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Human gait is a fundamental activity, essential for the survival of the individual, and an emergent prop-
erty of the interactions between complex physical and cognitive processes. Gait is altered in many situ-
ations, due both to external constraints, as e.g. paced walk, and to physical and neurological pathologies.
Its study is therefore important as a way of improving the quality of life of patients, but also as a door to
understanding the inner working of the human nervous system. In this review we explore how four sta-
tistical physics concepts have been used to characterise normal and pathological gait: entropy, maximum
Lyapunov exponent, multi-fractal analysis and irreversibility. Beyond some basic definitions, we present
the main results that have been obtained in this field, as well as a discussion of the main limitations
researchers have dealt and will have to deal with. We finally conclude with some biomedical consider-
ations and avenues for further development.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Walking is the main way humans use for independent self-
translation around the world. Normal human walking is a method
of locomotion involving the use of the two legs, alternately, to pro-
vide both support and propulsion with at least one foot being in
contact with the ground at all times [1]. Gait is a very individual
trait in healthy subjects that can even be used for personal identi-
fication [2], but it changes with age [3,4] and can be modified by
emotions [5], exercise-related or cognitive fatigue [6], or environ-
mental factors [7]. Walking is formed by a sequence of gait cycles,
its basic and fundamental unit. These can be defined as the combi-
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nation of motor phenomena that occur between two floor contacts
(usually heel contacts) of the same foot, and is composed of two
phases: 1) the stance one, in which the foot maintain contact with
the ground; and 2) the swing one, in which the limb moves for-
ward in a sort of pendular motion [1]. Walking then emerges from
interleaving left and right gait cycles.

Bipedal walking is one of the main milestones in hominid evo-
lution [8], and independent walking is the most relevant milestone
in motor development during infancy [9]. This is because walking
requires an extremely well coordinated, finely modulated activa-
tion of muscles by the central nervous system [10,11]. In contrast
to a simplistic idea of quasi-automatic movements produced by
spinal circuits, walking is an emergent property of the central ner-
vous system; and, as any voluntary movement, it is determined by
an intense neural control involving a complex network formed by
cortical regions, basal ganglia, brainstem centres and spinal cord
circuits [12].

In the field of basic neuroscience, walking has received signifi-
cant attention as amodel of humanmovement, due both to its func-
tional relevance, and to the advantage of being a cyclic movement
that can be measured and treated as a complex signal [13]. Similar
attention can be found inmedicine due to the impairment resulting
from multiple disorders, such as highly prevalent musculo-skeletal
diseases or devastating neurological disorders [14]. The analysis of
gait patterns can tell us significant information about these disor-
ders and help us in therapeutic decision making [15].

Many neurological and neurodegenerative diseases have a
definitive effect on motor control. Subsequent movement impair-
ments, in particular gait abnormalities, are very frequent, altering
daily life and causing dependency. In normal healthy conditions,
the coordination of joint movements during gait is tightly con-
trolled by neural motor brain structures. As a whole, these brain
structures regulate many factors contributing to the appropriate
sequence of flexor–extensor muscle contractions, the final result
being a precise movement of the joint chains and the translation
of the body’s center of gravity in bipedal posture [16]. Lesions in
any of the various components of the cerebral motor system (in-
cluding motor cortices, basal ganglia, thalamus, cerebellum, corti-
cospinal pathways, and ascending somatosensory pathways) alter
the output signals of the postsynaptic motor neuronal spinal cord
circuitry and, therefore, the sequence of muscle contraction [17].
Gait motor performance is hence altered at first instance, impeding
the correct translation of the body. However, gait is a cognitive
propositive action of high importance for the brain, and the whole
nervous system adapts its dynamics to achieve the target. Several
plastic mechanisms are then triggered, including, for instance,
the re-arrangement of synaptic connections [17]. This ultimately
results in the generation of newly-configured sequences of muscle
contractions, executing a sort of ‘‘maladaptive” gait. While the cog-
nitive target is achieved, the movement might not properly be
adjusted to the biomechanical properties of the joint’s soft tissues,
muscles and bones and to cellular metabolic needs, thus yielding
torque-related deformities. Those newly-generated signals are a
reflection of brain adaptation, and the quantitative evaluation of
the differences between the neurological patients’ and the control
subjects’ signals is essential for the interpretation of the prognosis
of the disease and for the design of personalised therapies. Study-
ing and understanding human gait is thus of major importance,
both for guiding medical interventions and as a door for shedding
light on the functioning of the nervous system. The advent of new
technologies has made possible the quantification of the different
motor phenomena involved in gait pattern configuration [18],
and different mathematical tools have been applied to these data
[19,20].

Within this large field, the application of statistical physics con-
cepts has been receiving an increasing attention. It is not difficult
3258
to identify the reasons behind this surge. One of the main objec-
tives of this branch of physics is the characterisation of the con-
stituents of a system (i.e. the micro-scale), when only the
emergent global dynamics (i.e. the macro-scale) is accessible and
thus observable [21]. Making a parallelism with genetics, this is
equivalent to trying to characterise the genotype, when only the
phenotype of an organism (and changes thereof) can be observed.
The same problem is found in gait, which is the result of a chain of
interactions starting from the central nervous system and ending
in the peripheral tissues; yet, only the final output, and not the
intermediate steps, are easily observable. Among the many metrics
that have been developed within statistical physics to this end, a
few of them stands out for describing concepts well aligned with
neuroscience: to illustrate, entropy is related to the predictability
of a signal, and the lack of predictability can easily be associated
to a lack of control by the lesioned brain; and the maximum Lya-
punov exponent describes the response of the system to perturba-
tions, which translates to the feedback control mechanisms acting
during gait. On top of this, most statistical physics metrics are easy
to compute, and are built on solid theoretical foundations.

