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Results of the χ2-test 

The results of the χ2-test can be seen in Figure S1. Variables in green, below the mean incidence value, 

stand for features that correlate with a negative COVID-19 test result, while those in red are present in 

a child testing positive for COVID-19. Strong deviations from the mean incidence in one way or the 

other are equally important, as they indicate that the variable could be a potential predictor of COVID-

19 in children.  

 

Figure S1. Incidence of a COVID-19 testing positive by RDT or PCR per significant symptom (P-value <.05 in the 

χ2-square test). We divided the symptoms in two different figures (A and B) to improve the visualization. 
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Description of the age-divided subsets used for training 

Table S1. Specifications of the dataset used to train the predictive model of COVID-19 in patients aged 

0 to 5 years old. 

Characteristic 
Total 

N (%) 

Covid-19 

N (%) 

No covid-19 

N (%) 

Fever 

No 

37.5 oC to < 38 oC 

38 oC to 39 oC 

> 39 oC 

Unknown 

 

95 (29.50) 

55 (17.08) 

139 (43.17) 

33 (10.25) 

- (-) 

 

52 (32.30) 

41 (25.47) 

57 (35.40) 

11 (6.83) 

- (-) 

 

43 (26.71) 

14 (8.70) 

82 (50.93) 

22 (13.66) 

- (-) 

Cough 

No 

Yes 

Unknown 

 

155 (48.14) 

166 (51.55) 

1 (0.31) 

 

78 (48.45) 

83 (51.55) 

0 (0) 

 

77 (47.83) 

83 (51.55) 

1 (0.62) 

Total days of fever 

None 

1 or 2 days 

3 to 7 days 

>7 days 

Unknown 

 

118 (36.65) 

147 (45.65) 

55 (17.08) 

2 (0.62) 

- (-) 

 

65 (40.37) 

74 (45.96) 

20 (12.42) 

2 (1.24) 

- (-) 

 

53 (32.92) 

73 (45.34) 

35 (21.74) 

0 (0) 

- (-) 

Auscultation 

Normal 

Pathological Unknown 

 

242 (75.16) 

25 (7.76) 

55 (17.08) 

 

119 (73.91) 

4 (2.48) 

38 (23.60) 

 

123 (76.40) 

21 (13.04) 

17 (10.56) 

Auscultation type 

Normal 

Wheezing 

Crackles 

Both 

Unknown 

 

297 (92.24) 

14 (4.35) 

4 (1.24) 

7 (2.17) 

- (-) 

 

157 (97.52) 

3 (1.86) 

0 (0) 

1 (0.62) 

- (-) 

 

140 (86.96) 

11 (6.83) 

4 (2.48) 

6 (3.73) 

- (-) 

Dysphonia 

No 

Yes 

Unknown 

 

303 (94.10) 

17 (5.28) 

2 (0.62) 

 

151 (93.79) 

9 (5.59) 

1 (0.62) 

 

152 (94.41) 

8 (4.97) 

1 (0.62) 

Respiratory sympt. 

No 

Yes 

Unknown 

 

304 (94.41) 

17 (5.28) 

1 (0.31) 

 

156 (96.89) 

5 (3.11) 

0 (0) 

 

148 (91.93) 

12 (7.45) 

1 (0.62) 

Tachypnoea 

No 

Yes 

Unknown 

 

304 (94.41) 

14 (4.35) 

4 (1.24) 

 

156 (96.89) 

4 (2.48) 

1 (0.62) 

 

148 (91.93) 

10 (6.21) 

3 (1.86) 

Odynophagia 

No 

Yes 

Unknown 

 

235 (72.98) 

38 (11.80) 

49 (15.22) 

 

121 (75.16) 

10 (6.21) 

30 (18.63) 

 

114 (70.81) 

28 (17.39) 

19 (11.80) 

Congestion 

No 

 

141 (43.79) 

 

69 (42.86) 

 

72 (44.72) 
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Yes 

Unknown 

177 (54.97) 

4 (1.24) 

92 (57.14) 

0 (0) 

85 (52.80) 

4 (2.48) 

Fatigue 

No 

Yes 

Unknown 

 

256 (79.50) 

40 (12.42) 

26 (8.07) 

 

125 (77.64) 

21 (13.04) 

15 (9.32) 

 

131 (81.37) 

19 (11.80) 

11 (6.83) 

Headache 

No 

Yes 

Unknown 

 

203 (63.04) 

31 (9.63) 

88 (27.33) 

 

92 (57.14) 

22 (13.66) 

47 (29.19) 

 

111 (68.94) 

9 (5.59) 

41 (25.47) 

Conjunctivitis 

No 

Yes 

Unknown 

 

314 (97.52) 

5 (1.55) 

3 (0.93) 

 

156 (96.89) 

3 (1.86) 

2 (1.24) 

 

158 (98.14) 

2 (1.24) 

1 (0.62) 

Gastro sympt. 

