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Purpose: To develop a robust reconstruction pipeline for EPI data that enables
2D Nyquist phase error correction using sensitivity encoding without incurring
major noise artifacts in low SNR data.
Methods: SENSE with 2D phase error correction (PEC-SENSE) was combined
with channel-wise noise removal using Marcenko–Pastur principal component
analysis (MPPCA) to simultaneously eliminate Nyquist ghost artifacts in EPI
data and mitigate the noise amplification associated with phase correction using
parallel imaging. The proposed pipeline (coined SPECTRE) was validated in
phantom DW-EPI data using the accuracy and precision of diffusion metrics;
ground truth values were obtained from data acquired with a spin echo read-
out. Results from the SPECTRE pipeline were compared against PEC-SENSE
reconstructions with three alternate denoising strategies: (i) no denoising; (ii)
denoising of magnitude data after image formation; (iii) denoising of complex
data after image formation. SPECTRE was then tested using high b-value (i.e.,
low SNR) diffusion data (up to b = 3000 s/mm2) in four healthy subjects.
Results: Noise amplification associated with phase error correction incurred a
23% bias in phantom mean diffusivity (MD) measurements. Phantom MD esti-
mates using the SPECTRE pipeline were within 8% of the ground truth value.
In healthy volunteers, the SPECTRE pipeline visibly corrected Nyquist ghost
artifacts and reduced associated noise amplification in high b-value data.
Conclusion: The proposed reconstruction pipeline is effective in correcting low
SNR data, and improves the accuracy and precision of derived diffusion metrics.
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1 INTRODUCTION

Quantification of tissue structure or microstructure relies
on an unbiased representation of the MR signal. Diffu-
sion MRI (dMRI) provides unrivalled access to microstruc-
tural tissue properties by sensitizing the MRI signal to the
self-diffusion of water, which is influenced by the biolog-
ical structures within which diffusion occurs. However,
dMRI requires fast imaging and strong diffusion sensiti-
zation, resulting in two key limitations: (i) Nyquist ghost
artifacts associated with the fast EPI readout, and; (ii) low
signal-to-noise (SNR) levels at high b-values. Moreover,
residual ghosting arising from higher-order phase errors
often necessitates a more complex 2D phase correction
than the routine linear phase correction implemented in
scanner reconstructions.

Correcting 2D Nyquist phase errors by exploiting par-
allel imaging during reconstruction1-7 is an appealing
approach in that no additional reference data are required:
each dynamic image is self-corrected using an estimate of
the phase error obtained by reconstructing the odd and
even k-space lines separately. However, as splitting k-space
is effectively equivalent to doubling the acceleration factor,
concomitant geometry factor dependent noise (g-noise)
amplification can reduce image quality. The PEC-SENSE
method (SENSE with phase error correction)7 proposed
generating a 2D phase difference map from the odd and
even echo reconstructions that is smoothed and then used
to modify the coil sensitivity maps in the final joint SENSE
reconstruction. This approach improved the conditioning
of the reconstruction and lead to better SNR preserva-
tion, particularly when compared with more naïve meth-
ods such as phased array ghost elimination (PAGE).1
However, the method was initially validated in EPI data
without diffusion weighting; a more recent study demon-
strated that residual noise amplification, while negligi-
ble in nondiffusion-weighted data, introduced visible and
severe noise degradation in low SNR DWI.8

Denoising techniques would be a natural choice for
mitigating this noise bias, and precombination denois-
ing in particular would benefit PEC-SENSE and other
parallel-imaging-based 2D phase correction methods
by minimizing additional noise propagation from the
increased g-factor during reconstruction. Typically,
denoising is performed on the magnitude reconstructed
images, either in the image or spectral domains. Spectral
filtering methods decompose the data into low-frequency
(image) and high-frequency (noise) components—often
using wavelets9-11—but can remove small anatom-
ical details if sharp edges contribute to the filtered
high-frequency band. Image-domain techniques have
been proposed using Gaussian filters,12 nonlocal means
filters,13-15 anisotropic diffusion filters16,17 or singular

value decomposition,18 but can suffer from blurring
or partial volume effects and may not be robust to
spatially-varying noise levels. Recently, methods based
on principal component analysis (PCA) have gained
attention,19-24 demonstrating a convincing preservation
of the DW signal compared with other approaches.23

