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Purpose: Relationships	 between	 diffusion-	weighted	 MRI	 signals	 and	 hepato-
cyte	 microstructure	 were	 investigated	 to	 inform	 liver	 diffusion	 MRI	 modeling,	
focusing	on	 the	 following	question:	Can cell size and diffusivity be estimated at 
fixed diffusion time, realistic SNR, and negligible contribution from extracellular/
extravascular water and exchange?
Methods: Monte	 Carlo	 simulations	 were	 performed	 within	 synthetic	 hepato-
cytes	for	varying	cell	size/diffusivity	L/D0,	and	clinical	protocols	(single	diffusion	
encoding;	maximum	b-	value:	{1000,	1500,	2000}	s/mm2;	5	unique	gradient	dura-
tion/separation	pairs;	SNR	=	{∞,	100,	80,	40,	20}),	accounting	for	heterogeneity	in	
(D0,L)	and	perfusion	contamination.	Diffusion	(D)	and	kurtosis	(K)	coefficients	
were	 calculated,	 and	 relationships	 between	 (D0,L)	 and	 (D,K)	 were	 visualized.	
Functions	mapping	(D,K)	to	(D0,L)	were	computed	to	predict	unseen	(D0,L)	val-
ues,	tested	for	their	ability	to	classify	discrete	cell-	size	contrasts,	and	deployed	on	
9.4T	ex	vivo	MRI-	histology	data	of	fixed	mouse	livers
Results: Relationships	between	(D,K)	and	(D0,L)	are	complex	and	depend	on	
the	 diffusion	 encoding.	 Functions	 mapping	 (D,K)	 to	 (D0,L)	 captures	 salient	
characteristics	of	D0(D,K)	and	L(D,K)	dependencies.	Mappings	are	not	always	
accurate,	but	they	enable	just	under	70%	accuracy	in	a	three-	class	cell-	size	clas-
sification	task	(for	SNR	=	20,	bmax	=	1500	s/mm2,	�	=	20	ms,	and	Δ	=	75	ms).	MRI	
detects	cell-	size	contrasts	in	the	mouse	livers	that	are	confirmed	by	histology,	but	
overestimates	the	largest	cell	sizes.
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1 	 | 	 INTRODUCTION

Diffusion-	weighted	(DW)	MRI	relies	on	the	self-	diffusion	
of	water	residing	in	biological	tissues	to	probe	cellular	mi-
croarchitecture.	 In	classical	pulsed	gradient	spin	echo,1,2	
two	diffusion	gradients	sensitize	the	acquisition	to	diffu-
sion.	The	first	gradient	tags	spin	phases	according	to	spa-
tial	position,	whereas	 the	second	one,	played	out	after	a	
certain	 interval	 (known	 as	 diffusion	 time),	 cancels	 such	
tags	 for	 stationary	 spins.	 In	 the	 presence	 of	 diffusion,	
water	 molecules	 change	 their	 position	 during	 the	 diffu-
sion	time,	and	the	tag	removal	is	incomplete.	This	leads	to	
MRI	signal	attenuation,	which	carries	a	signature	of	tissue	
microstructure.3

Model-	based	 methods	 offer	 practical	 solutions	 to	 the	
estimation	of	microenvironment	properties	from	MRI	by	
adopting	geometric	models	of	microstructure.4	This	leads	
to	 tractable	 expressions	 that	 parametrize	 the	 signal	 as	 a	
function	 of	 sequence	 and	 microstructural	 parameters.5	
So	 far,	model-	based	methods	have	 found	several	clinical	
applications,6–	13	in	spite	of	potential	biases	occurring	as	a	
result	of	modeling	oversimplifications.14,15	Modeling	has	
focused	on	neural16–	22	and	prostate23–	25	tissue	characteri-
zation,	as	well	on	cell-	size	measurements,26–	29	relevant	in	
oncology.	However,	less	attention	has	been	paid	to	other	
organs,	 such	 as	 the	 liver.30–	33	 Biologically	 specific	 DW	
MRI	methods	are	urgently	required	in	liver	diseases,	such	
as	liver	cancer,	a	leading	cause	of	cancer-	related	death.34	
Liver	cancer	(either	primary	or	metastatic35)	shows	a	va-
riety	of	microstructural	characteristics.	Quantitative	liver	
MRI	methods	offer	sensitivity	 to	cancer	pathology,36	but	
still	 fail	 to	 distinguish	 key	 pathological	 differences	 (e.g.,	
substitution	of	either	sinusoidal	endothelial	cells	or	liver	
hepatocytes	 by	 neoplastic	 cells35,37).	 There	 is	 a	 pressing	
need	 for	 new	 clinically	 viable	 liver	 MRI	 readouts;	 these	
could	 help	 reduce	 the	 use	 of	 invasive	 biopsies,	 which	
sparsely	 sample	 the	 tissue,	 are	 prone	 to	 false	 negatives,	
and	 can	 result	 in	 complications	 for	 the	 patient,38	 and	
could	support	diagnosis	and	treatment	selection.

A	key	step	in	diffusion	MRI	development	is	the	identi-
fication	of	microstructural	features	that	can	be	estimated	
from	clinical-	like	(i.e.,	 intermediate	b-	values	and	limited	
scan	 time)	 measurements.5	 To	 our	 knowledge,	 such	 a	

characterization	 for	 hepatocytes,	 which	 account	 for	 up	
to	85%	of	liver	volume,39	is	still	lacking.	Here	we	consid-
ered	realistic	hepatocyte	sizes	and	diffusion	protocols	that	
could	be	feasible	in	the	clinic	(single	diffusion	encoding,	
maximum	b-	value	up	to	2000	s/mm2,	fixed	diffusion	time	
with	gradient	separation/duration	Δ/�	in	the	range	of	[25;	
75]	ms	and	[10;	40]	ms,	SNR	as	low	as	20	at	b	=	0).	Through	
Monte	 Carlo	 simulations	 and	 co-	localized	 9.4T	 ex	 vivo	
MRI	and	histology	of	 fixed	mouse	 livers,	we	specifically	
investigated	the	following	question:	Can cell size and diffu-
sivity be estimated from signal cumulants at fixed diffusion 
time and realistic SNR, under the assumption of negligible 
contributions from extracellular/extravascular water and 
water exchange?	While	experiments	performed	at	varying	
diffusion	times	are	ideal	for	cell-	size	measurement,26–	29,33	
techniques	providing	summary	cell-	size	indices	with	min-
imal	acquisitions	have	the	potential	of	bringing	quantita-
tive	MRI	one	step	closer	to	the	clinic.

2 	 | 	 METHODS

We	simulated	intracellular	signals	at	fixed	diffusion	time	
and	processed	them	to	estimate	cell	size	L	and	cell	diffu-
sivity	D0.	 The	 approach	 was	 also	 tested	 on	 9.4T	 ex	 vivo	
MRI	scans	of	fixed	mouse	livers.	All	analysis	code	is	made	
available	 (https://github.com/fragr	ussu/MChepato),	 and	
was	executed	on	two	Ubuntu	20.04.2	machines	(18-	core,	
3.00-	GHz	Intel®	Core	i9-	10980XE	CPU).

2.1	 |	 Cell generation

We	simulated	hepatocytes	(polygonal	cells39)	by	perturb-
ing	 regular	 prisms	 with	 square/pentagonal/hexagonal	
bases.	 Prisms	 were	 described	 by	 triangular	 meshes	 and	
featured	a	characteristic	length	L	(base-	to-	base	height	and	
diameter	 of	 the	 circumcircle	 relative	 to	 each	 base).	 We	
considered	33	values	of	L	 in	[11;	60]	μm	(increment:	1.5	
μm),	obtaining	S =	 15	unique	cell	 shapes	 for	each	value	
of	 L.	 The	S	 cells	 at	 fixed	 L	 were	 obtained	 by	 perturbing	
each	prism	base	shape	5	times,	displacing	vertices	at	ran-
dom	 (displacements	 drawn	 from	 a	 normal	 distribution,	

by	a	fellowship	from	Fundació	”la	
Caixa”	(ID	100010434)	and	the	
European	Union’s	Horizon	2020	
research	and	innovation	programme	
under	the	Marie	Sklodowska-	Curie	
grant	agreement	No	847648,	fellowship	
code	LCF/BQ/PI20/1176003

Conclusion: Salient	information	about	liver	cell	size	and	diffusivity	may	be	re-
trieved	from	minimal	diffusion	encodings	at	fixed	diffusion	time,	in	experimen-
tal	conditions	and	pathological	scenarios	 for	which	extracellular,	extravascular	
water	and	exchange	are	negligible.
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σ	 =	 0.1L).	 The	 range	 for	 L	 covers	 sizes	 seen	 in	 healthy	
mammal	livers	(e.g.,	20–	30	μm	in	humans,39	30–	40	μm	in	
mice40)	and	in	pathology	(e.g.,	swollen	hepatocytes	in	ste-
atosis37;	hepatocyte	substitution	by	smaller	cancer	cells41).	
Supporting	Information	Figure	S1	shows	synthetic	cells.