No 

Yes 

Unknown 

 

237 (73.60) 

85 (26.40) 

- (-) 

 

111 (68.94) 

50 (31.06) 

- (-) 

 

126 (78.26) 

35 (21.74) 

- (-) 

Abdominal sympt. 

No 

Yes 

Unknown 

 

282 (87.58) 

29 (9.01) 

11 (3.42) 

 

140 (86.96) 

13 (8.07) 

8 (4.97) 

 

142 (88.20) 

16 (9.94) 

3 (1.86) 

Vomiting 

No 

Yes 

Unknown 

 

285 (88.51) 

37 (11.49) 

- (-) 

 

142 (88.20) 

19 (11.80) 

- (-) 

 

143 (88.82) 

18 (11.18) 

- (-) 

Diarrhoea 

No 

Yes 

Unknown 

 

274 (85.09) 

48 (14.91) 

- (-) 

 

131 (81.37) 

30 (18.63) 

- (-) 

 

143 (88.82) 

18 (11.18) 

- (-) 

Dermatologic 

No 

Yes 

Unknown 

 

314 (97.52) 

7 (2.17) 

1 (0.31) 

 

155 (96.27) 

5 (3.11) 

1 (0.62) 

 

159 (98.76) 

2 (1.24) 

0 (0) 

Rash 

No 

Yes 

Unknown 

 

319 (99.07) 

3 (0.93) 

- (-) 

 

160 (99.38) 

1 (0.62) 

- (-) 

 

159 (98.76) 

2 (1.24) 

- (-) 

Adenopathies 

No 

Yes 

Unknown 

 

259 (80.43) 

2 (0.62) 

61 (18.94) 

 

125 (77.64) 

0 (0) 

36 (22.36) 

 

134 (83.23) 

2 (1.24) 

25 (15.53) 

Haemorrhages 

No 

Yes 

Unknown 

 

297 (92.24) 

- (-) 

25 (7.76) 

 

146 (90.68) 

- (-) 

15 (9.32) 

 

151 (93.79) 

- (-) 

10 (6.21) 

Irritability 

No 

Yes 

Unknown 

 

190 (59.01) 

27 (8.39) 

105 (32.61) 

 

101 (62.73) 

16 (9.94) 

44 (27.33) 

 

89 (55.28) 

11 (6.83) 

61 (37.89) 
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Neurological 

No 

Yes 

Unknown 

 

320 (99.38) 

2 (0.62) 

- (-) 

 

159 (98.76) 

2 (1.24) 

- (-) 

 

161 (100.00) 

0 (0) 

- (-) 

Shock 

No 

Yes 

Unknown 

 

314 (97.52) 

- (-) 

8 (2.48) 

 

157 (97.52) 

- (-) 

4 (2.48) 

 

157 (97.52) 

- (-) 

4 (2.48) 

Table S2. Specifications of the dataset used to train the predictive model of COVID-19 in patients aged 

6 to 15 years old. 

Characteristic 
Total 

N (%) 

Covid-19 

N (%) 

No covid-19 

N (%) 

Fever 

No 

37.5 oC to < 38 oC 

38 oC to 39 oC 

> 39 oC 

Unknown 

 

411 (54.22) 

169 (22.30) 

156 (20.58) 

20 (2.64) 

2 (0.26) 

 

181 (47.76) 

88 (23.22) 

98 (25.86) 

11 (2.90) 

1 (0.26) 

 

230 (60.69) 

81 (21.37) 

58 (15.30) 

9 (2.37) 

1 (0.26) 

Cough 

No 

Yes 

Unknown 

 

495 (65.30) 

261 (34.43) 

2 (0.26) 