In this review, we aim at creating a stronger bridge between
clinical gait analysis and statistical physics, and at fostering the
flow of ideas from the latter to the former. For that, physicists have
to understand the idiosyncrasies and problems behind gait data;
and, at the same time, physicians need to better understand what
is assessed by statistical physics metrics, which at times can be
quite abstract. We focuson how four fundamental statistical phy-
sics concepts have been applied to instrumental gait analysis,
namely: entropy, maximum Lyapunov exponent, multi-fractal
analysis and irreversibility. These have been chosen for being rep-
resentative of basic statistical physics concepts (including pre-
dictability, fluctuations and time asymmetry); for being
computationally affordable; and for having widely been used in
gait analysis. We discuss how these concepts have been applied
to different types of gait data, and the main results obtained in dif-
ferent pathologies. We finally close this review with a discussion of
the limitations of the methods hitherto proposed, of some concep-
tual mistakes we have found in the literature, and of avenues for
further development.
2. Basics of instrumented gait analysis

People has been interested in analysing walking since the earli-
est moments of science. Aristotle (384–322 BCE) is the author of
the earliest recorded comments and theories on the movement
of humans and animals [22]. Progress was afterwards made
through the experiments and theories of Giovanni Borelli (1608–
1679), on tendon biomechanics, and of Willhelm (1804–1891)
and Eduard (1806–1871) Weber, on the anatomy and biomechan-
ics of walking. Other notable contributors include Jules Etienne
Marey (1830–1904), Eadweard Muybridge (1830–1904), and Gas-
ton Carlet (1849–1892), who developed a shoe with three pressure
transducers built into the sole; this was the first recording of the
double bump of the ground reaction force vector [23]. The major
developments in the early twentieth century were force plates
and the understanding of kinetics [22]. It was not until the advent
of modern computers that clinical gait analysis became widely
available. Instrumented (or computerised) gait analysis (IGA) is
now a complex discipline based on powerful systems of measure-
ment with different degrees of complexity, strong neuro-scientific
research and widely spread clinical application. Still, IGA has not
reached its maximal technology capacity yet. In the years to come,
better and cheaper systems may be incorporated to clinical care
and will provide clinicians with a large quantity of precise informa-



Table 1
Different types of parameters in instrumented gait analysis.

Question Definition Example

Spatiotemporal parameters What? Motion of the whole body Walking speed, step cadence
Kinematic parameters What? Motion of individual joints Knee flexion
Kinetic parameters How? Forces, work and power behind the motion Knee flexor moment
Electromyographic parameters Why? EMG activation of individual muscles Activation of the vastus lateralis
Individual muscle information Why? Data of muscle performance from inverse dynamic modelling Force produced by vastus lateralis
Oxygen/ CO2 consumption data How much? Energy consumption Oxygen consumption during walking
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tion of motor performance, which needs to be processed and pre-
sented in a useful way.

When it comes to the numerical analysis of IGA data, three
aspects have to be clarified: the type of data; how these data are
represented; and under which conditions they are recorded.

Regarding the first aspect, motor phenomena can be evaluated
by means of different recordings - see Table 1. Spatiotemporal
parameters are those that assess how the body moves as a whole
(e.g. speed) or how the gait cycle is configured (e.g. stance time).
Kinematic parameters assess how the displacement of particular
body segments around the different joints is made in space (e.g.
knee flexion). Kinetic parameters assess the forces that provoke
the displacement of the body or particular body segments (e.g.
power, torque), measured through force plates. By means of mod-
els, we can extract torques and powers for the different joints, and
even for particular muscles. The muscle activity along gait cycle
can be assessed by superficial electromyographic recordings.
Finally, the metabolic cost of walking can be measured indirectly
by calorimetry and metabolic cost measurements (e.g. CO2).

Data from IGA can be analysed as scalar values, giving informa-
tion of a particular feature in a precise moment of the cycle (e.g.
knee flexion at initial contact), or averaged along the whole cycle
(e.g. range of knee flexion). Alternatively, they can be analysed as
vectors or matrices by multivariate statistical and machine-
learning approaches [19,20,24] - the former being the focus of this
review.