2.2	 |	 Intracellular spin dynamics

We	generated	random	walks	with	the	MCDC	simulator,42	
distributing	 N	 =	 1000	 spins	 uniformly	 inside	 each	 cell	
(elastic	 reflection	at	walls;	 impermeable	walls).	We	sim-
ulated	Ts	=	140	ms	 (3000	 steps)	and	varied	 the	 intrinsic	
cell	diffusivity	D0	in	[0.20;	2.40]	μm

2

ms
	(45	values;	increment:	

0.05 μm
2

ms
).

2.3	 |	 Magnetic resonance imaging 
signal synthesis

For	each	fixed	(D0,	L)	value,	we	pooled	together	spin	tra-
jectories	 rn,s,k(t)	 simulated	 within	 a	 neighborhood	Ω	 of	(
D0, L

)
	(i.e.,	

Ω
(
D0, L

)
≜
{
D0−0.10, D0−0.05, D0, D0+0.05, D0+0.10

}

μm2

ms
× {L−3.0, L−1.5, L, L+1.5, L+3.0 } �m)

	.	

This	 introduces	 heterogeneity	 expected	 in	 realistic	 vox-
els,15,43	leading	to	1189	

(
D0, L

)
	pairs.	Above,	n	=	1,	…,	N	is	

the	index	of	a	spin	within	a	cell;	s=	1,	…,	S	is	the	cell-	shape	
index	 for	 fixed	 cell	 size;	 and	k = 1,⋯, Kenumerates	 the	
elements	of	Ω

(
D0, L

)
,	with	K = dim

(
Ω
(
D0, L

))
.	For	MRI	

signal	synthesis,	we	considered	single	diffusion	encoding2	
gradient	waveforms	G(t),	with	five	unique	clinically	real-
istic	gradient	duration/separation	δ/Δ	([10	ms,	50	ms],	[20	
ms,	25	ms],	[20	ms,	50	ms],	[20	ms,	75	ms],	and	[40	ms,	50	
ms]).	For	any	fixed	(δ,	Δ),	we	synthesized	measurements	
corresponding	 to	 seven	 nonzero	 b-	values,	 uniformly	
spaced	 in	 (bmin;bmax),	where	bmin	=	100	s	mm–	2,	a	value	
used	 to	 suppress	 intravoxel	 incoherent	 motion	 (IVIM)–	
like	 components44,45;	 and	 bmax	 =	 (1000,	 1500,	 2000)	 s	
mm–	2,	as	the	volume-	weighted46	sum:

For	each	b-	value,	we	generated	signals	for	three	mutu-
ally	orthogonal	gradients	 (as	common	 in	 liver	MRI44,45),	
averaged	 them,	 and	 introduced	 random	 slow-	flow	

(intravoxel	 incoherent	 motion,	 or	 IVIM)44,47	 contamina-
tion	as	follows:

In	 this	 equation,	 0.05 ≤ f ≤ 0.50	 controls	 the	 IVIM	
contamination,	and	15 μm2

ms
≤ Dv ≤ 60

μm2

ms
.44,45	Rician	noise	

was	 injected	at	an	SNR	of	 (∞,	100,	80,	40,	20),	where	∞	
denotes	no	noise	added;	SNR = 1∕�,	�2	denotes	the	noise	
variance.

2.4	 |	 Analysis

We	 estimated	 apparent	 diffusion/kurtosis	 coefficients	
D/K 	 for	 any	 (D0, L),	 diffusion	 protocol,	 and	 SNR	 by	
fitting5,48

through	 constrained	 nonlinear	 least-	squares	 fitting	 ini-
tialized	 by	 linear	 fitting	 (0 ≤ s0 ≤ 1;	 0 μm2

ms
≤ D ≤ 2.4

μm2

ms
;	

− 5 ≤ K ≤ 10).	The	value	of	s0	is	the	non-	DW	signal.
We	 tested	 whether	

(
D0, L

)
	 can	 be	 estimated	 from	D	

and	K	 when	 the	 contribution	 of	 extracellular,	 extravas-
cular	 water	 and	 transcytolemmal	 water	 exchange	 are	
negligible.	To	this	end,	we	related	(D, K)	to	(D0, L)	using	
color-	coded	scatter	plots,	and	studied	paired	(D, K)→ D0	
and	(D, K)→ L	observations	estimating	smooth	function	
(D0 (D, K),	L (D, K))	mapping	(D, K)	 to	(D0, L)	at	a	 fixed	
protocol	and	SNR.	The	estimation	was	based	on	 the	 fol-
lowing	polynomial	functions:

where	m	indicates	D0	and	L	in	turn.	We	refer	to	the	estima-
tion	 of	D0(D,K)	 and	L(D,K)	 via	 Equation	 4	 as	 PolyMap.	
Coefficients	 ai	 were	 estimated	 on	 700	 randomly	 selected	
(D0, L)	training	pairs	out	of	1189,	and	then	deployed	to	pre-
dict	the	489	unseen	(D0, L)	values.	We	assessed	the	quality	
of	the	prediction	by	visualizing	errors	against	ground-	truth	
values.	For	reference,	PolyMap	was	compared	with	fitting	of	
a	biophysical	model	of	 the	 intracellular	DW	signal	 (SigFit	
estimation)	as	follows:

(1)
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Equation	 5	 relies	 on	 an	 approximate	 expression	 of	
the	 apparent	 diffusion	 coefficient	 for	 spins	 diffusing	 in	
a	 bounded	 medium	 (wide-	pulse	 limit).49–	51	 The	 values	
of	c0	 and	c1	 are	 constants	 that	 depend	 on	 the	 geometry:	
Analysis	 of	 intracellular	 diffusion	 coefficients	 from	 400	
unique	coefficients	(D0, L, Δ, �)	provides	c0 ≈ 1.342 ∙ 10−3	,	
c1 ≈ 1.259 ∙ 10−5	for	our	synthetic	cells.	Note	that	D0	and	
L	in	Equation	5	are	fitted	jointly	to	sets	of	signal	measure-
ments	performed	at	varying	b-	value	 (but	 fixed	Δ	 and	�).	
This	implies	that	we	do	not	get	a	single	number	for	the	ap-
parent	diffusion	coefficient	value	first,	and	derive	D0	and	
L	from	it	afterwards.

Finally,	 we	 tested	 whether	 it	 is	 possible	 to	 resolve	
cell-	size	 contrasts	 with	 the	 minimal	 protocols	 consid-
ered	 here,	 being	 that	D0	 and	L	 are	 difficult	 to	 disentan-
gle.	 We	 discretized	 L	 as	 small	 (L ≤ 28�m),	 medium	
(28𝜇m < L ≤ 42𝜇m	),	 large	 (L > 42𝜇m),	 and	 fitted	 a	
multinomial	 logistic	 regression	 model	 (Python	stats-
models)	 in	the	same	form	of	Equation	4	(m = {0, 1, 2}:	
discretised	L).	The	model	was	fitted	to	the	training	set	for	
all	diffusion	protocols	and	SNR	=	20,	and	deployed	on	the	
validation	 set.	We	 calculated	 classification	 accuracy	 and	
estimated	 95%	 accuracy	 ranges	 compatible	 with	 chance	
by	training	on	1000	random	permutations	of	the	m	labels.