 

248 (65.44) 

131 (34.56) 

0 (0) 

 

247 (65.17) 

130 (34.30) 

2 (0.53) 

Total days of fever 

None 

1 or 2 days 

3 to 7 days 

>7 days 

Unknown 

 

463 (61.08) 

232 (30.61) 

53 (6.99) 

10 (1.32) 

- (-) 

 

207 (54.62) 

131 (34.56) 

34 (8.97) 

7 (1.85) 

- (-) 

 

256 (67.55) 

101 (26.65) 

19 (5.01) 

3 (0.79) 

- (-) 

Auscultation 

Normal 

Pathological 

Unknown 

 

511 (67.41) 

22 (2.90) 

225 (29.68) 

 

254 (94.42) 

2 (0.74) 

13 (4.83) 

 

257 (67.81) 

20 (5.28) 

102 (26.91) 

Auscultation type 

Normal 

Wheezing 

Crackles 

Both 

Unknown 

 

736 (97.10) 

20 (2.64) 

1 (0.13) 

1 (0.13) 

- (-) 

 

377 (99.47) 

2 (0.53) 

0 (0) 

0 (0) 

- (-) 

 

359 (94.72) 

18 (4.75) 

1 (0.26) 

1 (0.26) 

- (-) 

Dysphonia 

No 

Yes 

Unknown 

 

735 (96.97) 

18 (2.37) 

5 (0.66) 

 

370 (97.63) 

6 (1.58) 

3 (0.79) 

 

365 (96.31) 

12 (3.17) 

2 (0.53) 

Respiratory sympt. 

No 

Yes 

Unknown 

 

719 (94.85) 

35 (4.62) 

4 (0.53) 

 

361 (95.25) 

16 (4.22) 

2 (0.53) 

 

358 (94.46) 

19 (5.01) 

2 (0.53) 

Tachypnoea 

No 

Yes 

 

740 (97.63) 

10 (1.32) 

 

375 (98.94) 

0 (0) 

 

365 (96.31) 

10 (2.64) 
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Unknown 8 (1.06) 4 (1.06) 4 (1.06) 

Odynophagia 

No 

Yes 

Unknown 

 

506 (66.75) 

242 (31.93) 

10 (1.32) 

 

273 (72.03) 

103 (27.18) 

3 (0.79) 

 

233 (61.48) 

139 (36.68) 

7 (1.85) 

Congestion 

No 

Yes 

Unknown 

 

463 (61.10) 

285 (37.60) 

10 (1.32) 

 

236 (62.27) 

139 (36.68) 

4 (1.06) 

 

227 (59.89) 

146 (38.52) 

6 (1.58) 

Fatigue 

No 

Yes 

Unknown 

 

479 (63.19) 

272 (35.88) 

7 (0.92) 

 

233 (61.48) 

143 (37.73) 

3 (0.79) 

 

246 (64.91) 

129 (34.04) 

4 (1.06) 

Headache 

No 

Yes 

Unknown 

 

371 (48.94) 

377 (49.74) 

10 (1.32) 

 

164 (43.27) 

212 (55.94) 

3 (0.79) 

 

207 (54.62) 

165 (43.54) 

7 (1.85) 

Conjunctivitis 

No 

Yes 

Unknown 

 

742 (97.89) 

7 (0.92) 

9 (1.19) 

 

367 (96.83) 

4 (1.06) 

8 (2.11) 

 

375 (98.94) 

3 (0.79) 

1 (0.26) 

Gastro sympt. 

No 

Yes 

Unknown 

 

488 (64.38) 

269 (35.49) 

1 (0.13) 

 

270 (71.24) 

108 (28.50) 

1 (0.26) 

 

218 (57.52) 

161 (42.48) 

0 (0) 

Abdominal sympt. 