Extensions to PCA-based denoising methods have used
random matrix theory—namely the Marcenko–Pastur
law, which describes the eigenvalue distribution of ran-
dom matrices—to robustly separate the signal-dominated
components from the noise-dominated components
(MPPCA).24 Crucially, these methods assume the noise
model is independent and identically distributed (iid)
Gaussian, which is not necessarily true for data that has
undergone a parallel-imaging-based 2D phase correc-
tion. Current PCA-based denoising strategies therefore
face two challenges in compensating for noise amplifica-
tion in PEC-SENSE data: (i) spatial correlations may be
introduced during phase correction that violate the iid
Gaussian noise statistics if denoising is performed after
image formation, and; (ii) increased noise levels may
introduce a noise floor and minimum measurable signal
that significantly biases low SNR data—even after post-
processing corrections for Rician bias25—if denoising is
performed after signal rectification.26 Denoising complex
channel data prior to Nyquist phase error correction and
image formation could alleviate both issues and lead to
superior noise statistics; indeed, promising reductions in
noise floor levels have been demonstrated by denoising
channel data.27

In this work, the efficacy of MPPCA denoising prior to
image formation in mitigating g-noise amplification asso-
ciated with parallel-imaging-based Nyquist phase error
correction is investigated. A new pipeline—SENSE with
2D PhasE CorrecTion and channel-wise noise REmoval,
coined SPECTRE28—is proposed for robust elimination of
Nyquist ghost artifacts and alleviation of g-noise amplifi-
cation in high b-value DWI. The accuracy and precision
of diffusion metrics obtained using the new pipeline are
evaluated in phantom data; the pipeline is then further
explored in a small cohort of healthy subjects.

2 METHODS

2.1 Data acquisition

The FUNSTAR phantom29,30 and four healthy volun-
teers (one female; mean age 35 ± 5 years) were imaged
on a 3T Philips Ingenia CX system using the vendor’s
32-channel headcoil. Written informed consent was pro-
vided by each subject before imaging in accordance with
local ethics guidance. Multishell diffusion-weighted EPI
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(DW-EPI) were acquired for the subjects with TR/TE =
5000∕88 ms, resolution 2 × 2 × 2 mm3, matrix size 112 ×
110, 20 slices, b-values b = 1000, 2000, 3000 s/mm2 along
30 isotropically-distributed directions and 9 b = 0 vol-
umes. Phantom DW-EPI were acquired with TR/TE =
2000∕132 ms, resolution 2 × 2 × 2 mm3, matrix size 120 ×
118, 10 slices, 20 b-values evenly spaced every 200 s/mm2

between 200 and 4000 s/mm2 each along 6 directions
and 7 b = 0 volumes. All data were acquired with
SENSE factor R = 2, no partial Fourier encoding and
no slice gap. An additional b = 0 volume with oppos-
ing phase-encoding blips was acquired for each sub-
ject to allow for susceptibility-induced distortion correc-
tion. Total scan time in volunteers was 13 min. Com-
plex data from individual channels were obtained in the
hybrid

(
x, ky

)
domain after the vendor’s 1D phase cor-

rection, prior to any filtering. Full field-of-view (FOV)
coil sensitivity profiles were also exported. All subse-
quent data processing was performed offline in Matlab
2019b (The MathWorks). Image space data were obtained
by 1D Fourier transformation along the phase-encoded
y-axis.

The FUNSTAR phantom was additionally imaged
using a DW sequence with conventional spin echo
(SE) readout; the manufacturer’s reconstruction was
used and no denoising was performed. Acquisition
parameters were: TR/TE = 4000∕81 ms, resolution 3 ×
3 × 3 mm3, matrix size 64 × 64, 24 slices, b-values b =
500, 1000 s/mm2 each along 6 directions and 1 b = 0 vol-
ume. These data provided a baseline estimate of the
phantom’s diffusivity independent of EPI distortion and
ghosting.