2.5	 |	 Magnetic resonance imaging -  
histology comparison

Two	 formalin-	fixed	 NOD.Cg-	Prkdcscid	 IL2rgtm1WjI/SzJ	
mouse	livers	from	an	approved,	ongoing	study	(wild-	type	
[WT]	and	patient-	derived	xenograft	(PDX),	subcutaneous	
implantation	of	prostate	cancer	bone	biopsy)	were	scanned	
in	phosphate-	buffered	saline	on	a	9.4T	Bruker	Avance	sys-
tem	(room	temperature)	to	test	whether	our	approach	can	
detect	histologically	meaningful	cell-	size	differences	due	
to	pathology.	The	DW	spin-	echo	scans	(Δ	=	30	ms;	�	=	10	
ms;	TE	=	45	ms;	TR	=	2700	ms;	10	b-	values	in	[0;	4500]	s/
mm2;	two	slices,	1-	mm	thick;	349	×	273	μm2	resolution)	
were	acquired	and	preprocessed.52–	54	Images	acquired	at	
b	>	1700	s/mm2	(i.e.,	with	negligible	phosphate-	buffered	
saline	 contamination)	 were	 analyzed	 with	 PolyMap	 and	
SigFit.	 For	 PolyMap	 computation,	 the	 (D,K)→ (D0,L)	
mapping	was	learned	on	signals	synthesized	for	the	spe-
cific	protocol	used	ex	vivo,	and	corrupted	at	an	SNR	equal	
to	 the	 sample	 median	 SNR	 at	 b	 =	 0,	 estimated	 through	
Marchenko	and	Pastur	principal	component	analysis.52,55	
SigFit	fitting	was	instead	performed	by	either	(1)	estimat-
ing	jointly	D0	and	L,	or	(2)	fixing	D0	to	{0.5,	0.75,	1.0,	1.25,	
1.50}	μm

2

ms
	in	turn	to	all	voxels	and	then	estimating	L,	as	in	

some	model-	based	approaches.26

One	 4-	μm-	thick	 histological	 section	 was	 obtained	 for	
each	MRI	slice,	stained	with	hematoxylin	and	eosin,	and	

digitized	 (Hamamatsu	 C9600-	12	 scanner;	 resolution:	
0.227	μm).	Cells	were	segmented	with	QuPath,56	obtain-
ing	 cell-	wise	 diameters	 l.	 These	 were	 analyzed	 within	
patches	 matching	 the	 in-	plane	 MRI	 resolution,	 deriving	
per-	patch	histological	cell	size

Equation	 6	 is	 justified	 by	 noting	 that	 the	 total	 in-
tracellular	 MRI	 signal	 sintra	 is	 approximately	 pro-
portional	 to	 < l7>

< l3>
,	 being	 that	 sintra =

< l3s(l) >

< l3 >
	 is	

the	 volume-	weighted	 sum57	 of	 individual	 cell	 sig-
nals	 and	 that	 s (l) ≈ e−�l

4
≈ 1 − �l4	,49	 implying	 that	

sintra ≈ 1 − 𝛼
< l7>

< l3>
.Lhisto	was	warped	to	MRI	(symmetric	

diffeomorphic	registration58	of	specimens’	manual	out-
lines),	and	metric	distributions	were	evaluated.

3 	 | 	 RESULTS

The	computation	time	required	to	process	one	MRI	pro-
tocol	was	approximately	700	seconds	for	each	(D0,L)	pair	
on	one	CPU.

Plots	in	Figure	1	scatter	D	against	K.	Points	in	the	(D, K)	
plane	correspond	to	a	unique	(D0,L)	combination,	and	are	
colored	according	to	D0	(top)	and	L	(bottom).	The	figure	
refers	to	maximum	b-	value	of	2000	s/mm2,	SNR	=	20,	and	
multiple	 combinations	 of	 (δ,Δ).	 The	 values	 of	D	 and	K	
exhibit	a	wide	range	of	variation	(e.g.,	negative	K	values	
are	 seen),	 depending	 on	 protocol	 δ	 and	 Δ.	 Nonetheless,	
a	trend	in	the	D0/L	coloring	can	be	seen	(more	apparent	
as	SNR	increases).	In	absence	of	noise,	a	non-	monotonic	
relationship	 between	 (D, K)and	 both	D0	 and	 L	 is	 seen,	
with	points	distributed	according	to	complex	patterns	in	
the	 (D, K)	 domain	 (Supporting	 Information	 Figure	 S2).	
For	some	specific	combinations	of	(D, K),	no	experimen-
tal	points	are	observed.	The	position	of	the	points	in	the	
(D, K)	 plane	 changes	 depending	 on	 (δ,Δ).	 For	 example,	
when	bmax	=	2000	s/mm2,	the	median/95%	range	of	D	are	
0.76/[0.27;	 1.57]	 μm

2

ms
	 for	δ/Δ	 =	 20/25	 ms	 and	 0.52	 [0.16;	

1.20]	μm
2

ms
	for	δ/Δ	=	20/75	ms.	For	the	same	gradient	tim-

ings,	 median/95%	 ranges	 of	K	 are	 0.44	 [0.29;	 1.53]	 and	
0.40	 [0.07;	 2.99].	 Results	 for	 smaller	 maximum	 b-	values	
follow	similar	trends,	although	numerical	values	of	(D,K)	
depend	on	bmax,	both	in	absence	or	presence	of	noise	(e.g.,	
SNR	=	20)	(Supporting	Information	Figure	S3	for	bmax	=	
1000	s/mm2).	In	absence	of	noise	and	when	bmax	=	1000	
s/mm2,	the	median/95%	range	of	D	values	are	0.79	[0.28;	
1.61]	μm

2

ms
	for	δ/Δ	=	20/25	ms	and	0.55	[0.17;	1.25]	μm

2

ms
	for	

δ/Δ	=	20/75	ms,	whereas	 it	 is	0.58	 [0.29;	3.12]	and	0.78	
[0.14;	6.33]	 for	K,	 larger	 than	what	 is	seen	when	bmax	=	
2000	s/mm2.

(6)Lhisto =

(
< l7>

< l3>

) 1
4

.
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Figure	2	shows	(D, K)	scatter	plots	color-	coded	by	D0	
and	 L	 for	 observations	 belonging	 to	 the	 validation	 set	
(bmax	=	2000	s/mm2,	δ	=	20	ms,	Δ	=	75	ms,	SNR	=	20).	
It	also	shows	D0	 and	L	predicted	 in	correspondence	of	
the	 same	 (D, K)	 values	 with	 both	 PolyMap	 and	 SigFit.	
Similar	plots	for	the	noise-	free	case	and	different	proto-
cols	(e.g.,	bmax	=	1000	s/mm2,	δ	=	20	ms,	Δ	=	25	ms)	are	
reported	in	Supporting	Information	Figures	S4	and	S5.	
Overall,	PolyMap	does	not	necessarily	predict	accurately	
the	values	of	D0	and	L	on	unseen	data,	especially	at	high	
noise	level.	Nonetheless,	it	captures	the	salient	charac-
teristics	of	the	D0(D,K)	and	L(D,K)	relationships,	which	
appear	unique	to	each	diffusion-	encoding	protocols	and	
SNR.	The	SigFit	estimation	also	captures	D0	and	L	con-
trasts,	although	predictions	are	 less	smooth	than	those	
from	PolyMap.

Figure	 3	 plots	 PolyMapD0	 and	 L	 prediction	 errors	
(prediction	–		ground	truth)	against	ground-	truth	D0	and	
L	for	different	protocols	(bmax	=	2000	s/mm2,	SNR	=	20).	
The	same	plots	corresponding	to	SigFit	are	reported	in	

Supporting	 Information	 Figure	 S6.	 Further	 PolyMap	
and	 SigFit	 prediction	 errors	 for	 the	 noise-	free	 case	
and	for	bmax	=	1000	s/mm2,	SNR	=	20,	are	included	in	
Supporting	 Information	 Figures	 S7	 and	 S8.	The	 charts	
reveal	that	D0	and	L	are	overestimated/underestimated	
at	 the	 lower/upper	 end	 of	 their	 ranges.	 This	 trend	 is	
observed	 for	 different	 gradient	 timings	 and	 in	 absence	
of	 noise,	 although	 to	 a	 lesser	 extent.	 Higher	 SNR	 and	
longer	diffusion	times	lead	to	smaller	errors.	The	D0∕L	
PolyMap	 errors	 are	 slightly	 smaller/larger	 than	 those	
from	SigFit.

Table	1	reports	validation-	set	accuracies	for	the	cell-	
size	classification	task.	Accuracy	values	can	be	as	high	
as	 almost	 70%,	 such	 as	 when	bmax	 =	 1500	 s/mm2,	 δ	 =	
20	ms,	and	Δ	=	75	ms,	corresponding	to	86%,	46%,	and	
61%	correctly	classified	small,	medium,	and	large	cells.	
Accuracies	 are	 above	 accuracy	 ranges	 compatible	 with	
chance.