No 

Yes 

Unknown 

 

559 (73.75) 

198 (26.12) 

1 (0.13) 

 

305 (80.47) 

74 (19.53) 

0 (0) 

 

254 (67.02) 

124 (32.72) 

1 (0.26) 

Vomiting 

No 

Yes 

Unknown 

 

650 (85.75) 

108 (14.25) 

- (-) 

 

340 (89.71) 

39 (10.29) 

- (-) 

 

310 (81.79) 

69 (18.21) 

- (-) 

Diarrhoea 

No 

Yes 

Unknown 

 

628 (82.85) 

130 (17.15) 

- (-) 

 

337 (88.92) 

42 (11.08) 

- (-) 

 

291 (76.78) 

88 (23.22) 

- (-) 

Dermatologic 

No 

Yes 

Unknown 

 

740 (97.63) 

10 (1.32) 

8 (1.06) 

 

367 (96.83) 

7 (1.85) 

5 (1.32) 

 

373 (98.42) 

3 (0.79) 

3 (0.79) 

Rash 

No 

Yes 

Unknown 

 

755 (99.60) 

3 (0.40) 

- (-) 

 

377 (99.47) 

2 (0.53) 

- (-) 

 

378 (99.74) 

1 (0.26) 

- (-) 

Adenopathies 

No 

Yes 

Unknown 

 

516 (68.07) 

2 (0.26) 

240 (31.66) 

 

238 (62.80) 

2 (0.53) 

139 (36.68) 

 

278 (73.35) 

0 (0) 

101 (26.65) 

Haemorrhages    
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No 

Yes 

Unknown 

682 (89.97) 

1 (0.13) 

75 (9.89) 

335 (88.39) 

1 (0.26) 

43 (11.35) 

347 (91.56) 

0 (0) 

32 (8.44) 

Neurological 

No 

Yes 

Unknown 

 

751 (99.08) 

5 (0.66) 

2 (0.26) 

 

375 (98.94) 

3 (0.79) 

1 (0.26) 

 

376 (99.21) 

2 (0.53) 

1 (0.26) 

Shock 

No 

Yes 

Unknown 

 

717 (94.59) 

- (-) 

41 (5.41) 

 

363 (95.78) 

- (-) 

16 (4.22) 

 

354 (93.40) 

- (-) 

25 (6.60) 

Absence of taste 

No 

Yes 

Unknown 

 

678 (89.45) 

53 (6.99) 

27 (3.56) 

 

325 (85.75) 

49 (12.93) 

5 (1.32) 

 

353 (93.14) 

4 (1.06) 

22 (5.80) 

Absence of smell 

No 

Yes 

Unknown 

 

665 (87.73) 

65 (8.58) 

28 (3.69) 

 

314 (82.85) 

60 (15.83) 

5 (1.32) 

 

351 (92.61) 

5 (1.32) 

23 (6.07) 

 

Description of the modelling problem 

For each age subset Xs, s {0, 1, 2}, we are given observations xis with j symptomatology features. Each 

feature value xijs is categorical, and the task is to predict, given the ground truth labels yis {0, 1}, the 

likelihood yis of the observation xis belonging to the class 1 or 0 (positive SARS-CoV-2 test or not).  

Description of the solution implemented 

We have built clinical predictive models fs that issue the predictions fs(xis) =yis. To capture interactions 

in the data, we have compared the performance of several machine learning models on each of the three 

datasets. The model that performed the best in each set was chosen. 

Model architectures used 

Boosted Trees  

We are using the XGBClassifier implementation from XGBoost [1], which is a more regularized version 

of the Gradient Boosting Algorithm [2]. The XGBClassifier is an ensemble of decision trees, each of 

which is parametrized and sequentially improved via optimization algorithms. In particular, an XGB 

model is made up of classification and regression trees (CART) [3], that will provide the class into which 

the data sample is more likely to pertain. Each of these CARTs provides a prediction and then all of 

these are combined in order to form the final prediction for that data instance. 

CART models are binary trees that have a root node, which receives a single feature of the input data 

and then has a split point regarding that feature. This split leads to an output, which is contained in a 

leaf and is then used to make a prediction. However, if there is more than one feature for the data 

instances, the leaf will actually turn into another split regarding one of the other features, which again 

will lead to another leaf that will contain an output. This process will continue until all features have 

been analysed and therefore, a prediction has been generated for that instance of data. 
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Each of the tree leaves will have an associated numerical score. This will help us to get not only the 

classification class but also the probability with which it was done. Then, each instance of data will get 

a score from each of the trees and in order to ensemble the data all of these will be added up and form 

the final score for that data instance. 

Logistic Regression 

Logistic regression [4] is a predictive analysis method that measures the relationship between a 

dichotomous or binary dependent variable and a set of independent variables by estimating 

probabilities using a logistic function, also known as sigmoid function, which is the cumulative 

distribution function of logistic distribution. 

