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Abstract 
Despite the strong prognostic stratification of circulating tumor cells (CTCs) enumeration in metastatic breast cancer (MBC), current clinical 
trials usually do not include a baseline CTCs in their design. This study aimed to generate a classifier for CTCs prognostic simulation in ex-
isting datasets for hypothesis generation in patients with MBC. A K-nearest neighbor machine learning algorithm was trained on a pooled 
dataset comprising 2436 individual MBC patients from the European Pooled Analysis Consortium and the MD Anderson Cancer Center to 
identify patients likely to have CTCs ≥ 5/7 mL blood (StageIVaggressive vs StageIVindolent). The model had a 65.1% accuracy and its prognostic 
impact resulted in a hazard ratio (HR) of 1.89 (Simulatedaggressive vs Simulatedindolent P < .001), similar to patients with actual CTCs enumeration 
(HR 2.76; P < .001). The classifier’s performance was then tested on an independent retrospective database comprising 446 consecutive 
hormone receptor (HR)-positive HER2-negative MBC patients. The model further stratified clinical subgroups usually considered prognostic-
ally homogeneous such as patients with bone-only or liver metastases. Bone-only disease classified as Simulatedaggressive had a significantly 
worse overall survival (OS; P < .0001), while patients with liver metastases classified as Simulatedindolent had a significantly better prognosis 
(P < .0001). Consistent results were observed for patients who had undergone CTCs enumeration in the pooled population. The differential 
prognostic impact of endocrine- (ET) and chemotherapy (CT) was explored across the simulated subgroups. No significant differences were 
observed between ET and CT in the overall population, both in terms of progression-free survival (PFS) and OS. In contrast, a statistically 
significant difference, favoring CT over ET was observed among Simulatedaggressive patients (HR: 0.62; P = .030 and HR: 0.60; P = .037, re-
spectively, for PFS and OS).
Key words: clinical trial model; machine learning; liquid biopsy; biomarker; K-nearest neighbor.

Implications for Practice
Circulating tumor cells (CTC)-based risk stratification may have a role for future treatment strategies, as it enables the selection of 
subgroups with differential response potential. Machine learning can simulate CTCs-based staging in scenarios of particular interest to 
identify subpopulations for hypothesis generation which may benefit from higher intensity treatments due to a more aggressive outcome 
and inform future clinical trials designs.

Background
Metastatic disease occurs in approximately 20%-50% of 
patients with early breast cancer (BC) and in 6%-10% 
of newly diagnosed BC cases. Different disease subtypes 
account, at least partially, for the variability in overall sur-
vival (OS) which can range from months to several years.1,2 
As increasing knowledge is generated regarding new thera-
peutic agents, it is important to identify new predictive factors 
that help treatment selection. To date, the most established 
predictive markers in metastatic breast cancer (MBC) are 
the expression of HR and HER2. Patients with HR-positive/
HER2-negative MBC often respond to endocrine therapy 
(ET) alone or in combination with targeted agents with gener-
ally fewer side effects and toxicities than chemotherapy (CT). 
ET-based therapies in combination with CDK4/6 inhibitors 
are therefore the preferred treatment approach in most cases 
of HR-positive MBC, reserving CT for patients with exten-
sive symptomatic visceral disease and/or defined endocrine 
resistance. To date, there are no predictive biomarkers driving 
treatment choice regarding targeted therapies such as inhibi-
tors of cyclin-dependent kinase (CDK) 4/6.

While circulating tumor cells (CTCs) are recognized 
as an independent prognostic marker for OS, their role in 
supporting clinical management of MBC is still not well 
defined.3-5 A previous effort to prospectively evaluate the 
clinical utility of CTCs enumeration in MBC was performed 
in the SWOG 0500 trial. In this study, clinicians were guided 
to maintain or switch chemotherapy regimen based on an 
early CTCs evaluation after 21 days of therapy.6 Although 
the study showed no OS differences in patients with persist-
ently elevated CTCs that changed CT regimen, the prognostic 
potential of CTCs was further confirmed. The study’s sam-
pling timeframe, however, was not strictly biology driven, 
since CTCs dynamics is not just treatment-induced but also 
likely the result of tumor biology evolution.7 Moreover, the 
CT selection was driven by the clinician’s choice and not by 
biology-defined targets.

The strong prognostic stratification achieved by CTCs enu-
meration can have potential applications in identifying pa-
tients that will likely benefit from intensive treatments, while 
reserving less toxic treatments for those with an inherently 
indolent disease.8

Current clinical trials usually do not include a baseline 
CTCs enumeration in their design, primarily due its perceived 
costs and technical complexity, notwithstanding software so-
lutions that minimize inter-operator variability. Therefore, 

Table 1. Patients’ characteristics across the CTCs enumeration 
subgroups.