Figure	 4	 reports	 MRI	 histology	 results.	 Unlike	 the	
WT,	the	PDX	features	widespread	infiltration	of	smaller	

F I G U R E  2  Examples	of	predictions	of	intrinsic	cell	diffusivity	D0	and	cell	size	L	on	the	validation	set.	(A–	C)	Scatter	plots	colored	by	cell	
diffusivity	D0.	(D–	F)	Scatter	plots	colored	by	cell	size	L.	Left:	Signal	cumulants	(D,K)	at	fixed	diffusion	time	colored	by	underlying	ground	
truth	D0	and	L.	Middle:	Signal	cumulants	(D,K)	at	fixed	diffusion	time	colored	by	predictions	of	D0	and	L	as	obtained	with	PolyMap.	Right:	
Signal	cumulants	(D,K)	at	fixed	diffusion	time	colored	by	predictions	of	D0	and	L	as	obtained	with	SigFit.	The	figure	refers	to	the	case	when	
the	minimum/maximum	protocol	b-	values	is	equal	to	b	=	100/2000	s/mm2	and	the	diffusion	gradient	duration/separation	is	δ	=	20	ms/Δ	=	
75	ms,	for	SNR	of	20	and	in	presence	of	IVIM	contamination
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cells	 (likely	 leukocytes)	 in	between	 larger	hepatocytes.	
This	leads	to	between-	sample	Lhisto	contrast	(Lhisto	higher	
in	 WT	 than	 PDX),	 replicated	 in	 PolyMap	 and	 SigFitL.	
The	value	of	D0	 is	 lower	 in	PDX	than	WT	 in	PolyMap,	
whereas	 no	D0	 differences	 are	 seen	 for	D0	 SigFit.	 The	
SigFit	metrics	feature	salt-	and-	pepper	variations	and	are	
less	 smooth	 than	 PolyMap.	 Distributions	 (Supporting	
Information	Table	 S1)	 confirm	 that	L	 agrees	 well	 with	
Lhisto	 for	 both	 PolyMap	 and	 SigFit	 in	 PDX.	 In	WT,	L	 is	
larger	 than	Lhisto,	 especially	 for	 PolyMap.	The	 value	 of	
SigFit	D0	is	more	variable	than	PolyMap	D0	in	both	spec-
imens.	Supporting	Information	Figure	S9	reports	signal	
predictions	from	fitted	parameters	for	both	WT	and	PDX	
livers,	 highlighting	 that	 both	 SigFit	 and	 PolyMap	 pro-
vide	good	quality	of	fit.	Supporting	Information	Figure	
S10	 reports	 alternative	 SigFit	 cell-	size	 estimates	 L	 ob-
tained	 when	D0	 is	 fixed	 to	 a	 specific	 value	 for	 all	 vox-
els,	 and	not	 fitted.	The	value	of	L	 obtained	at	 fixed	D0	
is	highly	dependent	on	the	value	used	for	D0:	For	some	
specific	values,	the	between-	sample	cell-	size	contrast	is	
even	reversed,	with	larger	L	in	the	PDX	than	in	the	WT,	
a	finding	that	disagrees	with	histology.

4 	 | 	 DISCUSSION

4.1	 |	 Summary and key findings

We	performed	simulations	to	relate	DW	signal	features	
(i.e.,	apparent	diffusion/kurtosis	coefficients,	D	and	K)	
to	cell	microstructure	(cell	diffusivity/size,	D0	and	L)	at	
fixed	diffusion	time,	under	the	hypothesis	of	negligible	
sensitivity	 to	 extracellular/extravascular	 water	 and	 ex-
change.	 We	 also	 used	 cell-	size	 mappings	 learned	 from	
simulations	on	9.4T	ex	vivo	MRI	of	fixed	mouse	livers,	

comparing	 results	 to	 histology.	 Our	 work	 is	 motived	
by	the	fact	 that	estimating	summary	cell-	size	contrasts	
with	 minimal	 protocols	 may	 be	 useful	 in	 hospital	 set-
tings,	where	scan	time	is	limited	and	the	latest	technolo-
gies	are	not	available.

Our	main	finding	is	that	D	and	K	offer	sensitivity	to	D0	
and	L	 even	when	computed	at	 realistic	SNR	levels,	 so	 it	
appears	feasible	to	establish	a	mapping	(D,K) →

(
D0,L

)
	.	

Although	 the	 mapping	 does	 not	 estimate	 accurately	D0	
and	L	 for	 the	 studied	 range,	 it	 captures	 salient	 cell-	size	
contrasts	 at	 fixed	 diffusion	 time.	 On	 the	 9.4T	 MRI	 data,	
(D,K) →

(
D0,L

)
	mappings	provide	cell-	size	contrasts	that	

are	confirmed	by	histology,	but	overestimate	L,	especially	
for	larger	cells.	The	overestimation	of	L	is	less	strong	when	
this	is	estimated	through	biophysical	models	of	restricted	
diffusion,	which	were	considered	as	a	potential	alternative	
to	(D,K) →

(
D0,L

)
	mappings,	at	 the	price	of	more	vari-

able	parametric	maps	(especially	D0).

4.2	 |	 Simulations

We	 used	 state-	of-	the-	art	 Monte	 Carlo	 simulations42	 to	
study	 DW	 MRI	 protocols	 that	 could	 be	 implemented	 in	
the	clinic	(i.e.,	intermediate	b-	values,	fixed	diffusion	time,	
short	 scan	 time).	 Our	 results	 demonstrate	 that	 associa-
tions	between	D	and	K	 from	such	protocols	and	cell	dif-
fusivity	D0	and	size	L,	exist.	The	relationship	is	complex	
and	non-	monotonic,	with	relatively	small	changes	 in	D0	
and	L	causing	large	variations	of	K	and	D.	This	may	imply	
that	 biophysical	 liver	 models	 may	 benefit	 from	 intra-	
compartmental	kurtosis	in	the	hepatocyte	compartment,	
to	better	capture	departures	from	Gaussian	diffusion.

We	 also	 used	 paired	 (D, K)	 and	 (D0,L)	 to	 compute	
polynomial	functions	that	estimate	D0	and	L	 from	D	and	

bmax = 
1000 s/
mm2

bmax = 
1500 s/
mm2

bmax = 
2000 s/
mm2

δ	=	20	ms,	Δ	=	25	ms,	Δ	
–		δ/3	=	18.3	ms

Accuracy 0.54 0.54 0.55

95%	random	interval [0.23;	0.42] [0.22;	0.43] [0.22;	0.43]

δ	=	40	ms,	Δ	=	50	ms,	Δ	
–		δ/3	=	36.7	ms

Accuracy 0.60 0.61 0.61

95%	random	interval [0.21;	0.46] [0.21;	0.46] [0.19;	0.48]

δ	=	20	ms,	Δ	=	50	ms,	Δ	
–		δ/3	=	43.3	ms

Accuracy 0.58 0.56 0.60

95%	random	interval [0.21;	0.45] [0.21;	0.45] [0.20;	0.46]

δ	=	10	ms,	Δ	=	50	ms,	Δ	
–		δ/3	=	46.7	ms

Accuracy 0.57 0.56 0.54

95%	random	interval [0.22;	0.43] [0.21;	0.45] [0.23;	0.42]

δ	=	20	ms,	Δ	=	75	ms,	Δ	
–		δ/3	=	68.3	ms

Accuracy 0.61 0.67 0.63

95%	random	interval [0.21;	0.45] [0.19;	0.47] [0.20;	0.48]

Note: The	table	also	includes	the	estimated	95%	interval	of	accuracies	that	can	be	expected	due	to	chance.	
An	accuracy	of	1.00	implies	that	all	validation	observations	have	been	correctly	classified;	an	accuracy	of	
0.00	implies	instead	that	none	have	been	correctly	classified.