Unlike traditional regression [5], logistic regression does not attempt to predict a numeric variable's 

value from a set of inputs. Instead, assuming there are two classes, the output is the probability that the 

provided input point belongs to one of the classes. The logistic regression model does not perform 

statistical classification; however, it can be used to create a classifier by selecting a cut-off value and 

classifying inputs with probability greater than the cut-off as one class, and those with probability less 

than the cut-off as the other, resulting in a binary classifier. In other words, logistic regression is used 

to solve classification problems that require a probability estimate in the form of a 0/1.  

Unlike linear regression [6], we do not fit a straight line to our data in logistic regression. Instead, we 

fit our data to a sigmoid curve, which is an S-shaped curve. 

Logistic regression starts from a linear equation to predict the probability of presence of the 

characteristic of interest. However, this equation consists of log-odds which are further passed through 

a sigmoid function. This function, also called logistic function or transformations, takes any real input 

and squeezes the output of the linear equation to a probability between 0 and 1.  

𝑙𝑜𝑔
𝑝(𝑥)

1−𝑝(𝑥)
= 𝛼𝑜 + 𝛼𝑥 (1) 

There are several methods to train the model. We can use an iterative optimization algorithm like 

gradient descent to calculate the parameters of the model (the weights) or we can use probabilistic 

methods like maximum likelihood. 

Kernel Support Vector Machine (kSVM) 

A Support Vector Machine (SVM) [7] is a supervised machine learning (ML) algorithm that can be 

employed for both classification and regression purposes. SVMs are more commonly used in binary 

classification problems. SVMs are based on the idea of finding a hyperplane that best and distinctly 

divides a dataset into N classes (Figure S2). At the end, hyperplanes are decision boundaries that help 

classify the data points depending on which side of it they fall.  

For a classification task with only two features, a hyperplane is like a line that linearly separates and 

classifies a set of data. Intuitively, the further from the hyperplane our data points lie, the more 

confident we are that they have been correctly classified. We therefore want our data points to be as far 

away from the hyperplane as possible, while still being on the correct side of it. So, when new testing 

data is added, whatever side of the hyperplane it lands will decide the class that we assign to it. 

The hyperplane function is defined as:  

𝑤𝑇𝑥 +  𝑏 = 0  (2) 

where w is a weight vector, x is the input vector and b is the bias.  

Another important concept is the margin of separation, which is the separation between the hyperplane 

and the closest data point. When we want to find the optimal hyperplane, what we do is to find the 

hyperplane for which the margin of separation is maximized.  In the end, the problem of finding the 
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optimal hyperplane is an optimization problem, so we need training, and it can be solved by 

optimization techniques. 

The support vectors are the data points that lie closest to the decision surface (or hyperplane), so they 

are the data points most difficult to classify and they have a direct impact on where the hyperplane 

should be placed.  

 
Figure S2. SVM hyperplane separating samples from two different classes 

In the kernel version of this algorithm (kSVM) [7], which is the one used in the main article, the 

hyperplane is not computed on the original space, but rather in a transformed feature space, allowing 

for the separation of the data to be non-linear in the original space. This non-linearity is provided by 

the kernel function, which is used to map the observations from the original space to the transformed 

feature space. Which kernel function one picks is purely a design decision.  

 

Multilayer Perceptron 

The Multilayer Perceptron (MLP) [8] is an artificial neural network composed of input, hidden and 

output layers. Multiple hidden layers can be added to these networks to make them ‘deep’. In principle, 

the more hidden layers, the bigger the abstraction capabilities of the model (limited by the data 

characteristics and amount). For this work, we have implemented a custom MLP class in the deep 

learning (DL) framework PyTorch [9] in order to optimize the hyperparameters as desired. This custom 

class follows the scikit-learn API, and one can easily specify the activation functions, the shape and 

quantity of hidden layers, the amount of dropout layers and dropout percentage.  

 

Random Forest Classifier 

As the name implies, a random forest (RF) [10] is made up of a large number of individual decision 

trees that work together as an ensemble. RFs create decision trees on randomly selected data samples, 

get a prediction from each tree and select the best solution by means of voting, the class with the most 

votes becomes the prediction of our model (Figure S3). 