Variable Stage IVindolent Stage IVaggressive P-value 

ER .001

Negative 372 (3.22%) 244 (23.99%)

Positive 859 (69.78%) 773 (76.01%)

PR .076

Negative 553 (44.92%) 419 (41.20%)

Positive 678 (55.08%) 598 (58.80%)

HER2 <.001

Negative 896 (72.79%) 808 (79.45%)

Positive 335 (27.21%) 209 (20.55%)

Bone involvement <.001

No 557 (45.25%) 222 (21.83%)

Yes 674 (54.75%) 795 (78.17%)

Liver involvement <.001

No 818 (66.45%) 502 (49.36%)

Yes 413 (33.55%) 515 (50.64%)

The Stage IVindolent and Stage IVaggressive subgroups are characterized by 
significantly different characteristics both in terms of tumor biology and 
clinical behavior. 
Abbreviations: ER, estrogen receptor; PR, progesterone receptor.
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there is an unmet need to evaluate biomarker-assisted 
decisional algorithms.9

The aim of this study was to generate a classifier to simu-
late the prognostic stratification of CTCs in existing datasets 
for hypothesis generation in precise MBC scenarios. This clas-
sifier has the potential to inform and potentially drive future 
clinical trials design.

Methods
Study Population and Ethical approval
The model was trained on a pooled dataset based on data from 
2436 individual MBC patients from 17 European Centers 
participating in the European Pooled Analysis Consortium 
(EPAC) and the MD Anderson Cancer Center (MDACC).5 
The database characteristics were previously published.4

The anonymized data were transferred to the Robert H. 
Lurie Comprehensive Cancer Center-Bioinformatics Core 
Facility. A retrospective Institutional Review Board-approved 
protocol was used to access and analyze the data. CTCs enu-
meration was performed through the CellSearch platform 
(Menarini Silicon Biosystems, PA) and the patients were clas-
sified accordingly based on a 5 CTCs per 7.5 mL cut off in 
Stage IVaggressive (5 ≥ CTCs) and Stage IVindolent (5 < CTCs).3,4

Features Selection and Training of the Machine 
Learning Classifier
K-nearest neighbor (KNN) is a supervised machine learning 
algorithm that can be used to solve both classification and 
regression problems. After a training phase during which 
labeled data are analyzed, the model abstracts a function 
that can be used to infer an appropriate output when new 
unlabeled data are evaluated. The KNN algorithm classi-
fies objects based on their proximity in the feature space 
through a majority vote of its neighbors. The object is there-
fore assigned to the class that is most common among its 

KNN, where K is a positive integer that is typically small. If 
K = 1, then the object is assigned to the class of its nearest 
neighbor.

Baseline features linked to tumor biology were tested 
through Chi square test for association with respect to Stage 
IVaggressive and consistently selected based on both clinical and 
statistical significance (Table 1).

The model was then trained based on estrogen receptor 
(ER) status (positive vs negative, 1% threshold), pro-
gesterone receptor (PR) status (positive vs negative, 1% 
threshold), HER2 status (positive vs negative), treatment 
line (continuous variable), bone and liver involvement (yes 
vs no).

Patients with all the necessary features (2248) were then 
3:1 randomly assigned to a training set (1687) and a valid-
ation set (561) (Supplementary Fig. 1).

The model was built using R (The R foundation for 
Statistical Computing. version 3.3.1) and the “caret” 
package.10

CTCs Simulation on an Independent Database
The classifiers’ performance was tested on an independent 
retrospective database of 446 consecutive HR-positive 
HER2-negative MBC patients treated with first-line ET or 
CT at the University Hospitals of Naples and Udine, Italy, 
between 2004 and 2014. Patients’ characteristics were previ-
ously published.11 This study was previously approved by the 
Review Committees of each center. CTCs risk stratification 
was simulated through the “caret” package.10

Statistical Analysis
Categorical variables were reported as frequency distribution, 
whereas continuous variables were described through median 
and interquartile range (IQR).