T A B L E  1 	 Accuracies	obtained	on	the	
validation	set	for	the	three-	class	cell-	
size	classification	task	performed	using	
multinomial	logistic	regression	at	SNR	=	
20	and	for	all	diffusion-	encoding	protocols
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K	(PolyMap).	Such	functions	offer	sensitivity	to	the	under-
lying	D0	and	L,	even	when	computed	on	noisy	data	(SNR	
=	 20).	 Although	 the	 estimates	 are	 not	 accurate	 for	 the	
smallest	and	largest	values	of	D0	and	L,	they	may	suffice	to	
characterise	large	cell-	size	variations,	such	as	distinguish-
ing	 discrete	 cell-	size	 contrasts,	 as	 demonstrated	 through	
multinomial	 logistic	 regression.	 For	 reference,	 PolyMap	
was	compared	with	fitting	D0	and	L	based	on	a	biophysi-
cal	model	of	the	DW	signal	(SigFit	approach).	Results	from	
SigFit	are	in	line	with	those	from	PolyMap.	Although	SigFit	
enables	slightly	more	accurate	L	estimation	than	PolyMap	
for	the	low-	intermediate	values	L,	PolyMapL	estimates	are	
closer	to	ground-	truth	values	for	L	of	the	order	of	40	µm	
to	50	µm,	plausible	 in	pathological	processes	such	as	he-
patocyte	ballooning.59	Moreover,	PolyMap	exhibits	higher	
precision	 (smoother	 D0 [D,K) ]	 and	 L[D,K]	)	 and	 better	
resolves	D0.	These	results	suggest	that	the	relative	perfor-
mances	 of	 PolyMap	 and	 SigFit	 depend	 on	 the	 diffusion	
regime,	and,	more	importantly,	that	overall	it	may	be	fea-
sible	to	obtain	summary	descriptors	of	cell	size	from	clin-
ical	 acquisitions	 at	 fixed	 diffusion	 time,	 if	 analyzed	 with	
appropriate	techniques.	Such	an	approach	could	have	ap-
plication	in	high-	risk	populations,	such	as	patients	with	a	
history	of	hepatitis	(at	risk	of	hepatocellular	carcinoma60)	
or	primary	colorectal	cancer	(at	risk	of	liver	metastases61),	
and	in	contexts	in	which	implementing	rich	acquisitions	is	
not	possible.	Moreover,	mappings	(D,K) →

(
D0,L

)
	tuned	

for	 specific	 diffusion	 encodings	 may	 help	 mitigate	 inter-
scanner	variability.	In	that	respect,	they	may	prove	useful	
in	 the	 retrospective	 analysis	 of	 multicenter	 clinical	 data	
featuring	 a	 variety	 of	 acquisition	 protocols.	 Nonetheless,	
we	remark	that	acquiring	prospective	data	at	varying	diffu-
sion	weightings	and	times	should	be	the	preferred	way	to	
perform	cell-	size	estimation,	when	possible.

4.3	 |	 Magnetic resonance imaging and  
histology

We	estimated	D0	and	L	on	9.4T	ex	vivo	DW	images	of	two	
formalin-	fixed	mouse	livers	(one	WT,	one	PDX),	acquired	
at	fixed	diffusion	time	(Δ	=	30	ms;	�	=	10	ms).	The	MRI	
indices	 were	 related	 to	 co-	localized	 histological	 cell	 size	
Lhisto,	confirming	results	from	simulations.	Both	PolyMap	
and	SigFit	provide	good	signal	quality	of	 fits,	 suggesting	
that	 they	 both	 are	 good	 representations	 of	 the	 diffusion	
MRI	signal.	Moreover,	they	both	detect	diffuse	cell	size	L	
alterations	 in	 the	PDX	liver	 that	are	confirmed	by	Lhisto,	
despite	overestimating	actual	cell-	size	values	(Lhisto	is	con-
sistently	lower	than	L	from	MRI).	This	finding	agrees	with	
the	 overestimation	 seen	 in	 simulations	 for	 ground-	truth	
sizes	of	up	to	35	μm	to	40	μm,	and	may	also	result,	at	least	
in	part,	from	histological	tissue	shrinkage	and	biases	from	
neglected	extracellular/extravascular	water.	Nonetheless,	
we	 acknowledge	 that	 the	 overestimation	 of	 L	 is	 higher	
for	 PolyMap	 than	 for	 SigFit,	 especially	 for	 the	 WT	 liver.	
For	PolyMap,	we	used	a	(D,K) →

(
D0,L

)
	mapping	evalu-

ated	at	a	single,	fixed	SNR.	It	is	possible	that	more	accu-
rate	results	could	be	obtained	learning	a	(D,K) →

(
D0,L

)
	

mapping	for	each	voxel,	tailored	to	spatially	variant	noise,	
or	 using	 more	 sophisticated	 (D,K) →

(
D0,L

)
	 mapping	

strategies	 beyond	 polynomial	 fitting	 (e.g.,	 random	 for-
ests).62	These	are	likely	to	outperform	PolyMap,	while	also	
providing	clearer	biological	 interpretations	 than	polyno-
mial	expansions,	whose	optimal	degree	is	challenging	to	
determine.

Notably,	 PolyMap	 detects	 PDX-	WT	 differences	 in	 D0	,	
unlike	 SigFit.	While	 it	 is	 challenging	 to	 verify	 this	 on	 the	
type	of	histological	data	at	hand	(routine	hematoxylin	and	
eosin	staining),	we	speculate	that	it	is	possible	that	some	of	

F I G U R E  4  Estimation	of	intrinsic	cell	diffusivity	D0	and	cell	size	L	from	the	9.4T	ex	vivo	MRI	scans	of	fixed	mouse	livers,	with	co-	
localized	hematoxylin	and	eosin	(HE)	histology.	Top:	Wild-	type	(WT)	case.	Bottom:	Patient-	derived	xenograft	(PDX)	case	(subcutaneous	
implantation	of	bone	biopsy	from	metastatic	prostate	cancer).	From	left	to	right:	Non-	DW	image;	co-	localized	HE;	example	of	cell	
segmentation	on	HE;	histology-	derived	cell	size	index	Lhisto;	MRI	cell	size	L	estimates	through	PolyMap	and	SigFit	estimation;	MRI	cell	
diffusivity	D0	estimates	through	PolyMap	and	SigFit	estimation



374 |   GRUSSU et al.

these	between-	sample	D0	differences	may	exist.	Supporting	
Information	Figure	S11	provides	examples	of	the	strikingly	
different	cellular	composition	characterizing	the	two	livers.	
On	visual	 inspection,	hepatocytes	 in	 the	WT	 liver	contain	
more	 fat	 than	 those	 in	 the	 PDX.	 Moreover,	 the	 PDX	 liver	
is	 characterized	 by	 a	 nonspecific,	 lymphoma-	like	 process,	
in	which	cells	that	are	much	smaller	than	normal	hepato-
cytes	 invade	 vascular	 and	 extravascular	 spaces.	 Such	 cells	
may	 feature	 a	 distinct	 intracellular	 microenvironment	 as	
compared	with	normal	hepatocytes,	resulting	in	per-	cell	D0	
heterogeneity.	Taken	as	a	whole,	these	findings	suggest	that	
differences	in	terms	of	intrinsic	intracellular	diffusivity	D0	
between	the	two	specimens	cannot	be	ruled	out	a	priori.	In	
future	work,	we	aim	to	perform	richer	immunohistochemi-
cal	analyses	to	gain	insight	into	the	tortuosity	of	the	intracel-
lular	space,	and	thus	derive	histological	counterparts	of	D0	
to	confirm	our	MRI	findings.

Regarding	our	9.4T	diffusion	MRI	acquisition,	we	used	
a	maximum	b-	value	of	4500	s/mm2.	This	is	considerably	
higher	than	in	simulations,	where	it	never	exceeds	2000	s/
mm2,	as	in	some	clinical	studies.63	This	can	be	justified	by	
considering	that	reductions	of	up	to	three	times	of	the	av-
erage	apparent	diffusion	coefficient	can	be	expected	when	
scanning	fixed	liver	tissue,	as	compared	with	the	in	vivo	
case.64	Therefore,	b	=	4500	s/mm2	is	expected	to	cause	a	
signal	 attenuation	 somewhat	 comparable	 to	 approxi-
mately	1500	s/mm2	in	vivo.	Also,	on	the	ex	vivo	data	we	
perform	 PolyMap	 and	 SigFit	 analyses	 using	 a	 minimum	
b-	value	of	1700	s/mm2.	This	 is	done	 to	suppress	partial-	
volume	 effects	 with	 vessels	 and	 capillaries,	 which	 are	
filled	at	least	in	part	with	phosphate-	buffered	saline.	The	
diffusivity	of	phosphate-	buffered	saline	(1.8–	2.0	μm

2

ms
)	is	at	

least	 8–	10	 times	 lower	 than	 the	 pseudo-	diffusion	 coeffi-
cient	of	the	IVIM	water	pool	in	vivo	(15–	60	μm

2

ms
),	justifying	

the	use	of	a	minimum	b-	value	of	1700	s/mm2	against	100	
s/mm2	as	done	in	simulations.

We	acknowledge	that	in	this	study	we	tested	whether	
mappings	learned	on	simulated	MRI	signals	could	be	de-
ployed	on	actual	MRI	measurements,	performed	on	fixed	
ex	vivo	tissue	at	9.4	T.	In	future	work	we	aim	to	test	such	
mappings	on	actual	clinical	MRI	scans	of	the	human	liver,	
and	 investigate	 the	 performance	 of	 the	 approach	 in	 the	
presence	of	lower	SNR,	motion,	and	perfusion.