The wisdom of crowds is the basic principle behind RF, and it's a simple yet effective one. The RF model 

works so effectively because a large number of relatively uncorrelated models (trees) working together 

outperform any of the individual constituent models. The key is the low correlation between models. 

The explanation for this effect is that the trees protect each other from their individual mistakes (as long 
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as they don't all repeat the same errors). While some trees may be incorrect, many others will be correct, 

allowing the trees to move in the correct direction as a group. 

 

Figure S3. Visual description of how a Random Forest model provides a prediction 

The method used by the RF to ensure that the behaviour of an individual decision tree does not correlate 

with the behaviour of the other trees is called bagging. Bagging is supported by the fact that decision 

trees are very sensitive to the data they are trained with. It works by allowing each individual tree to 

randomly sample from the dataset with replacement, resulting in different trees.  

With bagging, we don't subset the training data into smaller chunks and train each tree on a different 

part. Rather, for each tree, we take a random sample of size N with replacement. To obtain the 

aggregation of the outputs of each simple and independent model, bagging uses the voting for the 

classification methods. 

 

Dealing with missings 

For the symptoms with less than 25% of missing values (the others were discarded in pre-

processing), we have implemented an imputation routine. For this, IterativeImputer class from scikit-

learn [11] has been used, which iteratively imputes each feature as a function of the others. The estimator 

used to model each feature as a function of the rest has been a k-nearest neighbours’ classifier with 

Euclidean distance with the assumption of feature ordinality. We have set the number of rounds of the 

imputer to 3 and the number of neighbours for the estimator to consider (k) to 5. 

Modelling pipeline 

Model development 

In order to provide a solution for our classification problem, we are using Machine and Deep Learning 

techniques, which means that our model will learn directly from data instead of predefining a 

descriptive equation. This modelling process mainly consists of two parts. 

First, a training process, in which the model will use both the training features and the training labels 

in order to find the best model hyperparameters that allow a good fit between features and labels. In 

order to be able to declare which are these best hyperparameters, we need to have a way to measure 

their effectiveness, this is what we call the objective function, which will quantify how good the model 

fits by computing a training loss and adding a regularization factor. The training loss is a function that 

measures how well is our model doing with respect to the training data, that is, it computes the hit rate 
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of the model. However, if we only used the training loss to adjust our model, we would end up having 

a too specific fit that would only work for the training dataset and would not generalize properly for 

any other set of data. In order to keep the model from becoming too specific, what we call overfitting, 

the regularization term is added to the training loss. Therefore, one can see that there happens a trade-

off between having a good yet simple model. This is commonly referred to as the bias-variance trade-

off. 

We split each data subset Xs into train and test in 70/30 proportions. Then, 5x2-fold cross validation 

(CV) is performed. In each CV fold the missing values in training and validation are imputed in a 

round-robin fashion for 5 rounds with a k-nearest-neighbour classifier (k=5). To prevent information 

leakage from sets when imputing, we first impute the training fold and then the validation fold, this 

time fitting the imputer both with the imputed training fold as well as the validation fold, so as to 

imitate the process of incorporating past information (as one would do in a real setting). Then, each 

feature is mapped into a one-hot representation, creating n-1 columns for each feature if it originally 

had n values, and the training fold is undersampled such that there are 50% positive and 50% negative 

observations. With this transformed training data, we train the candidate model architectures with all 

of the chosen hyperparameter configurations and test their performance against the validation set. The 

performance is quantified in terms of area under the receiver operating characteristic curve (AUROC) 

curve, sensitivity, specificity, precision and F1 score. [12] 

 

Model selection 

We choose one hyperparameter configuration for any candidate model architecture: pairwise t-tests (in 

combination with 5x2 CV, as proposed in [13,14]) were performed to choose between hyperparameter 

configurations. Thus, we compared each of the AUC validation score sets obtained in the model 

development stage (10 scores for each model configuration) to see if they were statistically different 

from each other (P<.05) and finally we chose the hyperparameter configuration with the best average. 

See Table S3 for an overview of the ranges of hyperparameters explored and Table S5A for the number 

of configurations tested.  