2.2 SPECTRE pipeline

The individual channel images (S) and sensitivity profiles
(C) were first prewhitened to ensure that noise statis-
tics in each coil were iid Gaussian, giving Sw and Cw.
Using a noise-only region at the top of each coil image,
a noise covariance matrix Ψ was computed. The noise
decorrelation matrix was defined as D =

(
ΨLΨH

L
)−1, which

is the inverse Cholesky decomposition of the lower tri-
angle of Ψ (ΨL). Coil image and sensitivity profile data
were then modified according to Sw = DS and Cw = DC,
respectively.

The adjusted complex channel data Sw were indepen-
dently denoised using the MPPCA method24 with a sliding
5 × 5 × 5 kernel, giving S′w. Finally, the PEC-SENSE recon-
struction framework7 was used for Nyquist phase error
correction and image formation. A graphical representa-
tion of the pipeline is given in Figure 1.

2.3 Alternative pipelines

Denoised complex channel data were also reconstructed
using the standard SENSE method, denoted SENSEch
(using this nomenclature, SPECTRE corresponds to
PEC-SENSEch). Channel data were prewhitened as in the
SPECTRE pipeline.

SENSE and PEC-SENSE reconstructions were addi-
tionally generated using the original channel data (i.e.,
without initial channel-wise denoising), with denoising
instead performed after image formation using both mag-
nitude and complex data; these pipelines are respectively
indicated by the subscripts m and c. The method of
moments correction25 was used to account for Rician
noise bias after denoising the magnitude data. Phase arti-
facts in the complex data—which may contribute addi-
tional significant components in the MPPCA denois-
ing method—were removed prior to denoising using the
decorrelated phase filtering algorithm.31,32 All denoising
was performed using a 5 × 5 × 5 kernel.

The SENSE reconstructions were used to provide a
baseline for SNR measurements-the SNR in SENSE will
always be equal or higher than in PEC-SENSE as the same
reconstruction problem is solved but with a lower effec-
tive g-factor-and to indicate the level of residual Nyquist
ghosting after the vendor’s 1D phase correction.

2.4 Accuracy and precision in phantom
data

Diffusion tensor fitting was performed in the DW-SE and
DW-EPI datasets using an iteratively re-weighted least
squares estimator33 in volumes with b ≤ 1000 s/mm2. The
SPECTRE pipeline was compared against the alternative
pipelines using the accuracy and precision of mean dif-
fusivity (MD) estimates within the phantom as bench-
marks of performance; the MD estimated in the DW-SE
data was taken as the ground truth value. Accuracy
was defined as the mean voxel-wise error relative to
the ground truth value, and precision as the coefficient
of variation (CoV) across voxels. The SNR was calcu-
lated for each pipeline using the multiple replicas of the
b = 0 data.

2.5 Evaluation in volunteer data

For each pipeline, the reconstructed volunteer data were
corrected to remove Gibbs ringing artifacts,34 suscepti-
bility distortions,35,36 and eddy current and motion arti-
facts37 using MRtrix.33 B1 bias field inhomogeneities were
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(A)

(D)

(B)

(C)

F I G U R E 1 SPECTRE pipeline. (A) Representative data from two channels before (left) and after (center) denoising. Residuals between
the noisy and denoised data (right) indicate that no anatomical information was lost during denoising, even in areas of aliased signal. Note
the FOV is reduced owing to a parallel imaging factor of 2. (B) The even (left) and odd (center) echoes used to generate a phase correction
map (right) per EPI. (C) SENSE and PEC-SENSE reconstructions. The ghost artifact present in the SENSE reconstruction (yellow outline)
was corrected in the PEC-SENSE reconstruction. The difference between PEC-SENSE and SENSE reconstructions highlights areas of signal
aliasing that were removed by the phase correction. (D) Processing stages of each pipeline. MoM, method of moments correction.

corrected using FSL FAST.38 The diffusion tensor (DT)
and diffusion kurtosis tensor (DKT) models were fitted
to each dataset using MRtrix, with the DT fit constrained
to data with b ≤ 1000 s/mm2. The precision of parame-
ter fits was evaluated using the normalized root-mean-
squared error (NRMSE) between the data and model
predictions.