4.4	 |	 Methodological considerations

We	used	a	simple	geometric	model	based	on	perturbations	
of	regular	prisms65	to	capture	restricted	diffusion.	Although	
it	sufficed	to	introduce	variability	in	cell	shape	and	to	avoid	
overly	 simplistic	 representations	 (e.g.,	 cubes),	 different	
models	(e.g.,	meshes	from	histological	images)	could	have	
been	used.	We	plan	to	explore	them	in	future	work.

Another	 aspect	 is	 that	 our	 simulations	 focused	 on	
hepatocytes.	 We	 included	 heterogeneity	 in	 cell	 size/
diffusivity,	 and	 accounted	 for	 partial	 volume	 with	 inco-
herent	 perfusion,32,47,66,67	 effectively	 relying	 on	 a	 two-	
compartment	 model,	 under	 the	 hypothesis	 that	 the	
sensitivity	 to	 extracellular,	 extravascular	 water	 and	 tran-
scytolemmal	 exchange	 are	 negligible.	 This	 assumption	
may	be	reasonable	in	the	healthy	liver,	as	hepatocytes	are	
tightly	 packed	 within	 hepatic	 lobules,	 and	 account	 for	
70%–	85%	 of	 the	 liver	 volume.39	They	 are	 surrounded	 by	
networks	 of	 fluid-	filled	 conduits	 (sinusoidal	 capillaries,	
whose	 walls	 embed	 endothelial,	 stellate,	 dendritic,	 and	
Kupffer	 cells;	 and	 bile	 ducts68),	 whose	 signal	 fraction	 is	
expected	 to	 be	 on	 the	 order	 of	 10%–	20%.44	 Interestingly,	
this	 two-	compartment	 model	 may	 capture	 the	 essence	
of	the	DW	signal	even	in	some	pathological	tissues,	such	
as	 metastases.69	 Nonetheless,	 extracellular,	 extravascular	
water	may	be	relevant	in	the	presence	of	other	patholog-
ical	processes,	such	as	in	fibrosis.70	In	those	cases,	an	ad-
ditional	compartment	may	be	needed33:	While	(D,K)	may	
still	retain	sensitivity	to	(D0,L),	they	would	not	be	specific.	
Finally,	 we	 neglected	 transcytolemmal	 water	 exchange.	
Known	intracellular	water	residence	times	for	hepatocytes	
and	cancer	cells	of	[40	ms;	150	ms]33,71	imply	that	neglect-
ing	exchange	may	be	reasonable	 in	 the	short/intermedi-
ate	diffusion	times	considered	here.	Nonetheless,	further	
biases72	may	be	expected	for	 longer	diffusion	times.	Our	
work	represents	a	first	exploratory	characterization	of	the	
main	components	of	the	liver	parenchyma	and	in	specific	
measurement	conditions.	In	future	work,	we	will	general-
ize	our	analysis	to	more	complex	tissue	models.

We	 explored	 relationships	 between	 (D,K)	 and	 cell	 mi-
crostructure	 (D0,L),	 and	 tested	 whether	 information	 de-
rived	 from	 Monte	 Carlo	 simulations	 enables	 a	 mapping	
(D,K)→ (D0,L).	 Linking	 cumulants	 to	 microstructure	
is	 a	 powerful	 approach	 that	 has	 shown	 promise	 in	 the	
brain.18,21,73	 Nonetheless,	 (D,K)	 depend	 strongly	 on	 the	
diffusion-	encoding	protocol	used	for	acquisition.	Therefore,	
one	would	need	to	learn	a	mapping	(D,K)→ (D0,L)	for	the	
specific	diffusion	protocol	at	hand	(i.e.,	δ,	Δ	and	b-	values).	
Moreover,	(D,K)	may	be	difficult	to	measure	accurately	on	
noisy	data	(e.g.,	K	can	be	unstable	when	D	is	low,	being	com-
puted	by	dividing	the	second	cumulant	by	D).74	In	the	fu-
ture,	more	advanced	signal-	to-	microstructure	mappings	will	
be	explored	(e.g.,	machine	learning75–	77).

Moreover,	 we	 limited	 our	 analysis	 to	 clinical	 single	
diffusion	encoding	with	moderate	b-	values.	We	acknowl-
edge	 that	 more	 advanced	 encodings	 may	 provide	 more	
accurate	cell-	size	figures,	such	as	combining	pulsed/oscil-
lating	gradients,33	b-	tensor	encoding,19,78	 and	power	 law	
modeling.57	In	particular,	fitting	biophysical	models	of	re-
stricted	diffusion	on	measurements	performed	at	varying	
diffusion	time	is	likely	to	outperform	cell-	size	estimation	
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at	fixed	diffusion	time.	However,	we	note	that	considering	
such	protocols	goes	beyond	the	scope	of	 this	paper:	Our	
main	focus	is	on	simple	diffusion	encodings	at	a	fixed	dif-
fusion	time.	Our	results	quantify	how	much	information	
on	cell	size	can	be	retrieved	with	such	minimal	schemes,	
being	 these	 routine	 in	 hospital	 settings.	 However,	 when	
cell-	size	 estimation	 is	 sought	 in	 prospective	 studies,	 we	
recommend	that	diffusion	protocols	probe	multiple	diffu-
sion	times—	scan	time	and	hardware	allowing.

We	 compared	 (D,K)→ (D0,L)	 mappings	 (PolyMap)	
against	 fitting	 a	 biophysical	 model	 of	 intracellular	 re-
stricted	diffusion	(SigFit)	on	protocols	including	a	single	
diffusion	 time.	 We	 acknowledge	 that	 analyses	 such	 as	
SigFit	would	normally	be	performed	on	measurements	
performed	 at	 variable	 diffusion	 times,26,29,33	 given	 the	
challenge	of	resolving	D0	and	L.	A	common	way	to	re-
duce	the	number	of	tissue	parameter	unknowns	in	such	
model-	based	approaches	 is	 to	 fix	D0	 to	a	specific	value	
across	all	voxels,	and	estimate	only	L.	While	this	would	
likely	 stabilize	 the	 fitting,	 it	 may	 lead	 to	 unphysical	
solutions	 if	 inappropriate	 values	 are	 used	 for	D0.	 This	
is	 demonstrated	 in	 Supporting	 Information	 Figure	 S10	
(the	 PDX-	WT	 cell-	size	 contrast	 can	 even	 be	 reversed	
depending	 on	D0),	 warning	 against	 the	 risks	 of	 using	
overly	simplified	analytical	models	in	conjunction	with	
minimal	diffusion	encodings.

Finally,	 our	 simulated	 MRI	 protocols	 were	 based	 on	
averaging	 over	 three	 gradient	 directions,	 common	 in	
liver	MRI,44,45	and	included	seven	nonzero	b-	values,	cor-
responding	 to	 a	 tolerable	 5/10-	minute	 scan.	 Additional	
analyses	(Supporting	Information	Figure	S12)	show	that	
three-	direction	 averaging	 suffices	 to	 account	 for	 anisot-
ropy,	 and	 provides	 D∕K	 that	 are	 consistent	 with	 mean	
diffusivity/kurtosis	from	tensor	fits58	on	richer	directional	
schemes.79	 Supporting	 Information	 Figure	 S13	 suggests	
that	 using	 seven	 nonzero	 b-	values	 may	 be	 a	 reasonable	
compromise	between	accuracy/precision	and	scan	time.

