 14.7 - -
F4 - - 5 14.7 - -
F5 - - 5 14.7 - -
MASLD - - - - 10 34.5
MetALD - - - - 10 345

Abbreviations: BMI, body mass index; AST, aspartate transaminase; ALT, alanine
transaminase; MASLD, metabolic dysfunction-associated steatotic liver disease;
MetALD, metabolic dysfunction- and alcohol-associated liver disease; SD, stan-
dard deviation.
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Fig. 1. Heatmap of associations between BAs and liver pathology outcomes.

Clinical cohort Animal models

A) Associations across population-based, and clinical human cohorts and animal models. B) Associations in the population-based cohort stratified by age (>65 years;
Its <65 years). The colour scale indicates the magnitude and direction of associations. ** denotes FDR < 0.05, and * p < 0.05.
Abbreviations: AST, aspartate aminotransferase; ALT, alanine aminotransferase; MASLD, metabolic dysfunction-associated steatotic liver disease; MetALD, metabolic

dysfunction- and alcohol-associated liver disease.
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secondary BA glycochenodeoxycholic acid, a glycine conjugate of che-
nodeoxycholic acid, and ALT in the population-based cohort - consistent
only in younger individuals, and with MASLD/MetALD in the animal
model. No significant associations appeared in the clinical cohort, likely
due to small sample size and disease variability. Several secondary BAs
linked to ALT and/or bilirubin in the population-based cohort were
absent in the clinical cohort and animal models. This may reflect dif-
ferences in BA metabolism across disease stages, cohort compositions, or
methodological limitations in targeted BA detection.

4. Discussion

This multi-model study underscores the central role of BA meta-
bolism in liver disease progression, identifying significant BA dysregu-
lation across population-based, clinical, and rodent models, providing
insights into the gut-liver axis. These findings extend prior work linking
taurine- and glycine-conjugated BAs to fibrosis, inflammation, and
metabolic dysfunction [15,16], and demonstrate their translational
relevance across diverse study designs.

Taurocholate’s consistent associations with liver pathology markers,
including ALT and F3 fibrosis, align with its role in NTCP-mediated
uptake and hepatic stellate cell activation in advanced fibrosis [14].

Glycocholate and taurochenodeoxycholate also emerged as reliable
markers, with the latter’s association with FO fibrosis indicating a
possible protective role in early disease stages, warranting further
investigation. This may reflect adaptive shifts in BA composition that
precede fibrogenesis and has been observed in early-stage MASLD in
other cohorts [15].

In MetALD, BA dysregulation is closely tied to cholestasis-impaired
bile flow and BA accumulation in the liver, which may act as both a
consequence and driver of alcohol-induced injury [17]. While chole-
static features are observed in advanced SLD with overlapping metabolic
and alcohol-induced liver injury [18,19], suggesting shared patho-
physiological mechanisms. Additionally, ductular reaction, an adaptive
response to BA-induced damage involving bile duct epithelial cell pro-
liferation, may exacerbate fibrosis in SLD [20]. As potent signalling
molecules, accumulated BAs could activate pro-inflammatory and pro-
fibrotic pathways, further promoting liver damage.

These pathophysiological links provide a rationale for targeting BA
metabolism in therapeutic strategies and underscore the need to account
for disease aetiology when interpreting BA profiles. The ageing process
may intensify these mechanisms, as hepatic regeneration capacity, im-
mune responses, and gut microbial diversity declines. This may partially
explain increased vulnerability of older adulted to liver-related com-
plications driven by BA imbalance [2].In age-stratied analyses, fewer
BAs were linked to liver biomarkers in individuals aged >65, while as-
sociations were widespread but generally weaker in those <65. This may
reflect subtle age-related changes in liver function or gut-liver in-
teractions. These findings suggest that age is an important factor to
consider when interpreting BA associations. Future studies should
investigate the interplay of alcohol, BA metabolism, and the ductular
reaction to refine disease-specific mechanisms and biomarkers. Addi-
tionally, several BAs appeared to be cohort-specific, warranting further
exploration in larger, more diverse studies to clarify their role in liver
disease progression.

Several limitations must be considered, including the observational
nature of human data, which limits causal inference, and the TwinsUK
cohort’s female-only composition, which may reduce generalisability
due to sex differences in BA metabolism. This is particularly relevant
given emerging evidence of sex-specific regulation of BA synthesis and
transport in MASLD [21,22]. The small clinical cohort for early fibrosis
stages and the translational gap between rodent models and human
disease complexity necessitate larger, longitudinal studies with
multi-omics integration to validate findings and explore causality.

Future research should focus on interventional studies targeting BA
pathways or the gut microbiome, alongside sex-specific and age-
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focussed analyses in diverse cohorts, to advance precision medicine in
liver disease. These findings highlight BAs as promising diagnostic and
therapeutic targets, bridging gut-liver interactions and liver pathology.
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