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Abstract: Cardiovascular diseases (CVD) are one of the leading causes of death in the developed
countries. Previous studies suggest that retina blood vessels provide relevant information on cardio-
vascular risk. Retina fundus imaging (RFI) is a cheap medical imaging test that is already regularly
performed in diabetic population as screening of diabetic retinopathy (DR). Since diabetes is a ma-
jor cause of CVD, we wanted to explore the use Deep Learning architectures on RFI as a tool for
predicting CV risk in this population. Particularly, we use the coronary artery calcium (CAC) score
as a marker, and train a convolutional neural network (CNN) to predict whether it surpasses a
certain threshold defined by experts. The preliminary experiments on a reduced set of clinically
verified patients show promising accuracies. In addition, we observed that elementary clinical data
is positively correlated with the risk of suffering from a CV disease. We found that the results from
both informational cues are complementary, and we propose two applications that can benefit from
the combination of image analysis and clinical data.

Keywords: retina fundus imaging; deep learning; medical imaging; convolutional neural networks

1. Introduction

According to the World Health Organisation, ischaemic heart disease and stroke are
nowadays leading causes of death globally [1]. Cardiovascular disease (CVD) progression
is dramatically increasing every year and thus many efforts to improve risk predictors
are needed. The assessment of cardiovascular risk can be done from a wide variety of
information and parameters derived from patients’ history such as individual age, gender,
smoking status, blood pressure, body mass index (BMI), or metabolic parameters (i.e.,
glucose and cholesterol levels) [2]. However, this information is not always updated,
centralized or available.

Coronary artery calcium (CAC) is a clinically validated strong marker of a CVD [3].
CAC scoring has proved to be a consistent and reproducible method of assessing risk for
major cardiovascular outcomes, especially useful in asymptomatic people for planning
primary prevention [4]. Nevertheless, CAC score obtention needs the use of CT scans,
which are expensive and involve radiation risks.

Retinal Fundus Imaging (RFI) provides relevant information about the vascular system
of the eye. There is previous evidence that RFI can be a predictor of CVD [5–9], kidney
chronic disease [10] or dementia [11]. Preceding research have shown that capillary vascular
and foveal area are the most prevalent regions in predicting the CAC scoring from RFI [12].
In addition, RFI is usually acquired on a regular basis from patients that suffer type 2
diabetes, being CVD one of the most common morbidity [13].
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Deep Learning (DL) algorithms have obtained significant improvements in almost
all the applications of computer vision [14,15], including medical imaging applications.
Particularly, automated retina image classification outperformed human accuracy in di-
abetic retinopathy diagnosis [16]. This paper proposes to apply DL, more concretely a
convolutional neural network (CNN), to the prediction of CAC score from RFI. Using
data gathered in a previous project [13] we conjecture that a CNN can predict whether a
patient may be diagnosed with a CAC score greater than 400, i.e., the threshold defined
by cardiologists to indicate a very high risk of CVD disease. In addition, we explore the
use of two clinical variables, age and presence of diabetic retinopathy, which previous
studies suggest that are highly correlated with CAC > 400 [13]. The experiments show
that both informational cues are complementary, and when properly combined, they can
significantly increase the precision or recall of the prediction. We validate the proposal in
two different applications, clinical diagnosis and large-scale retrieval. The results show that
RFI can be used for CVD risk prediction with low-cost image acquisition, which may have
a significant impact in the strategies for selecting those patients in whom the screening of
CVD should be prioritized.

2. Materials and Methods

We used two state-of-the art CNN architectures, VGG [17] (16 and 19 layers deep ver-
sions) and ResNet [18] to learn a model of the retina images from patients with CAC > 400
and CAC < 400. We consider it as a binary (two class) classification problem. We used a
5-fold crossvalidation approach to validate the neural networks, and we picked the best
performing one for the rest of the experiments in the paper. We split retina images into left
and right eye data sets, and tested them independently. Table 1 summarizes the results.
VGG16 mean accuracies outperform in both cases ResNet, although differences are not
statistically significant. Given their equivalence, we used VGG16 as the image classifier for
the rest of the paper. Table 2 described the main components of the VGG16 architecture,
which is composed of 13 convolutional and 3 fully-connected layers.