5 	 | 	 CONCLUSIONS

In	 experimental	 conditions	 for	 which	 extracellular,	 ex-
travascular	signal	sources	and	transcytolemmal	exchange	
can	be	neglected,	salient	but	potentially	relevant	informa-
tion	on	liver	cell	size	and	diffusivity	may	be	retrieved	from	
simple	diffusion	encodings	at	a	fixed	diffusion	time,	pro-
vided	that	these	are	analyzed	with	appropriate	computa-
tional	techniques.
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FIGURE S1	Synthetic	hepatocytes	used	in	this	study	for	
Monte	Carlo	simulations	(water	diffusion	was	simulated	
within	 such	 synthetic	 cells),	 obtained	 by	 perturbing	 the	
position	 of	 the	 vertices	 of	 triangularly	 meshed	 regular	
prisms.	Top	to	bottom:	Different	shapes	of	the	prism	bases	
(square,	 pentagonal,	 hexagonal).	 Left	 to	 right:	 Different	
unique	perturbations.	The	figure	also	illustrates	L,	which	
is	equal	to	the	base-	to-	base	height	as	well	as	the	diameter	
of	the	circumcircle	relative	to	each	base
FIGURE S2	 Scatter	 plots	 of	 (D,K)	 color-	coded	 by	 the	
underlying	average	intrinsic	cell	diffusivity	D0	(A–	E)	and	
cell	 size	L	 (F–	J),	 as	 obtained	 when	 no	 noise	 is	 added	 to	
the	 synthetic	 MRI	 signals.	 From	 left	 to	 right:	 Different	
diffusion	times	(δ/Δ	=	20/25	ms	in	[A]	and	[F];	δ/Δ	=	40/50	
ms	in	[B]	and	[G];	δ/Δ	=	20/50	ms	in	[C]	and	[H];	δ/Δ	=	
10/50	ms	in	[D]	and	[I];	and	δ/Δ	=	20/75	ms	in	[E]	and	
[J]).	The	figure	refers	to	a	minimum/maximum	protocol	
b-	value	 of	b	 =	 100/2000	 s/mm2.	 Noise-	free	 intracellular	
diffusion-	weighted	 (DW)	 signals	 are	 contaminated	 by	
intravoxel	incoherent	motion	(IVIM)–	like	partial	volume
FIGURE S3	 Scatter	 plots	 of	 (D,K)	 color-	coded	 by	 the	
underlying	average	intrinsic	cell	diffusivity	D0	(A–	E)	and	
cell	size	L	 (F–	J),	as	obtained	when	noise	 is	added	to	the	
synthetic	MRI	signals	at	an	SNR	at	b	=	0	of	20.	From	left	
to	right:	Different	diffusion	times	(δ/Δ	=	20/25	ms	in	[A]	
and	[F];	δ/Δ	=	40/50	ms	in	[B]	and	[G];	δ/Δ	=	20/50	ms	
in	[C]	and	[H];	δ/Δ	=	10/50	ms	in	[D]	and	[I];	and	δ/Δ	=	
20/75	ms	in	[E]	and	[J]).	The	figure	refers	to	a	minimum/
maximum	protocol	b-	value	of	b	=	100/1000	s/mm2.	Noise-	
free	intracellular	DW	signals	are	contaminated	by	IVIM-	
like	partial	volume
FIGURE S4	 Examples	 of	 predictions	 of	 intrinsic	 cell	
diffusivity	D0	and	cell	size	L	on	the	validation	set.	(A–	C)	
Scatter	plots	showing	prediction	of	average	 intrinsic	cell	
diffusivity	D0.	 (D–	F)	 Scatter	 plots	 showing	 prediction	 of	
average	cell	size	D0.	Left:	Signal	cumulants	(D,K)	at	fixed	
diffusion	time	colored	by	underlying	ground-	truth	D0	and	
L.	Middle:	Signal	cumulants	(D,K)	at	fixed	diffusion	time	
colored	by	predictions	of	D0	 and	L	 as	obtained	with	 the	
PolyMap	approach,	which	relies	on	using	smooth	functions	

D0 (D,K)	 and	 L (D,K)	 from	 polynomial	 interpolation.	
Right:	 Signal	 cumulants	 (D,K)	 at	 fixed	 diffusion	 time	
colored	 by	 predictions	 of	D0and	L	 as	 obtained	 with	 the	
SigFit	approach,	which	relies	on	the	estimation	of	D0	and	
L	 via	 routine	 nonlinear	 least-	squares	 fitting	 on	 the	 MRI	
signal.	The	figure	refers	to	the	case	when	the	minimum/
maximum	protocol	b-	values	are	equal	 to	b=	100/2000	s/
mm2	and	the	diffusion	gradient	duration/separation	is	δ	=	
20	ms/Δ	=	75	ms	for	SNR	→ ∞	(no	noise	injected	to	the	DW	
measurements)	and	in	presence	of	IVIM	contamination
FIGURE S5	 Examples	 of	 predictions	 of	 intrinsic	 cell	
diffusivity	D0	and	cell	size	L	on	the	validation	set.	(A–	C)	
Scatter	plots	showing	prediction	of	average	 intrinsic	cell	
diffusivity	D0.	 (D–	F)	 Scatter	 plots	 showing	 prediction	 of	
average	cell	size	D0.	Left:	Signal	cumulants	(D,K)	at	fixed	
diffusion	time	colored	by	underlying	ground	truth	D0	and	
L.	Middle:	Signal	cumulants	(D,K)	at	fixed	diffusion	time	
colored	by	predictions	of	D0	 and	L	 as	obtained	with	 the	
PolyMap	approach,	which	relies	on	using	smooth	functions	
D0 (D,K)	 and	 L (D,K)from	 polynomial	 interpolation.	
Right:	 Signal	 cumulants	 (D,K)	 at	 fixed	 diffusion	 time	
colored	by	predictions	of	D0	 and	L	 as	obtained	with	 the	
SigFit	approach,	which	relies	on	the	estimation	of	D0	and	
L	 via	 routine	 nonlinear	 least-	squares	 fitting	 on	 the	 MRI	
signal.	The	figure	refers	to	the	case	when	the	minimum/
maximum	protocol	b-	values	are	equal	 to	b=	100/1000	s/
mm2	and	the	diffusion	gradient	duration/separation	 is	δ	
=	20	ms/Δ	=	25	ms	for	SNR	=	20	and	in	the	presence	of	
IVIM	contamination
FIGURE S6	SigFit	prediction	errors	for	D0	and	L	scattered	
against	 ground-	truth	 values	 of	 D0	 and	 L	 for	 different	
diffusion	gradient	timings	at	a	fixed	maximum	b-	value	of	
2000	s/mm2	and	SNR	=	20.	From	left	 to	right:	Different	
gradient	timings	(δ/Δ	=	20/25	ms	in	[A]	and	[F];	δ/Δ	=	
40/50	ms	in	[B]	and	[G];	δ/Δ	=	20/50	ms	in	[C]	and	[H];	
δ/Δ	=	10/50	ms	in	[D]	and	[I];	and	δ/Δ	=	20/75	ms	in	[E]	
and	[J]).	Plots	on	top	(A–	E)	refer	to	D0;	plots	on	the	bottom	
(F–	J)	refer	to	L.	For	each	fixed	value	of	D0	(on	top,	or	L	on	
the	bottom),	median	errors	with	 interquartile	 ranges	 for	
varying	L	 (on	top,	or	varying	D0	on	the	bottom)	are	also	
reported
FIGURE S7	 PolyMap	 and	 SigFit	 prediction	 errors	 for	
D0	 and	 L	 scattered	 against	 ground-	truth	 values	 of	 D0	
and	L,	 for	 different	 diffusion	 gradient	 timings	 at	 a	 fixed	
maximum	 b-	value	 of	 2000	 s/mm2	 and	 SNR	 →∞	 (no	
noise	injected	to	the	data).	Top	(A-	J,	rows	one	and	two):	
PolyMap	 results	 (estimation	 from	 cumulants	 (D,K)	 via	
smooth	polynomial	functions),	with	D0	errors	on	row	one	
and	 L	 errors	 on	 row	 two.	 Bottom	 (K-	T,	 rows	 three	 and	
four):	SigFit	results	(direct	fitting	on	the	MRI	signal),	with	
D0	errors	on	row	three	and	L	errors	on	row	four.	From	left	
to	right:	Different	gradient	timings	(δ/Δ	=	20/25	ms	in	[A]	
and	[F];	δ/Δ	=	40/50	ms	in	[B]	and	[G];	δ/Δ	=	20/50	ms	
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in	[C]	and	[H];	δ/Δ	=	10/50	ms	in	[D]	and	[I];	and	δ/Δ	=	
20/75	ms	in	[E]	and	[J]).	In	rows	one	and	three,	median	
errors	with	interquartile	ranges	for	varying	L	and	fixed	D0	
are	 reported.	 In	 rows	 two	 and	 four,	 median	 errors	 with	
interquartile	ranges	for	varying	D0	and	fixed	L	are	reported
FIGURE S8	PolyMap	and	SigFit	prediction	errors	 for	D0	
and	L	scattered	against	ground-	truth	values	of	D0	and	L	for	
different	diffusion	gradient	timings	at	a	fixed	maximum	b-	
value	of	2000	s/mm2	and	SNR	=	20.	Top	(A-	J,	rows	one	and	
two):	PolyMap	 results	 (estimation	 from	cumulants	(D,K)	
via	smooth	polynomial	functions),	with	D0	errors	on	row	
one	and	L	errors	on	row	two.	Bottom	(K-	T,	rows	three	and	
four):	SigFit	results	(direct	fitting	on	the	MRI	signal),	with	
D0	errors	on	row	three	and	L	errors	on	row	four.	From	left	
to	right:	Different	gradient	timings	(δ/Δ	=	20/25	ms	in	[A]	
and	[F];	δ/Δ	=	40/50	ms	in	[B]	and	[G];	δ/Δ	=	20/50	ms	
in	[C]	and	[H];	δ/Δ	=	10/50	ms	in	[D]	and	[I];	and	δ/Δ	=	
20/75	ms	 in	[E]	and	[J]).	 In	rows	one	and	three,	median	
errors	with	interquartile	ranges	for	varying	L	and	fixed	D0	
are	 reported.	 In	 rows	 two	 and	 four,	 median	 errors	 with	
interquartile	ranges	for	varying	D0	and	fixed	L	are	reported
FIGURE S9	Examples	of	DW	images	obtained	ex	vivo	on	
the	two	fixed	mouse	livers.	(A)	Images	from	the	wild-	type	
(WT)	 liver,	 alongside	 image	 predictions	 based	 on	 fitted	
model	 parameters	 for	 PolyMap	 and	 SigFit.	 (B)	 Similar	
information	as	in	(A)	but	for	the	patient-	derived	xenograft	
(PDX)	 liver.	 (C,D)	Examples	of	MRI	measurements	(i.e.,	
logarithm	 of	 measured	 signals)	 from	 one	 representative	
voxel	alongside	PolyMap	and	SigFit	fittings	for	the	WT	(C,	
left)	and	PDX	(D,	right)	livers
FIGURE S10	SigFit	cell	size	map	L	in	the	two	fixed	liver	
samples	 scanned	 at	 9.4	 T:	 WT	 (top)	 and	 PDX	 (bottom).	
From	left	 to	right:	Full	SigFit	estimation	(cell	size	L	and	
cell	diffusivity	D0	are	estimated	 jointly	at	 fixed	diffusion	
time);	L	 estimation	 when	D0	 is	 fixed	 and	 not	 estimated	
(values	used	for	D0:	0.5,	0.75,	1.0,	1.25,	1.25,	and	1.5	μm2/
ms,	as	shown	from	left	to	right).	Median	values	of	L	across	
the	 entire	 samples	 are	 reported	 for	 each	 specimen	 and	
SigFit	configuration
FIGURE S11	 Image	 patches	 illustrating	 the	 different	
microstructural	environments	observed	in	the	two	fixed	
mouse	 livers	 studied	 in	 this	 paper.	 Top:	 Patches	 from	
the	WT	liver,	showing	healthy	hepatocytes	surrounded	
by	 stellate	 cells	 and	 sinusoidal	 capillaries.	 Bottom:	
Patches	 from	 the	 PDX	 liver.	 On	 visual	 inspection,	
hepatocytes	 in	 the	PDX	appear	 to	contain	 less	 fat	 than	
in	the	WT.	Moreover,	the	PDX	liver	is	characterized	by	a	
nonspecific,	lymphoma-	like	process,	in	which	cells	that	
are	much	smaller	than	hepatocytes	invade	vascular	and	
extravascular	spaces
FIGURE S12	 Investigation	 on	 the	 impact	 of	 the	
number	 of	 gradient	 directions	 used	 to	 compute	
directionally	 averaged	 signals.	 The	 figure	 shows	 results	
obtained	 for	 fitting	 performed	 on	 seven	 nonzero	