Finally, gait can be analysed in different environments. Tradi-
tional IGA uses laboratories in which highly precise systems quan-
tify different aspects of human movement, for instance on
instrumented aisles or treadmills. Additionally, virtual reality sys-
tems have been incorporated, allowing the integration of non-
portable equipment into real environments [25]. Finally, systems
like instrumented insoles, accelerometers, or even mobile phones,
have allowed the assessment of gait in natural environments [26].
3. Entropy

Entropy, in its physical interpretation of the quantity of disor-
der, randomness, or uncertainty about the dynamics of a system,
has a long history of applications in biology and medicine
[27,28]. When applied to IGA, it allows to assess how repetitive
and controlled the gait cycles are. As a lesioned system and its sub-
sequent adaptive mechanisms can only provide a restricted num-
ber of possible movement patterns, and they can only enforce
them through a weaker control, a reduction is to be expected in
the entropy of a number of cinematic parameters. To the best of
our knowledge, the first application of entropy measures to gait
time series was proposed in 2003 [29], comparing healthy subjects
walking in different conditions (spontaneous walking vs. walking
paced by a metronome). Since then, the number of studies has
exploded; not just in the number of conditions, but also in the
number of applied entropy metrics. For the sake of completeness,
the most important are sketched below.
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� Shannon and symbolic entropies. Shannon’s original formula-
tion of the entropy [30] is calculated over a continuous proba-
bility distribution f ðxÞ as: S½f ðxÞ� ¼ � R

f ðxÞlog2f ðxÞdx. When
the base of the logarithm is set to 2, it represents the informa-
tion needed, in terms of number of bits, to describe the distribu-
tion. When continuous values are not available, and in general
when it is convenient to discretise the signal to reduce noise
and artefacts [31], the resulting entropy is known as symbolic
[32].

� Approximate (ApEn) and Sample (SampEn) entropy. Building on
the concept of Kolmogorov-Sinai entropy, ApEn measures the
predictability of time series by assessing how probable are
two sub-windows of it, which are similar between themselves,
of also evolving in a similar manner [33]. The greater is this
probability, the more regular (or predictable) is the time series,
and hence the smaller the resulting ApEn value. SampEn is a
further modification of the same idea, in which the comparison
of a sub-window with itself is not taken into account; this
reduces the bias of the metric, at the cost of not being a true
information measure anymore [34]. More comprehensive com-
parisons of both metrics can be found in Refs. [35,36].

� Permutation entropy. Metric representing the information
encoded in the permutation patterns associated to a time series,
that is, in the order relations among consecutive values [37–39].
It is assessed by dividing the time series into short windows; by
calculating the corresponding permutation pattern, i.e. the
order required to sort the elements of such windows in ascend-
ing order; and finally by calculating the Shannon entropy of the
resulting pattern probability distribution.

� Multiscale entropy. Previously described entropy metrics are
calculated over all values available in the time series, thus
inherently analysing the time scale induced by the temporal
resolution of data. Healthy (and pathological) physiologic
dynamics nevertheless develop over a multitude of scales,
whose heterogeneity can be described by calculating a multi-
scale entropy. As originally proposed [40,41], this involves
two steps: firstly, the reconstruction of consecutive coarse-

grained time series fysg, such that ysðtÞ ¼ 1
s
Pjs

i¼ðj�1Þsþ1xðiÞ; in
other words, the time series is splitted in non-overlapping
sub-windows of size s, which are represented by the corre-
sponding average value. Secondly, any suitable entropy metric
is calculated over the new time series ysðtÞ, for then obtaining
the evolution of the entropy as a function of s. Many alterna-
tives to this initial approach have been subsequently proposed,
see for instance [42]. It can be appreciated that, more than to a
specific metric, multiscale refers to a way of pre-processing the
data; as such, this approach can be found in conjunction with
SampEn [29,43–47], symbolic entropy [48–50], or approximate
entropy [51].

� Control entropy. One assumption underlying all previously
described entropy measures is that the analysed time series
are stationary in a statistical sense, something not usually hold-
ing in biology and medicine. In order to tackle this issue, the
concept of control entropy was introduced, as the entropy of
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the differences between neighbouring values, as opposed to the
values themselves [52]. Mathematically, given a time series xðtÞ,
this can be calculated as: CE½xðtÞ�ðtÞ ¼ SampEn½dðdxdt ðt; t þwÞÞ�,
where d and w are the parameters used to calculate the SampEn
as described above.

Additional alternatives of entropy metrics, not reviewed here
for the sake of conciseness, include the analysis of multi-scale
entropy through Discrete Wavelet Transform [53]; quaternion
entropy [54]; quantized dynamical entropy [55–57]; diffusion
entropy, i.e. the entropy of the diffusion process generated by a
time series [58,59]; intrinsic mode entropy [60,61]; differential
entropy [62]; cross entropy [63,64]; and persistent entropy
[65,66]. The precision and relevance of some of these metrics have
directly been compared, as for instance in Refs. [48,61,67,68,50];
and analyses have been performed on the importance of different
parameters [35,69,70,67]. There are nevertheless no guidelines
about which metric is better for the analysis of a given system,
leaving the doors open to multiple options.

The analysis of gait entropy should logically start with healthy
subjects, as a way of shedding light on the mechanisms behind
the normal control performed by the central nervous system;
many studies have therefore focused on the effects of different
walking speeds, either spontaneous, forced (through a metronome)
or by means of slopes [71]. The influence of walking speed on the
different explored metrics for entropy in IGA is complex. Higher
walking speeds seem to be related with an increased entropy in
kinematic time series [72,54], reflecting that the SNC might be
either relaxing its otherwise tight control when increasing velocity
to adapt to more spurious unexpected interferences, or because
there is no time to imprint the same tight control as when walking
slow. On the other hand, the entropy of the time of stride seems to
evolve in the opposite direction, showing increased entropy with
lower walking speeds [73,74]. Another study further showed no
statistically significance difference for all paced walking speeds
[29]. Such complexity may be the results of both the small differ-
ences induced by the walking speed, and of the use of different
entropy metrics. It is finally worth noting two additional studies
on healthy subjects, specifically runners [75] and toddlers [43].