Table 1. Comparison of prediction accuracy between DL architectures.

CNN Architecture VGG16 VGG19 ResNet

Mean 0.68 0.67 0.64

StdDev 0.045 0.088 0.12

CI (95%) (0.64, 0.72) (0.59, 0.75) (0.53, 0.75)

2.1. Transfer Learning

The amount of labelled data is scarce, which poses significant difficulties in training a
large neural network (130 M parameters). One of the most common approaches to cope
with small sample size problems is the use of transfer learning [19]. The CNN is first trained
on a large data set of images (ImageNet [14] in our particular study), and then the model
parameters are fine-tuned according to the retina image training set. We removed the last
fully-connected layer from VGG16 (FC-1000, adjusted to the ImageNet dataset), adding
a two neuron layer (FC-2) to distinguish only two classes: patients labelled CAC > 400
and CAC < 400. These layer parameters where randomly initialized and fined tuned
inside the learning process. The model was trained for 60 epochs, batch size of 8, using
learning rate 0.0001 and weight decay 4 × 10−2. Cross-entropy loss and stochastic gradient
descent were used for loss function and optimizer respectively. The use of pretrained
filters significantly improves the accuracies, being the first CNN layers local filters for
detecting specific image compounds, and the top (classification layers) of the network high
level representations of the decision boundary. All the experiments were performed using
PyTorch [20] Python library.
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Table 2. VGG 16-layer model architecture (configuration“D”) [17].

CNN Configuration
Input 224 × 224 RGB Image
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2.2. Clinical Data Classification

We trained classical machine learning classifiers on the clinical data available, to anal-
yse their prediction capabilities and their complementarity with image based classification.
We used the out-of-the-box implementation from Python scikit-learn package of the clas-
sifiers: Logistic Regression, K Nearest Neighbours [21], Support Vector Machines [22],
Gaussian Process, Decision Tree [23], Random Forest [24], Ada Boost [25], Quadratic Classi-
fier and Naive Bayes.

2.3. RFI Dataset Description

We used a RFI dataset from N = 76 patients, i.e., 152 retinal images (left/right
eye), 66 of them labelled as CAC > 400 (positive samples) and 86 labelled as CAC < 400
(negative samples). These images were selected from the PRECISED study (ClinicalTrial.
gov NCT02248311). In this study, age between 46 to 76 years was an inclusion criteria.
It should be noted that the incidence of cardiovascular events before 45 years is very
low and, therefore, a screening strategy at younger ages are not cost-effective. Images
have 3 channels (RGB). Image dimensions vary from 2576 × 1934 × 3, 2032 × 1934 × 3 to
1960 × 1934 × 3 (width, height and color channels). Figure 1 depicts 2 examples of each eye
(one with CAC < 400 and one with CAC > 400) extracted from the database.

(a) CAC < 400. Right eye example. (b) CAC < 400. Left eye example.

(c) CAC > 400. Right eye example. (d) CAC > 400. Left eye example.

Figure 1. RFI dataset samples (2576 × 1934 × 3).
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Prior to the training and inference, we perform the following preprocessing pro-
cedure: first, images are color-normalized following the guidelines of the PyTorch li-
brary for transfer learning of ImageNet-based learned models. We substract the pre-
computed mean = [0.485, 0.456, 0.406] and divide each pixel by the standard deviation
std = [0.229, 0.224, 0.225] used on the ImageNet pretraining (See for more details: https:
//pytorch.org/vision/stable/models.html, accessed on 18 January 2022) Therefore, RFI
images are loaded to a range of [0, 1] and normalized in that way. Second, all images are
rescaled to a 224 × 224 standardized size to fit in the CNN input model. We do not apply
postprocessing step to the CNN output, and we just select as the most suitable class the
one that has maximum output on the last fully connected layer.

2.4. Metrics

To quantify the model performance, we report the following statistical measures of
the model predictions:

• Accuracy: The global percentage of correct predictions.
• Precision: The average of the retrieved items that were relevant, defined as TP/(TP + FP).