3 RESULTS

3.1 Accuracy and precision in phantom
data

Figure 2 shows example phantom data from each recon-
struction pipeline. The effects of g-noise amplification
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(A)

(B)

F I G U R E 2 Phantom data. (A) Reconstructed phantom images at b = 0 and b = 1000 s/mm2. (B) MD maps (×10−3 mm2/s) and the
error relative to the ground truth value. Noise amplification introduced by the 2D phase error correction and corresponding biases in MD are
progressively improved by the denoising strategies from left (PEC-SENSE) to right (SPECTRE); minimal noise amplification remains after
channel-wise noise removal in the SPECTRE pipeline

were prominent in the PEC-SENSE, PEC-SENSEm and
PEC-SENSEc data, most notably as regions of artificially
inflated signal in the high b-value DW data (Figure 2A).
The benefits of denoising complex data prior to signal
rectification were seen in the SPECTRE reconstruction,
where, qualitatively, the noise floor artifacts were greatly
reduced.

Table 1 presents average SNR estimates in the b = 0
data for all reconstruction pipelines. SNR was lower in
all PEC-SENSE reconstructions compared with the corre-
sponding SENSE reconstructions. SNR was most improved
by the SPECTRE pipeline when phase correction was per-
formed, showing a 127% increase over the PEC-SENSE
data.

Noise amplification in the PEC-SENSE, PEC-SENSEm,
and PEC-SENSEc reconstructions severely impacted the
accuracy of MD estimates (Figure 2B and Table 1): MD
was underestimated by 23%, 22%, and 19% respectively,
with regions coinciding with the noise floor artifacts in
high b-value data most affected. MD estimates in SPEC-
TRE were within 8% of the ground truth value. The
precision of MD estimates (Table 1) related to the com-
plexity of the denoising strategy: the CoV was high-
est without denoising, improved (reduced) with mag-
nitude and complex denoising of reconstructed data,
and was lowest with denoising of complex channel
data.

3.2 Evaluation in volunteer data

Figure 3 shows image reconstructions and parame-
ter maps for a representative subject. Nyquist ghost-
ing was evident in the standard SENSE reconstructions
(Figure 3A) and translated into notable errors in the
parameter maps (Figure 3B). Ghosting was visibly reduced
by the phase error correction in PEC-SENSE-based
reconstructions, but significant g-noise amplification was
observed at higher b-values without complex channel
denoising (Figure 3A). Qualitatively, noise levels in the
high b-value SPECTRE data were reduced in line with
the standard SENSE reconstruction. The SNR at b = 0 is
given in Table 1. The greatest SNR gain was observed
in the SPECTRE reconstructions (70% increase over the
standard PEC-SENSE data), while gains of 56% and 30%
were recorded in the PEC-SENSEc and PEC-SENSEm data
respectively.

The precision of each pipeline is indicated by
voxel-wise maps of the NRMSE between the data and DKI
model fit in Figure 3C; mean values in white matter over
all subjects are given in Table 1. Comparable precision
(NRMSE ∼ 6%) was observed in the PEC-SENSEc and
SPECTRE data.

Boxplots in Figure 4 compare the distribution of
parameter estimates in each subject between the pipelines;
the data are tabulated in the Supporting Information
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T A B L E 1 Quantitative values in phantom and in vivo data

Phantom In vivo

SNR MD mean (SD) (×10−3 mm2/s) MD CoV (%) SNR NRMSE (%)

SENSE 11.5 1.85 (0.16) 8.5 25.6 8.1

SENSEm 13.5 1.86 (0.15) 7.8 32.4 6.0

SENSEc 16.9 1.84 (0.13) 7.2 36.3 5.2

SENSEch 26.6 1.92 (0.07) 3.8 43.6 5.3

PEC-SENSE 9.0 1.54 (0.31) 19.9 21.4 9.8

PEC-SENSEm 12.6 1.57 (0.28) 18.1 27.8 7.1

PEC-SENSEc 15.7 1.62 (0.25) 15.8 33.4 6.1

SPECTRE 20.4 1.85 (0.12) 6.4 36.4 6.3

DW-SE (reference) - 2.00 (0.10) 5.0 - -

Note: For the phantom data (left), the SNR, MD mean and standard deviation across the phantom, and MD CoV are shown, along with the ground truth MD
measured in the reference DW-SE. For the in vivo data (right), the SNR and NRMSE in white matter averaged over all subjects is shown.