Within the analysis of healthy individuals, a special place should
be reserved to studies devoted to the analysis of gait of elderly peo-
ple. The aim is usually to forecast, and eventually to understand the
reasons behind, the risk of falling, as this is associated to major
comorbidities and healthcare costs [76–78]. Obtained results are
somewhat contradictory. Specifically, most of the works generally
found an increased entropy in elderly individuals
[79,80,45,57,81]. Moreover, this increase seems related with falls.
This suggests that elders have lost their adaptive capacity due to
the natural deterioration of the brain, with movement being less
regulated, specifically the transmission of the somatosensory feed-
back to cerebellum that modulates the response to interferences of
the external world to gait is altered, as well as the continuous con-
trol of antigravitation muscles by brainstemmechanisms like retic-
ulospinal or vestibulospinal systems [82]; but some found
statistically not significant differences [44,83]. Finally, Ref. [84]
found a complex relationship with the minimum toe clearance (ex-
pression of somatosensory feedback deficit of joint positions to
motor control in the swing phase), with elders usually having
higher entropy, reflecting that the motor response is not regulated
because of the impoverishment of somatosensory inputs; but a
lower entropy when large values of the clearance are considered -
an effect more marked when considering the falls risk group. It is
also worth noting Ref. [64], which proposed a clinical classification
model reaching an accuracy of 90%.

When moving to the analysis of the gait of patients suffering
from specific diseases, a group of three stands out for being usually
3260
tackled together. These include Parkinson’s Disease [85,53,86–88,
51,46,89,90,47,66], Huntington’s disease [85,53,86,91,51,46,90],
and amyotrophic lateral sclerosis [85,53,86,51]. Note that, in spite
of the similar results they yield, these pathologies are substantially
different, the first two being related to the basal ganglia, which
control the fine processing of movements temporally regulating
the eccentric/concentric muscle contraction; and the latter one to
the motor neurons of the cerebral cortex, brainstem and spinal
cord, which control the concentric contraction of muscles and thus
the force, power and joint torque. One would expect that after a
lesion of motor neurons, the subsequent problems in agonist/an-
tagonist concentric contraction and spasticity would initially
decrease the entropy, and that it would remain lower while the
system is compensating and fixing a new configured kinematic
pattern that allows locomotion. Then, after larger lesions are pro-
duced (due to the degenerative nature of these pathologies),
entropy should increase as a reflection of the loss of adaptive capa-
bility of finding a functional gait parameter configuration to walk.
On the other hand, basal ganglia lesions should disrupt the fine
control of movement, resulting in an increase of entropy due to a
lack of adaptive capacity. These changes may vary, influenced both
by the thresholds and scales in the entropy metrics. Most analyses
indicate that patients suffering from these three diseases display
higher entropy [89,90,47]; the only exception can be found in
Ref. [51], where few significant differences were found between
the amyotrophic lateral sclerosis (ALS) disease and control groups,
and Ref. [85], where the entropy of the control group was higher. It
is unfortunately difficult to understand where these differences
come from, due to the multiple available entropy metrics, and to
the different ways data have been pre-processed. In spite of this,
having comparable data for these three diseases together has
allowed the creation of classification models for predicting the
specific condition of each patient, reaching accuracies of 85%
[86], 91% [90], 98% [66], and above 99% [46].

Other diseases that have been studied in the literature include
symptomatic knee osteoarthritis [92]; diabetic foot [93]; lumbar
spinal stenosis [62]; hemiparetic patients following stroke
[94,95]; multiple sclerosis [96]; Down syndrome [97]; cerebral
palsy [98]; Alzheimer’s Disease [99]; and peripheral arterial dis-
ease [100]. In almost all cases, a lower entropy has been detected
in the gait of patients, when compared to control subjects
[97,92,96,93]; the only exception is a higher entropy for ankle,
knee, and hip in patients with peripheral arterial disease [100].
Additionally, entropy metrics have been proposed as features for
training automatic classification models [62,95].
4. Maximum Lyapunov exponent

The maximum Lyapunov exponent (MLE) is based on the Lya-
punov’s theory of dynamic stability, initially formulated to assess
the sensitivity of a mechanical system to small perturbations
[101,102]. In short, given a dynamical system, it is based on calcu-
lating the evolution of two trajectories starting from very near
points, and in assessing how much these trajectories diverge with
time. Thus, large values of the MLE imply that small perturbation
can result in a very different evolution, and a lack of control on
the evolution of the system; the application to gait is thus only nat-
ural [103].

From an algorithmic point of view, two main ways have been
proposed to estimate the MLE: the algorithm of Wolf et al. [104]
(also called the W-algorithm), and the algorithm of Rosenstein
et al. [105] (the R-algorithm). While the latter is in principle more
suitable for the analysis of short time series, the differences
between both can be more complex [106]. Additionally, the com-
putation of these metrics can be performed on a single or multiple
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strides, called respectively short- and long-term MLE; while the
former is more clearly related to the structure of the gait, and espe-
cially on the probability of falls, the latter has been found to yield
complementary information [107]. Any result should therefore be
interpreted with caution.