 

Table S3. Grids of hyperparameter values explored in the model selection and fine-tuning steps of the modelling 

pipeline. Each hyperparameter configuration is created by randomly picking a hyperparameter value from the 

grid. a-d 

Model type Hyperparameter name Possible values 

XGB   

 

learning rate 

n_estimators 

max_depth 

subsample 

gamma 

reg_alpha 

reg_lambda 

[0.001, 0.01, 0.1] 

[100, 300, 500] 

[4, 6, 8] 

[0.25, 0.5, 0.8] 

[0, 0.1, 1] 

[0, 0.1, 1] 

[0, 0.1, 1] 

RF   

 n_estimators [25, 50, 100, 200, 300, 400, 500, 750, 1000] 
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max_depth 

min_samples_split 

max_features 

[3, 4, 5, 6, 7, 8, 9] 

[2, 4, 8, 16] 

[‘auto’, ‘sqrt’, ‘log’] 

MLP   

 

linearLayerSizes 

 

 

 

 

 

activation 

nDropoutLayers 

dropoutP 

nEpochs 

batchSize 

initLR 

[((1.5, 2), (2, 1.5)), 

((1.5, 2), (2, 3), (3, 2), (2, 1), (1, 0.5)), 

((1.5, 2), (2, 3), (3, 3.5), (3.5, 3), (3, 2), 

(2, 1), (1, 0.5)), 

((1.5, 2), (2, 3), (3, 4), (4, 3), (3, 2), 

(2, 1), (1, 0.5))] 

[‘relu’, ‘rrelu’, ‘tanh’, ‘sigmoid’] 

[0.1, 0.2, 0.3] 

[0.1, 0.15, 0.2] 

[25, 50, 75, 100] 

[50] 

[0.001] 

kSVM   

 

C 

kernel 

degree 

[0.001, 0.005, 0.01, 0.05, 0.1, 1, 5, 10] 

[‘poly’, ‘rbf’, ‘sigmoid’] 

[2, 3, 4, 5, 6] 

LR   

 C 
[0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 

0.5, 1, 5, 10] 

a linearLayerSizes: input and output sizes of the intermediate hidden layers as multipliers of the number of features 

in the data, in order. The first and last layers are implicitly created.  

b activation: activation function used in hidden layers.  
c nDropoutLayers: percentage of hidden layers that will be followed by a dropout layer.  
d dropoutP: percentage of dropout in the dropout layers. 

 

Table S4. (A) Number of hyperparameter configurations used in the model selection step of the pipeline. Each of 

the configurations for all the architectures is tried out for all three data subsets. (B) Number of hyperparameter 

configurations used in the fine-tuning step of the pipeline. Only one architecture is explored for each data subset. 

For both steps, all hyperparameter configurations are distinct. 

Architecture XGB RF MLP kSVM LR 

Nº configurations explored 

(model selection) 
120 120 120 120 11 

(A) 

Architecture XBG (All ages) RF (0-5y) RF (6-14y) 
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Nº configurations explored (fine-

tuning) 
2187 756 756 

(B) 

 

Fine-tuning 

With the best-performing classifier found in the model selection stage, we performed a more fine-

grained hyperparameter search by repeating the model development stage but with more candidate 

configurations. The number of configurations used can be found in Table S5B.  

 

Model evaluation 

Each of the obtained model configurations in the model selection stage was trained with the full train 

set and bootstrap-evaluated against the test set. The full train set and the test set were previously 

transformed the same way as the train and validation sets in the model development stage: imputation, 

one-hot encoding and undersampling (only for training). 100 bootstrap rounds were performed to 

obtain 95% confidence intervals around each of the evaluation metrics. 

 

Evaluation metrics 

We tested the model’s performance using the sensitivity, specificity, precision and F1 score metrics as 

well as the Area Under the Receiver Operating Characteristic (AUROC). They are defined as follows. 

❖ Confusion Matrix 

As the name may hint, although the Confusion Matrix is not exactly an evaluation 

metric, it does allow one to see whether a model is confusing two classes and, 

furthermore, it determines the concepts that are then used to define the actual testing 

metrics. Thus, this table typically shows the number of samples from each class that 

have been respectively classified into one class (i.e., the correct one) or another (i.e., the 

incorrect one). This is, it will show the number of positive samples that have been 

classified as positive, those are the True Positive (TP), and also the positive samples 

that have been classified as negative, those are the False Negative (FN). Consequently, 

the same classification occurs for the negative samples; the ones classified as positive 

are the False Positive (FP), and the ones classified as negative are the True Negative 

(TN). Then, in general terms, Figure S4 shows what a Confusion Matrix will look like. 
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Figure S4. General representation of a Confusion Matrix [15] 

 

❖ Sensitivity 

This metric, also known as Recall, mathematically describes the proportion of samples 

that were classified as positive by the model out of all the samples that were actually 

positive. That is, 
𝑇𝑃

𝑇𝑃+𝐹𝑁
. 