b-	values	 in	 the	 range	
[
100 s

mm2 ; 2000
s

mm2

]
;	 δ	 =	 20	

ms,	 Δ	 =	 75	 ms;	 intrinsic	 cell	 diffusivity	 and	 cell	 size	
(
D0, L

)
∈

[
2.20

μm2

ms
; 2.40

μm2

ms

]
× [11�m; 17�m];	 {3,	 9,	

21,	 30,	 61}	 isotropically	 distributed	 gradient	 directions	
for	 each	 nonzero	 b-	value;	 no	 IVIM	 contamination.	 (A)	
Directionally	averaged	DW	signals	obtained	at	SNR	→∞

for	{3,	9,	21,	30,	61}	gradient	directions.	(B,D)	Distribution	
of	 apparent	 diffusion	 coefficient	 D	 and	 apparent	
kurtosis	coefficient	K	calculated	by	fitting	Equation	3	 to	
directionally	 averaged	 signals	 over	 1000	 random	 noise	
instantiations	with	20	≤	SNR	≤	100,	 for	 {3,	9,	21,	30,	61}	
gradient	 directions	 per	 b-	value.	 C,E,	 Distribution	 of	
diffusion	tensor	mean	diffusivity	MD	and	kurtosis	tensor	
mean	 kurtosis	MK	 calculated	 by	 fitting	 a	 full	 diffusion	
kurtosis	 tensor	 representation	 to	 all	 measurements	 over	
1000	 random	 noise	 instantiations	 with	 20	≤	 SNR	≤	 100,	
for	 {3,	 9,	 21,	 30,	 61}	 gradient	 directions	 per	 b-	value.	 For	
full	 kurtosis	 tensor	 fitting	 we	 used	 the	 freely	 available	
DiPy	 package	 (https://dipy.org/docum	entat	ion/1.4.1./
examp	les_built/	recon	st_dki/#examp	le-	recon	st-	dki).	
Gradient	directions	were	generated	according	to	Cauryer	
et	al	(Magn	Res	Med.	2013;	doi:	10.1002/mrm.24736;	free	
download	 from	 http://www.emman	uelca	ruyer.com/q-	
space	-	sampl	ing.php)
FIGURE S13	Investigation	on	the	impact	of	the	number	
of	 b-	values	 used	 for	 apparent	 diffusion	 coefficient	 D	
and	 apparent	 kurtosis	 coefficient	 K	 computation	 from	
Equation	 3.	 The	 figure	 shows	 results	 obtained	 for	 {19,	
10,	7,	4,	3}	nonzero	b-	values	and	δ	=	20	ms,	Δ	=	75	ms;	
maximum	 b-	values	 of	 1000	 s/mm2	 and	 2000	 s/mm2;	
(
D0, L

)
∈

[
2.20

μm2

ms
; 2.40

μm2

ms

]
× [11�m; 17�m];	 no	

IVIM	 contamination.	 (A,C)	 Distribution	 of	 ADC	D	 over	
1000	random	noise	instantiations	with	20	≤SNR	≤	100,	{19,	
10,	7,	4,	3}	nonzero	b-	values,	maximum	b-	value	of	1000	s/
mm2	 (A),	 and	 2000	 s/mm2	 (C).	 Each	 plot	 also	 indicates	
the	value	of	D	obtained	with	19	nonzero	b-	values	and	SNR	
→∞	for	reference.	(B,D)	Distribution	of	apparent	kurtosis	
coefficient	K	over	1000	random	noise	instantiations	with	
20	≤	SNR	≤100,	{19,	10,	7,	4,	3}	nonzero	b-	values,	maximum	
b-	value	of	1000	s/mm2	(B),	and	2000	s/mm2	(D).	Each	plot	
also	indicates	the	value	of	K	obtained	with	19	nonzero	b-	
values	and	SNR	→∞	for	reference
TABLE S1	 Median	 and	 interquartile	 range	 (within	
brackets)	 of	 histology-	derived	 cell-	size	 index	 Lhisto	 and	
MRI	 metrics	 from	 the	 PolyMap	 and	 SigFit	 estimation	
procedures	 investigated	 in	 this	work	 (average	cell	 size	L	
and	average	intracellular	diffusivity	D0)

How to cite this article:	Grussu	F,	Bernatowicz	
K,	Casanova-	Salas	I,	et	al.	Diffusion	MRI	signal	
cumulants	and	hepatocyte	microstructure	at	fixed	
diffusion	time:	Insights	from	simulations,	9.4T	
imaging,	and	histology.	Magn Reson Med.	
2022;88:365–	379.	doi:10.1002/mrm.29174

https://dipy.org/documentation/1.4.1./examples_built/reconst_dki/#example-reconst-dki
https://dipy.org/documentation/1.4.1./examples_built/reconst_dki/#example-reconst-dki
https://doi.org/10.1002/mrm.24736
http://www.emmanuelcaruyer.com/q-space-sampling.php
http://www.emmanuelcaruyer.com/q-space-sampling.php
https://doi.org/10.1002/mrm.29174