As expected, the maximum Lyapunov exponent has firstly been
estimated in healthy subjects. Beyond several studies addressing
the problems associated with its estimation [108–110,61], it is
worth noting a study showcasing the use of this metric, by compar-
ing the temporal variability between walking in unstable shoes and
walking in a normal athletic-type control shoe [111]. Results indi-
cate a higher maximum Lyapunov exponent when walking in
unstable shoes, possibly reflecting the larger variability in walking
patterns by them forced.

Several pathologies have also been studied, the most important
being ageing [112,108,113,109]; correlations have been found
between the capacity of maintaining dynamical stability and age,
but also with strength and amount of physical activity. Other
examples of conditions include claudication [107], cerebella dam-
age [114], models of high falling risk [110], Down’s syndrome [97],
multiple sclerosis [115], peripheral arterial disease [100], recon-
struction of the anterior cruciate ligament [116], and knee
osteoarthritis [117]. In all of these, external interferences exist,
including the noises induced by peripheral lesions of soft or hard
tissues, like muscle, ligaments, bones or joint tissues, which intro-
duce disturbances in the final response of the motor command and
in the somatosensory feedback to the motor system [82]. This
would promote modifications in the output signals. A metric also
based on the analysis of the trajectory followed by a dynamical
system, and thus related to the maximum Lyapunov exponent, is
the correlation dimension [118–120]. Roughly speaking, it repre-
sents the probability of two arbitrary points to be closer than a
given distance, as a function of such distance. While less attention
has been devoted to this concept in the context of gait analysis, it is
worth noting a few works that have applied this metric, usually in
conjunction with the MLE. These include the analysis of healthy
individuals [121,122], as well as patients suffering from
osteoarthritis [123,124] and neurodegenerative diseases [125,126].

As a final note, it is worth considering Ref. [127]; beyond study-
ing healthy subjects gait, it also offers a free software for Window�

environment to compute several dynamical metrics, both on gait
and other types of time series.
5. Multi-fractal analysis

Long-range correlations and fractal-like properties are present
in a wide range of natural phenomena [128,129]. The Hurst expo-
nent is one of the most reliable parameters to quantify the scaling
law for these temporal correlations, specially when dealing with
real-world time series [130,131]. In the simplest case, only one
scaling index is necessary to characterise the global linear correla-
tions in a sequence, namely, mono-fractal. However, when the
scaling is not a global but a local property, one scaling exponent
is not sufficient to unveil the interplay between a superposition
of subsets, each characterised by a different scaling exponent, lead-
ing to what is known as multi-fractality [132]. It is important to
point out that multi-scaling can be originated by the presence of
non-linear correlations and heavy-tail distributions [133].

The most used methodology for estimating scaling exponents is
the so-called Multifractal Detrended Fluctuations Analysis
(MFDFA) [133]. Briefly, it studies the fluctuations on data
sequences by systematically eliminating the mth-degree polyno-
mial trends over windows of different sizes s. Then, the q-
Generalised Fluctuation Function Fqðs;mÞ is estimated, defined as
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the averaged variance of the detrended time series and weighted
to a factor q. For long-term correlated data, Fqðs;mÞ scales as shðqÞ

inside a certain range of s. For more details about the algorithm,
see [133]. For q ¼ 2, the classical Hurst exponent is retrieved
hð2Þ ¼ H, (0 < H < 1), that quantifies the linear correlations in
the sequence. H ¼ 1=2 stands for memory-less fluctuations. Persis-
tence, i.e. positive memory, is related to H > 1=2, while negative
memory or anti-persistent correlations correspond to H < 1=2.
For mono-fractal data, h is independent of q and equal to H, since
only one scaling exponent is enough; on the other hand, h decreas-
ing with q is a result of a multi-fractal nature, which can be
described through a set of scaling parameters fhqg. It has to be
noted that other approaches are also sometimes used to study
multi-fractal properties, including those based on wavelet trans-
forms [134,135], and improved methods based on Fractal Analysis
[136,137]. We start reviewing the application of this concept to
gait data by initially focusing on long-range linear correlations,
as measured by the Hurst exponent H, as these were historically
the first to be considered. Primarily, long-range fractal-like correla-
tions (extended over hundred of steps) were found in stride inter-
val fluctuations from healthy young people [138,139]. One year
later, it was shown that these correlations are stable up to thou-
sand of strides at three walking rates (usual or self-selected, slow
and fast) [140]. Additionally, Hausdorff and co-workers showed
that during metronomic walking, the stride interval becomes
uncorrelated independently of the walking rate [140]. Opposed
to this result, Delignieres et al. [141] found anti-persistent fluctu-
ations in metronomically constrained walking, and that slow walk-
ing can be considered an anti-persistent non-stationary walk
rather than a strongly persistent noise. Subsequent studies found
that long-range correlations are also present when healthy sub-
jects run [142,143], or when treadmill locomotion is imposed
[144], although correlations are reduced. These results provide evi-
dence that long-range temporal correlations exist at a wide range
of gait speeds in healthy young adults. Moreover, models are able
to generate sequences reproducing the experimental long-range
temporal correlations [145,146].