(A)

(B)

(C)

F I G U R E 3 In vivo data. (A) Reconstructed data from a representative subject for each pipeline at b = 0 and b = 3000 s/mm2. Yellow
boxes and arrows highlight areas of ghost artifacts in the SENSE data, which are qualitatively well corrected in the PEC-SENSE data. Blue
boxes and arrows highlight the progressive reduction in noise amplification in the PEC-SENSE data by the denoising strategies from left
(PEC-SENSE) to right (SPECTRE). (B) Parameter maps showing FA, MD (×10−3 mm2/s), and MK in each pipeline. Yellow boxes again
highlight the translation of ghost artifacts into parameter maps derived from SENSE reconstructions, which are less apparent in parameter
maps derived from PEC-SENSE reconstructions. (C) NRMSE (%) between the data and DKI model fit
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F I G U R E 4 Parameter distributions in vivo for each pipeline. Values in white matter for FA, MD (×10−3 mm2/s), and MK are shown
averaged across subjects (left) and for each subject individually (right). Brackets indicate significant differences in parameter distributions
between reconstructions (P < 0.05)

(Tables S1 – S3 ). No significant differences in fractional
anisotropy (FA) were found between the phase-corrected
and standard SENSE reconstructions with equivalent
denoising strategies; however, FA was significantly lower
(14.5% on average) in the reconstructions denoised
prior to image formation (i.e., SENSEch and SPEC-
TRE pipelines) compared with the data denoised after
image formation or not denoised at all (i.e., all other
reconstructions). Mean kurtosis (MK) tended toward
higher values in the phase-corrected data compared with
the equivalently-denoised data without phase correc-
tion; however, significant differences were only detected
between the PEC-SENSE-based reconstructions without

complex channel denoising and the SENSEch and SPEC-
TRE reconstructions.

4 DISCUSSION

Nyquist ghost correction is important in order to minimize
biases in quantitative parameter maps; however, it was
shown here that phase error corrections based on parallel
imaging may not translate well to DW data due to noise
amplification that disproportionately affects high b-value
images. This study demonstrates that, by denoising raw
channel data obtained from coil elements prior to image
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formation, PEC-SENSE ghost correction can be applied in
high b-value data without incurring major biases in the
accuracy and precision of parameter estimates. Denois-
ing complex channel data has previously been proposed
to achieve higher resolution in DWI;27 here we combine
the lower noise floor and SNR gains of this denoising strat-
egy to mitigate g-noise amplification concomitant with the
phase error correction in PEC-SENSE.

The Rician noise floor is a common limiting factor
in acquiring high b-value magnitude DWI, as the sig-
nal can often fall below the noise floor. Image recon-
struction using PEC-SENSE compounds the issue owing
to g-noise amplification associated with the phase error
correction. Although techniques for Rician bias correc-
tion have been proposed,25 they may only offer moderate
benefits. In this context, complex denoising would seem
advisable. The phantom data in this study demonstrated
the benefits of complex denoising, particularly when per-
formed on raw channel data before image formation with
phase error correction. Qualitatively, the Rician bias evi-
dent in the phase-corrected high b-value data was removed
by the SPECTRE pipeline (Figure 2A), while quantita-
tively the accuracy and precision of MD estimates were
improved (Figure 2B). SNR was also improved (Table 1).
The improved performance of the SPECTRE pipeline com-
pared with the alternative PEC-SENSE-based methods
may be attributed to two primary factors: (i) denoising raw
channel data avoided the introduction of spurious signifi-
cant components into the MPPCA denoising— arising, for
example, from spatial correlations propagated by the coil
sensitivity maps into the phase error correction map and
subsequent reconstructions—that may degrade the perfor-
mance of the algorithm; and (ii) reducing noise levels prior
to image formation subsequently limited noise propaga-
tion during reconstruction, therefore lowering the noise
floor and minimum measurable signal.