TP stands for true positives, and FP stands for false positives.
• Recall: The number of relevant items retrieved TP/(TP + FN), where FN stands for

false negatives.
• F1-measure: The harmonic mean of the precision and recall, defined as 2× (precision×

recall/(precision + recall)).

• Confusion Matrix: Illustrates the distribution performance ordered as:
(

TN FP
FN TP

)
3. Results
3.1. Automated Positive CAC Score Prediction Using DL

In this section, we report the results of applying the DL model over fundus images to
automatically predict patients presenting a CAC score > 400 and thus a potential cardiovas-
cular risk. The included subjects were enrolled in the PRECISED study (ClinicalTrial. gov
NCT02248311). The study was conducted according to the declaration of Helsinki and was
approved by the local ethics committee. All subjects provided written informed consent
before study entry.

We performed a 5-Fold stratified Cross Validation, where the image set is split in
5 folds, being 4 folds used for training and 1 for testing. The process is repeated 5 times
until each sample has appeared in test once. We report the mean accuracy along the 5 trials
and the 95% confidence intervals. We used VGG16 as the DL architecture (see Section 2).
Training time was 141 s using NVidia GPU 12 Gb 2080Ti 12 Gb and inference time 0.85 s on
the same hardware.

Results suggest that even with a small sample size effect, the VGG16 can model better
than change both classes (see Table 3). Notice that the model does not perform equally
using images from each eye. Although differences are not statistically significant, the retinas
differ from the left to the right eye.

Table 3. Accuracy, Precision, Recall and F1-measure and confusion matrix

(
TN FP
FN TP

)
using fundus

image and DL.

Model Accuracy Precision Recall F1 Conf Mat

RFI (Left Eye) 0.67 0.48 0.67 0.56 35 8
17 16

RFI (Right Eye) 0.72 0.52 0.77 0.62 38 5
16 17

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
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3.2. Classification Complementarity: Combination of Clinical and RFI Data

We evaluated the use of clinical data using the classifiers defined in Section 2.2 on the
same patients dataset, and following a 5-Fold Cross Validation approach. Table 4 depicts
the results for the variables age (ranging from 45 to 76 years old, mean = 65.75) and previous
diagnosis of diabetic retinopathy. We also used the combination (concatenation) of both.
Results show significantly better than chance accuracies in predicting the CAC > 400 label,
especially when the combination of variables is used.

Table 4. Accuracy of classifiers depending on classification variables used.

Classifier Age DR Age + DR

Logistic Regression 0.60 0.70 0.70
KNN 0.56 0.44 0.61
SVM 0.54 0.70 0.69

Gaussian Process 0.54 0.70 0.70
Decision tree 0.62 0.70 0.65

Random Forest 0.57 0.70 0.64
AdaBoost 0.57 0.70 0.70

Quadratic Classifier 0.55 0.70 0.70
Naive Bayes 0.55 0.70 0.70

We further explored the predicted labels for both the image and the clinical data
classifiers, and we found that individual predictions differ considerably between modalities.
This suggest that an ensemble of both informational cues could take benefit from the
complementarity in the predictions. Particularly, we propose two settings that target two
specific applications:

• Clinical Diagnosis: we follow a conservative prediction protocol that combines both
modalities to reduce the False Negative ratio, i.e., the likelihood of having positive
patients diagnosed as negative. This application is conceived for healthcare systems
where resources availability is not constrained. After analyzing the retinography,
this procedure may suggest further clinical tests (heart scan) for uncertain CAC
positive predictions even though the patient probability of having CAC < 400 is
still considerable.

• Large Scale Retrieval: where we give priority to improve the precision of the ensemble.
The goal in this case is to build and application that may search in large databases,
and may send to screen the patients with CAC > 400. As the resources are limited,
only the patients with high certainty of having CAC > 400 should be further screened.
Contrary to the first application, it is designed for efficient resource management and
prioritize patients that urgently need further clinical screening.