Further studies showed that long-range correlations are
reduced with maturation [147] and in elderly healthy subjects
[148], since there is age-related decline in the general chemical
and electrical activity of the micro and macro circuitries of the
basal ganglia, which affects mobility, imposing deconfigured neu-
ral motor commands that induce longer lasting movements.
Besides, physiological ageing brings a decrease in muscle mass
and strength [149,150], joint somatosensory inputs (conscient pro-
prioception) might also be decreased [151,152], and there is a
higher probability of suffering arthrosis and joint deformity
[153]. All those factors might also reduce the longe range correla-
tion of movements. On the other hand, Malatesta et al. [154] found
no significant differences in the temporal correlations between
healthy young, 65-yr-old and octogenarians subjects walking on
a treadmill, which makes sense if we take into account that the
treadmill is imposing its own rhythm as a pacemaker. An addi-
tional study by Herman and co-workers proposed to characterise
the ‘‘cautious” gait of the elderly [155]. They considered subjects
with High Level of Gait Disorder (HLGD, i.e. walking difficulty not
attributable to a chronic condition or disability), and found that
long-term correlations are significantly lower in fallers compared
with non-fallers [155], suggesting that a decrease in the correla-
tions is an indicator of fear of walking.

Pathological alterations on the motor system also induce a
decrease in the long-range correlations in the stride interval fluctu-
ations. Such correlations were lower compared with controls when
subjects suffer from Huntington [148] and Parkinson’s diseases
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[156,144,157], both pathologies affecting the basal ganglia, whose
disability in coordinating the appropriate sequence of muscle con-
traction introduces tremor or discoordinated movements that
increase short range noise. However, stride interval fluctuations
from subjects with advanced amyotrophic lateral sclerosis also
showed lower degree of long-range correlations, as one would
expect from a completely deconfigured neural command that hin-
der movement, although for this disease the basal ganglia is intact
and does not generate short range noise. It was additionally found
that treadmill walking reduced the scaling exponent in healthy
controls but not in subjects with Parkinson’s disease [144]. On
the other hand, the use of medication in subjects suffering of
Parkinson’s can be identified when rest tremors are studied,
through an increase in the correlations in the velocity signals
[53,95]. Surprisingly, peripheral neuropathy does not alter the
temporal correlations of stride intervals of gait, despite these
patients tending to walk slowly [158]. Withinn the general context,
these findings contribute to the idea that changes in the scaling
laws, i.e. the reduction in the correlations, are largely a reflection
of a deterioration of the central control of gait, and not simply a
reflection of a slower walking speed [158].

Beyond the detection of long-range linear correlations, multi-
fractal analysis allows assessing the presence of non-linear ones,
which are described by the scaling parameters fhqg. Note that
the presence of non-linear correlations, multi-fractal scalings, or
multi-fractal properties, are all synonyms and are here used inter-
changeably. Multi-fractal scaling was primarily observed from the-
oretical models, conjecturing a slightly multi-fractal fluctuations in
several gait regimens [146] and its decrease with maturation [145].
Subsequently weak multi-scaling was experimentally confirmed in
both free and metronomically triggered conditions in healthy sub-
jects [135,159,160], being the unconstrained slow and fast paces
the most multi-fractal, and the former one actually being an
anti-persistent walk, possibly due to a non-stationarity generated
by a loss of concentration while trying to follow the pace. Weak
multi-fractality has also been reported by Ivanov et al. [161]. Most
recently, Dutta et al. [162] experimentally showed that stride
intervals from both healthy subjects and patients with neurode-
generative diseases (Huntington’s and Parkinson’s) present multi-
fractal properties, as well as from subjects suffering amyotrophic
lateral sclerosis [163], with healthy subjects having higher degree
of multi-fractality compared to patients. As opposed to these
results, in [164,165] it was reported that, compared to healthy con-
trols, multi-fractality is higher in individuals with the aforemen-
tioned diseases. Further, they found a wider degree of multi-
scaling in both children and healthy older adults. On the other
hand, Ducharme and co-workers [166,167] found that healthy sub-
jects generate mono-fractal stride-to-stride intervals for unper-
turbed walking, and multi-fractal when perturbed. This opposing
multi-scaling feature is probably due to a different data acquisition
procedure [167]. Moreover, multi-fractality has been also observed
in the walking of patients with Parkinson’s during a keystroke
[168], and in velocity signals of rest tremors [53,95]. In most cases,
the main source of the multi-scaling is the presence of long-range
correlations, rather than the distribution. Remarkably, by compar-
ing the multi-scaling of the correlations between the two feet of a
patient, a discrimination between Huntington’s and Parkinson’s
diseases is achieved [169]; and such correlation quantifies the
degree of the neurodegenerative pathology [170]. Lastly, Ihlen
and Vereijken [171] proposed to identify multi-scaling in human
gait by analysing the interplay between local temporal correlations
and local magnitude of the stride time variability. It is finally worth
mentioning that a detailed analysis on the optimisation of the
parameters of the fractal approach used in order to obtain reliable
results for finite-size measurements can be found in [172].
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6. Irreversibility