❖ Specificity 

This metric mathematically describes the proportion of samples that were classified as 

negative by the model out of all the samples that were actually negative. That is, 
𝑇𝑁

𝑇𝑁+𝐹𝑃
. 

❖ Precision 

This metric mathematically describes the proportion of samples that were classified as 

positive and were actually positive out of all the samples that were classified as positive 

by the model. That is, 
𝑇𝑃

𝑇𝑃+𝐹𝑃
. 

 

❖ F1 score 

This metric is actually the weighted average between the Recall, or Sensitivity, and the 

Precision. Therefore, it takes into account both False Negatives and False Positives, 

what makes this metric a more accurate one than traditional Accuracy (which is simply 

the ratio of correct predictions), especially for uneven class distributions. This is, 
2⋅(𝑅𝑒𝑐𝑎𝑙𝑙·𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
. 

❖ AUROC 

The Area Under the Receiver Operating Characteristic (AUROC) is an evaluation 

metric for classification models [16], it then determines the ability of the model to 

classify a sample of a given class into that class. In our case, that is, the probability that 

the model will rank a uniformly drawn randomly selected patient that is Covid-19 

positive higher than a uniformly drawn randomly selected patient that is Covid-19 

negative. In other words, the area under the Receiver Operating Characteristic (ROC) 

curve is created by plotting the True Positive rate, also known as Sensitivity or Recall, 

against the False Positive rate, which is equivalent to 1-Specificity, at various thresholds, 

as shown in Figure S5. 
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Figure S5. Visual description of the ROC curve [17]. 

 

Feature importance extraction 

SHAP is a model-agnostic explainer method capable of providing additive feature importance values 

for any model’s prediction, regardless of its architecture.  

While we could have only interpreted the model trained with data from all age groups and then 

analysed the SHAP values of observations by different age strata instead of creating a classifier for each 

age interval, we believed the latter yields better interpretation. That is, in the first case, the SHAP values 

of observations in one age strata may possibly be influenced by observations of other age groups, 

having biased results depending on what the classifier really learned. On the other hand, having 

separate models ensures that the feature importance values of each age strata are not influenced by 

leading factors in other age groups. Given the models that have been chosen to perform best on the test 

data, we get the SHAP feature importance explanations for each of the test instances. That is, for each 

instance, we get a vector containing an approximation of the shapley value for each feature that tells us 

whether it affected positively or negatively the predicted probability of that test instance belonging to 

an infected individual or not.  

In our case, we consider the shapley values with respect to the probability of being infected. With these 

local feature importance explanations, we average the shapley values along all of the test instances and 

obtain, for each feature, a mean shapley value. If that value is positive, it means that the feature has 

been, in most cases, a positive predictor of infection. On the other hand, if the value is negative, a high 

value of the feature (if the category is present) will, on average, push the predicted infection probability 

lower. With this procedure, we can not only obtain a measurement of importance of each feature for 

each of the three models, but also if the found relationship is positive or negative. So, we are able to see 

how the predictors change over the different age ranges.  

 

Computational resources 

Computational resources used in the pre-processing and modelling phases of our analysis can be found 

on Table S5. 
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Table S5. Computational resources used in the pre-processing and modelling phases and their IDs. 

Resource Source ID 

Python python.org 3.7.11 

Python packages   

scikit-learn 

PyTorch 

SHAP 

pandas 

numpy 

scikit-learn.org 

pytorch.org 

github.com/slundberg/shap 

pandas.pydata.org 

numpy.org 

0.24.2 

1.9.0+cu102 

0.39.0 

1.1.5 

1.19.5 

Source code   

Data Processing, 

Model Generation, 

Evaluation, 

Importance Analysis 

https://github.com/chus-chus/cov19-modeling  - 
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