3.2.1. Application: Clinical Diagnosis

In this application, the ensemble is constructed by first running the model on the
clinical data, and then for all the samples that resulted in a CAC < 400 classification run
the image DL model. We only report CAC < 400 if in both cases the result was negative.

This setting, shown in Figure 2, allows the health system to minimize the number
of False Negatives (people that urgently needs a treatment but would not be spotted just
using one of the methods). Table 5 shows the results. The first row shows the accuracy,
recall, precision, F1 measure and confusion matrix for the VGG16 based image prediction
(CNN). For each classifier tested on clinical data, we provide its results, and the results
using the combination of both the image and clinical classifiers.

There is a consistent trend in the results that show significant improvements in the
F1-measure, in all cases. The number of false negatives is reduced about 50%, being the
most critical case to be addressed with this setting (patients with CAC > 400 predicted as
negative). Besides, we also have increased considerably the true positives (and consequently
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the recall) by using the image prediction, detecting more patients with CAC > 400. This
improvement comes at the cost of increasing the number of false positives (FP). This
scenario is less problematic (in terms of health prediction system) since FP are patients
diagnosed positive that in fact are CAC < 400, thus not being in danger.

Table 5. Accuracy, Precision, Recall and F1-measure and confusion matrix

(
TN FP
FN TP

)
for the clinical

diagnosis application.

Classifier Accuracy Recall Precision F1 Conf Mat

CNN (RFI) 0.72 0.52 0.77 0.62 38 5
16 17

Logistic Regression 0.68 0.52 0.68 0.59 35 8
16 17

Protocol 0.74 0.76 0.68 0.71 31 12
8 25

KNN 0.61 0.55 0.55 0.55 28 15
15 18

Protocol 0.64 0.76 0.57 0.65 24 19
8 25

SVM 0.70 0.45 0.75 0.57 38 5
18 15

Protocol 0.78 0.76 0.74 0.75 34 9
8 25

Gaussian Process 0.71 0.48 0.76 0.59 38 5
17 16

Protocol 0.78 0.76 0.74 0.75 34 9
8 25

Decision Tree 0.67 0.58 0.63 0.60 32 11
14 19

Protocol 0.71 0.79 0.63 0.70 28 15
7 26

Random Forest 0.59 0.42 0.54 0.47 31 12
19 14

Protocol 0.66 0.73 0.59 0.65 26 17
9 24

Ada Boost 0.68 0.58 0.66 0.61 33 10
14 19

Protocol 0.72 0.79 0.65 0.71 29 14
7 26

Quadratic Classifier 0.70 0.45 0.75 0.57 38 5
18 15

Protocol 0.78 0.76 0.74 0.75 34 9
8 25

Naive Bayes 0.70 0.45 0.75 0.57 38 5
18 15

Protocol 0.78 0.76 0.74 0.75 34 9
8 25
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Figure 2. Description of the protocol used in the clinical diagnosis application.

3.2.2. Application: Large Scale Retrieval

In this case, for all the positive samples resulting on the clinical model, we run the
VGG16 classifier approach to double check if it is CAC > 400. The ensemble only reports
a positive case if in both models the samples result in a positive detection. The model
minimizes the number of false positives (saving resources by avoiding the screening of
patients that could be diagnosed CAC > 400). This protocol is depicted in Figure 3.

This protocol may find utility in large scale database retrieval, typically hundreds of
thousands of patients. In this cases it will not be possible to test with CT scan all the positive
patients, and the priority should be to devote the resources to the most certain ones. As can
be seen in Table 6, the experiments show a consistent reduction on the FP ratio (up to 90%),
and a large improvement of the precision (91%), which shows that when the ensemble
predicts a patient with CAC > 400, there is a 90% of chance of being correct. Notice
that, globally, this restrictive setting underperforms the individual classifiers, as there is a
significant increase in the false negative ratio (positive patients that where discarded).

Figure 3. Description of the protocol used in the large scale retrieval application.

Table 6. Accuracy, Precision, Recall and F1-measure and confusion matrix

(
TN FP
FN TP

)
for the large

scale retrieval application.