Time irreversibility is formally defined as the lack of invariance
of the statistical properties of a system (or a time series) under the
operation of time reversal; more intuitively, it can be described as
whether a time series can or cannot be recognised from its time-
reversed version. To illustrate, imagine watching a movie of an
ideal pendulum: it would not be possible to decide whether the
movie is played forward or backward, as both would be identical
(except for a change in the sign of the velocity). On the other hand,
the classical example of an irreversible movie is the one depicting
ice cubes melting in a glass; its time-reversed version, with water
solidifying in regular structures, is unnatural at best. Time irre-
versibility is a fundamental property of non-equilibrium systems,
and stems from two properties observed in many real-world sys-
tems: the presence of non-conservative forces, i.e. of memory
[173,174], and of non-linear dynamics [175]. It is not surprising
that irreversibility metrics and tests have been applied to many
medical problems, including the characterisation of Parkinson’s
disease tremors [176]; of brain dynamics through corresponding
electroencephalographic (EEG) recordings [177–180]; and of car-
diac dynamics in different conditions [181–183]. Nevertheless,
and as opposed to what seen for other metrics, irreversibility has
mostly been neglected by the gait community - some reasons for
this will be discussed in Section 7.

It is intuitive that gait should be an irreversible dynamics, as
brain signals to the muscles that provoke joint movement must
be continuous and coordinated; in other words, they are the result
of a computation in which memory (the past position and move-
ments of the body) plays an important part. This idea was firstly
used in 2003 by Ref. [184], and later by Ref. [185] along similar
lines; this was nevertheless not numerically checked, and was only
used to justify the application of Left-to-Right Hidden Markov
Models. More recently, two papers explored the use of irreversibil-
ity as marker of pathology. Firstly, Ref. [186] analysed time series
of patients with peripheral arterial disease; a statistically signifi-
cant lower irreversibility was found in patients on the Y axis of
both legs with respect to the control group, reflecting a reduced
repertoire of possible responses to an otherwise healthy normal
neural command. The next year, Ref. [99] analysed gait kinematic
time series for patients with mild cognitive decline and early Alz-
heimer’s dementia; a more complex scenario was depicted, with
some joint movements displaying an increased irreversibility
(e.g. ankle rotation in mild cognitive decline patients, reflecting
an adaptation to dynamically correct the ankle to increase the base
of support [187]), while others a marked decrease (e.g. pelvic tilt in
both pathologies, which tends to be fixed in a mid flexo/extension
position with lower movement range, in order to increase stability
during load transfer).
7. Conclusions and challenges ahead

Instrumented gait analysis (IGA) is steadily increasing in impor-
tance, both for understanding the inner mechanisms of brain com-
putation, and the effects that different pathologies have on this
essential aspect of everyday’s life. IGA is nevertheless only as use-
ful as the metrics extracted therefrom, hence the importance of
defining and assessing suitable quantifiers. In this contribution
we have reviewed how four statistical physics concepts, namely
entropy, maximum Lyapunov exponent, multi-fractal analysis,
and irreversibility, have been used to characterise human gait, both
in health and pathologies. While coming from the same scientific
field, these four concepts are substantially different, both in terms
of the property of the system they assess, and of the requirements
on the analysed data. A synthesis of these differences is proposed



Table 2
Main characteristics of the metrics considered in this study; see main text for details.

Entropy MLE MFA Irreversibility

Characterised property Predictability Recovery from perturbations Linear/non-linear correlations Computation, memory
Min. time series length > 20 > 50 > 1;000 > 200
Computational cost Low High Medium to high Medium to high
Free parameters Medium Few Few Medium

Table 3
Synthesis of the main results observed in the Literature for five major pathological conditions. Acronyms in italic and superscript indicate
the type of data analysed by each work. jap: joint angles and positions; ac: accelerations; mtc: minimum toe clearance; si: stride intervals;
f : forces.

Ageing

Metric: Main trend: Exceptions:
Entropy Increased entropy [79]jap, [80,45,57,81]ac [84]mtc, [44,83]ac

MLE Reduced stability [112]jap, [113]si, [108,109]ac -
MFA Reduced correlations [148,155]si [154]si

Irreversibility - -

Parkinson’s Disease
Metric: Main trend: Exceptions:
Entropy Increased entropy [53,86,87,90,66]si, [88,46,47]f, [89]ac [85]si

MLE - -
MFA Reduced correlations [156,144,157]si, [95]f. Multi-fractal scaling [162,168]si [164,165]si

Irreversibility - -

Huntington’s Disease
Metric: Main trend: Exceptions:
Entropy Increased entropy [85,53,86,91,90]si, [46]f [51]f

MLE - -
MFA Reduced correlations [148]si. Multi-fractal scaling [162]si [164,165]si

Irreversibility - -

Alzheimer’s Disease
Metric: Main trend: Exceptions:
Entropy Increased entropy [99]jap -
MLE - -
MFA - -
Irreversibility Mixed [99]jap -

Amyotrophic Lateral Sclerosis
Metric: Main trend: Exceptions:
Entropy Increased entropy [53,86]si, [51]f [85]si

MLE - -
MFA Reduced correlations [156]si. Multi-fractal scaling [163]si [164,165]si

Irreversibility - -
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in Table 2. It has nevertheless to be taken into account that this is a
simplification, as for instance different algorithms, e.g. for estimat-
ing entropy, have different requirements in terms of time series
length, and also have different numbers of parameters that have
to be tuned. Additionally, Table 3 reports a synthesis of the
obtained results for five major pathologies, organised in main
trends and exceptions for each metric, and further reporting the
gait data used in the analysis.