In volunteer data, the impact of complex chan-
nel denoising was most evident in the estimation of
FA, where a significant decrease compared with all
other phase-corrected pipelines was observed. There is
a well-documented dependency of FA estimation on
SNR,26,39 attributed at moderate b-values (i.e., when noise
floor effects are not dominant) to eigenvalue repulsion;
as MD estimates were constant across the pipelines
(Figure 4), it can be assumed that signal variance was the
dominant factor as opposed to noise floor effects in this
work also. It has been shown that, at b = 1000 s/mm2,
FA is overestimated at low SNR and converges to the
true value as SNR increases.26 This effect may explain our
results, where increased SNR values and lower (poten-
tially more accurate) FA estimates were observed in the
SPECTRE pipeline. The result was also replicated in the
SENSEch data. However, as the SNR gains at b = 0 of

SPECTRE over PEC-SENSEc were small (under 10%;
Table 1), it could be the noise statistics in the higher
b-value data that were driving this result. For example,
noise removal in the higher b-value data may be signifi-
cantly more effective when using MPPCA on raw channel
data than on data after image formation. As SNR estimates
were not possible for the high b-value data in this study
owing to a lack of multiple replicas, this warrants future
exploration.

The SPECTRE pipeline also qualitatively reduced the
noise floor effects observed in estimates of MK. Highly
attenuated signals at b = 3000 s/mm2 are more suscepti-
ble to the noise floor effects, which cause an overesti-
mation of MK values,40,41 a trend that was observed in
the higher MK estimates of PEC-SENSE, PEC-SENSEm
PEC-SENSEc pipelines compared to SENSE, SENSEm and
SENSEc respectively. Qualitatively, MK estimates were
only marginally increased in SPECTRE compared with
SENSEch, suggesting that the noise floor amplification
from the 2D phase error correction was largely mitigated
by complex channel denoising prior to image formation.

The primary benefit of SPECTRE over SENSEch was
the correction of the Nyquist ghost artifact. Although ghost
artifacts were only minimally apparent in the image data,
more significant artifacts were observed in the MD and
MK parameter maps in data without phase error correc-
tion (Figure 3) due to the inherent averaging effect of the
model-fitting procedure.

Improved noise reduction may be possible in the
SPECTRE pipeline by removing physiological fluc-
tuations. To avoid the risk of interfering with the
sensitivity-encoding phase, physiological phase correction
was not performed on the raw channel data in this work;
however, data complexity would be reduced by remov-
ing physiologically-induced phase, and approaches for
this should be explored in future work. The lack of phys-
iological fluctuations in phantom data may explain the
comparatively superior SNR performance of SPECTRE
over PEC-SENSEc in the phantom data compared with
the volunteer data (Table 1).

A key limitation of this study is the lack of ground truth
data in vivo. While phantom experiments confirmed that
SPECTRE reduced biases in MD estimates (both higher
accuracy and precision were achieved), the accuracy of
the pipeline in human volunteers could not be character-
ized quantitatively. Future work could consider creating
a silver-standard reference using a high SNR group-wise
average data set; however, requirements for robust
Nyquist phase error correction make obtaining these data
challenging.

It is noted here that the use of the vendor’s 1D phase
correction is not a requirement in the SPECTRE pipeline,
but was used in this study to highlight the necessity
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of higher-order phase corrections based on the residual
ghosting following 1D phase correction. Simplifying the
pipeline and removing this step from the preprocessing
may further improve results in future work.

The improvement in image quality obtained using the
SPECTRE pipeline has been shown here to limit biases in
parameter maps derived from complex, higher-order dif-
fusion models such as DKI, which rely on high b-value
(low SNR) data; however, the method is not limited to
DWI applications, and would benefit other applications
with redundant data that utilize an EPI readout, such as
functional MRI, arterial spin labeling, or more advanced
quantitative protocols for relaxometry and magnetization
transfer imaging.

5 CONCLUSIONS

SPECTRE, a new method for Nyquist phase error correc-
tion that combines MPPCA denoising of complex-valued
channel data with PEC-SENSE image formation, is shown
to be feasible and robust to g-noise amplification in high
b-value, low SNR data.
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