Classifier Accuracy Recall Precision F1 Conf Mat

CNN (RFI) 0.72 0.52 0.77 0.62
38 5
16 17

Logistic Regression 0.68 0.52 0.68 0.59
35 8
16 17

Protocol 0.67 0.27 0.90 0.42
42 1
24 9
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Table 6. Cont.

Classifier Accuracy Recall Precision F1 Conf Mat

KNN 0.61 0.55 0.55 0.55
28 15
15 18

Protocol 0.68 0.30 0.91 0.45
42 1
23 10

SVM 0.70 0.45 0.75 0.57
38 5
18 15

Protocol 0.64 0.21 0.88 0.34
42 1
26 7

Gaussian Process 0.71 0.48 0.76 0.59
38 5
17 16

Protocol 0.66 0.24 0.89 0.38
42 1
25 8

Decision Tree 0.67 0.58 0.63 0.60
32 11
14 19

Protocol 0.68 0.30 0.91 0.45
42 1
23 10

Random Forest 0.62 0.48 0.57 0.52
31 12
17 16

Protocol 0.67 0.24 1.00 0.39
43 0
25 8

Ada Boost 0.68 0.58 0.66 0.61
33 10
14 19

Protocol 0.68 0.30 0.91 0.45
42 1
23 10

Quadratic Classifier 0.70 0.45 0.75 0.57
38 5
18 15

Protocol 0.64 0.21 0.88 0.34
42 1
26 7

Naive Bayes 0.70 0.45 0.75 0.57
38 5
18 15

Protocol 0.64 0.21 0.88 0.34
42 1
26 7

4. Discussion

Recent research [8] suggests that a Deep CNN (EfficientNet) provides promising
accuracies when applied to RFI in predicting CV risk. The study was performed on a
large scale cohort of Asian patients, mostly non-diabetic, obtaining scant correlation (0.47)
between the RetiCAC CNN score and the CAC assessed by CT scan. In the present pilot
study we have focused on type 2 diabetic population, thus using a more homogeneous
dataset for making the training. For this reason and due to the use of VGG and ResNet DL
architectures the accuracy has been significantly improved.

Results using methods over both clinical and image data show acceptable accuracies
in the assessment of a high CAC score. Yet, the two established protocols showed com-
plementary capacities in comparison to independently use both modalities. Experimental
studies suggest that it is possible to tailor a specific ensemble to the particular needs of
the application, improving either the precision or the recall, although there is a trade off
between both performance indicators.

The protocol shows that an application defined specifically for clinical diagnosis,
guarantees missing only few patients with CAC > 400, reducing considerably the false
negatives and maximizing the recall (75% aprox.). However, this procedure has a signifi-
cant number of false positives which will impact on resource costs but not in individual
diagnosis capabilities.
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A second application is conceived for image retrieval of large databases where re-
sources for further cardiological testing are scarce. The ensemble may maximize the
precision by reducing the number of false positives, but the application clearly worsens
predictions at individual level. Nevertheless, it may find utility when prioritization is
urgently needed, as is the case of low income countries.

5. Conclusions

This study provides significant evidences that deep learning methods could be used
for evaluating cardiovascular risk by using CAC as unique biomarker. Preliminary re-
sults show promising accuracies on a small sample sized database by using classical DL
architectures. On the other hand, our findings show that there are clinical variables which
also correlate positively with CAC > 400. A very simple preliminary study shows above
chance accuracies, and more important, complementarity with the results obtained by
image analysis. Based on that, we build two applications that optimize a precision or a
recall criteria for a specific application.

This is a preliminary work that proves that there exists discriminative information in
the retinal images. Further research challenges are: data acquisition and model improve-
ments. Results can be significantly improved gathering more clinical data (increasing the
number of relevant variables) or the number of images (more patients). In addition, more
efforts can be put in the specialization of the DL architecture, taking advantage of higher
detailed information in the retinal images (thickness, dimension, tortuosity of the vessels,
etc.) or increasing the model capacity with current developments in self-supervision (to
mitigate the small sample size problem) and curriculum learning (training the machine
learning models in a meaningful order [26]).
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TN True Negative
TP True Positive
RFI Retinal Fundus Imaging
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