The attentive reader will already have identified some common
patterns: pathologies usually increase entropy, and reduce stability
and correlations. This is not completely surprising, as one may
expect a weaker control by the central nervous system, and hence
a less controlled gait. There are nevertheless exceptions, which
point towards a more complex scenario. Any metric showing a
more controlled system could be pointing at the deployment of
adaptive mechanisms in the brain (while this is not too lesioned),
to create a successful cinematic and kinetic configuration main-
taining a functional walk. However, this control will fail as soon
as the adaptive mechanisms fail, leading to a completely uncon-
trolled system. This is known to happen in motor neuron degener-
ative diseases, such as Amyotrophic Lateral Sclerosis and Multiple
Sclerosis. Depending on the evolution of the desease, one can thus
find a wide spectrum, from lower to higher entropy, when compar-
ing against healthy subjects. Lesions in the basal ganglia may start
with some increase in control at the debut of disease; yet, as basal
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ganglia are a very important part of the adaptive mechanism itself,
the progression of the lesion will result in an intensifying lack of
control.

Results here reported also highlights some challenges that will
have to be overcome, in order to ensure that IGA will have a promi-
nent role in clinical practice.

First of all, observing differences between e.g. control subjects
and patients is not necessarily tantamount to obtaining useful clin-
ical knowledge and tools. On the one hand, as the described met-
rics are related with the output of the motor system, their
changes cannot directly be interpreted as causal mechanisms.
Abnormalities in motor output can emerge as secondary adapta-
tions of the system, requiring additional and tailored experiments
to confirm any causal hypothesis. On the other hand, while most
research works have focused on the statistical significance of
results, only few have used such differences to build classification
models [62,86,169,95,64,46,90,66]. The importance of having such
models, and specifically explainable ones, is nevertheless obvious,
and is especially relevant in the case of pathologies for which early
diagnosis is hindered by a lack of reliable and affordable early
biomarkers - e.g. Parkinson’s and Alzheimer’s diseases.

Secondly, as illustrated in Table 3, many contradictory results
have been observed for multiple pathologies, or even for control
subjects in comparable conditions. On one hand, this may point
towards an evolution of the underlying control strategy by part
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of the central nervous system; something that can only be con-
firmed through longitudinal studies. Yet, and on the other hand,
this may also be the spurious result of using different techniques
to record gait; of heterogeneous (and not easily comparable) data
recording procedures and conditions; and of the use of different
variants of the four metrics, of different algorithms to calculate
them, or of different parameters. In spite of some efforts in the Lit-
erature [107,68,48,35,61,67,50,69,70,67,188], more comparative
studies are needed to clarify which metrics, algorithms and param-
eter values ought to be used, possibly by relying on numerical
models of gait [145,146,110].

Thirdly, one must acknowledge that creating bridges between
different scientific fields is challenging at best, as concepts and
ideas that are standard in one of them may be hard to grasp in
another one. The case here reviewed is not exception, resulting
in some widespread technical and conceptual fallacies. To illus-
trate, different metrics have different requirements in terms of
minimum time series length - some very broad guidelines are
included in Table 2. Yet, the Hurst exponent has been estimated
on time series as short as 20 values [148], something that is known
to lead to overestimations; interestingly, results were then con-
firmed with longer time series [162]. We have also found many
examples of research works claiming that the complexity of the
time series was calculated, for then using entropy metrics
[29,75,68,189,26,49,71,57,50,61,190,90]. While entropy and com-
plexity are undoubtedly related concepts, they are not inter-
changeable, as well known in statistical physics [191–193]. This
highlights the importance of relying on mixed teams, in which peo-
ple with different background (medical on one hand, physics on
the other) can interact.

As a final point, Table 3 (or even the length of the different sec-
tions) suggests that the four concepts here analysed, while being
complementary in nature, have not equally been considered.
Specifically, the use of entropy and MFA can be considered as wide-
spread in gait analysis; but only two research works have focused
on the irreversibility of gait time series. This may be the results of
several factors. First of all, computational approaches to irre-
versibility are relatively recent, with the first metric being pro-
posed by Yves Pomeau in 1982 [194] - entropy, in contrast, is a
concept known in information theory since 1948 [30]. Addition-
ally, while many more metrics have been proposed in the last dec-
ade, choosing the best one for a given real-world problem is not
trivial [188]; the computational cost is usually much higher, when
compared to entropy metrics [188]; and the understanding of the
theoretical meaning of irreversibility is challenging.

In spite of these challenges ahead, it is clear that the instrumen-
tal analysis of gait can strongly benefit from statistical physics con-
cepts; and that existing studies have helped in understanding the
mechanisms behind some major pathologies and how they affect
gait, from Parkinson’s to Alzheimer’s. It would be far from surpris-
ing to see an increase in the number of published papers on this
topic; and even the adoption of those metrics in a clinical context
in the near future.
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