Overall survival (OS) was defined as the time from base-
line CTCs enumeration to death from any cause or date of 
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Figure 1. Comparison between the CTC-based risk stratification (Stage IVindolent vs Stage IVaggressive) and the KNN simulation (Simulatedindolent vs 
Simulatedaggressive). The model was capable to simulate a comparable risk stratification with respect to CTCs enumeration both for StageIVindolent (CTCs vs 
Simulation HR 1.18, 95%CI 0.93-1.51, P = .177) and StageIVaggressive (CTCs vs Simulation HR 0.88, 95%CI 0.70-1.09, P = .242).
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last follow-up. Progression-free survival (PFS) was defined 
as the time from baseline CTCs enumeration to disease pro-
gression (according to RECIST criteria) or death from any 
cause or date of last follow-up. Censoring was applied to pa-
tients without an endpoint event at the last follow-up visit. 
Survival was represented by Kaplan-Meier estimator plot and 
analyzed by log-rank test and by uni- and multivariable Cox 
regression models.

Changes in the predictive power of the Cox regression 
models using the simulated CTCs enumeration were investi-
gated through Harrell’s c concordance statistics.

Differences in distribution of CTCs enumeration, ac-
cording to the simulated CTCs status across MBC subtypes, 
were tested through the Mann-Whitney U test.

Statistical analysis was conducted using StataCorp 2016 
Stata Statistical Software: Release 15.1 (College Station, TX, 
USA), and R (The R foundation for Statistical Computing. 
version 3.3.1).

Data Availability
The datasets supporting the conclusions of this article are 
available from the corresponding author on reasonable 
request.

Results
From the initial cohort of 2436 patients, 2248 (92.4%) had 
no missing data and were therefore eligible for the model 
training (Table 1).4 Consistent with previously reported data, 
CTCs enumeration was associated with specific baseline char-
acteristics. In particular, Stage IVaggressive patients were more 
likely to be ER positive (P = .001), HER2 negative (P < .001), 
and have bone or liver metastasis (P < .001).

CTCs Enumeration Can Be Simulated Through 
Machine Learning
Based on these premises, a KNN model was trained with 
a resulting 65.1% accuracy (95% CI [CI]: 61.0%-69.0%), 
72.6% sensitivity (95%CI: 68.95-76.33%) and a 55.9% spe-
cificity (95%CI: 51.8-60.0%) (Supplementary Table S1).

The proportion of correctly classified observations was 
higher in patients without detectable CTCs (78.3% classified 
as Simulated IVindolent) than in patients with CTCs enumer-
ation higher than the 75th percentile (21 CTCs; 62.6% clas-
sified as Simulatedaggressive).

In the validation cohort, the prognostic impact of the 
CTCs enumeration was hazard ratio (HR) 2.76 (95%CI 
2.18-3.49; P < .001) for Stage IVaggressive vs Stage IVindolent. 
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Figure 2. CTCs enumeration simulation across MBC subtypes. Patients classified as Simulatedaggressive (Agg) had a significantly higher CTCs enumeration 
with respect to Simulated IVindolent (Ind) in HR-positive MBC (A), HER2-positive MBC (B) and TNBC (C). Patients classified as Simulatedaggressive 
experienced a significantly worse prognosis (D).
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Consistently, the classifier resulted in a HR of 1.89 (95%CI 
1.50-2.38; P < .001) for Simulatedaggressive vs Simulated 
IVindolent (Fig. 1).

Patients classified as Simulatedaggressive had a significantly 
higher number of CTCs with respect to Simulated IVindolent 
(median CTCs 11.5, IQR: 1-44 vs 2, IQR 0-9; P = .0001, re-
spectively, for Simulatedaggressive and Simulated IVindolent).

CTCs Classifier and Breast Cancer Subtypes
The classifier’s performance was then tested in the overall 
population across different MBC subtypes.

Patients classified as Simulatedaggressive had a significantly 
higher CTCs enumeration with respect to Simulated IVindolent 
in HR-positive MBC (median CTCs 10, IQR: 1-60.5 and 1, 
IQR 0-11; P < .0001, respectively) (Fig. 2A), HER2-positive 

MBC (median CTCs 8, IQR: 1-32 and 1, IQR 0 – 6; P = 
.0091, respectively) (Fig. 2B) and TNBC (median CTCs 11, 
IQR: 2-52 and 2, IQR 0 – 16; P = .0403, respectively) (Fig. 
2C). Patients classified as Simulatedaggressive experienced a 
significantly worse prognosis (Fig. 2D, E), especially in the 
HR-positive subgroup (Fig. 2D).

CTC-Based Risk Stratification Can Be Simulated on 
an Independent Real-World Dataset
To test the consistency and applicability of the classifier in 
a real-world MBC cohort, a proof-of-concept analysis was 
performed on an independent database comprising 446 
HR-positive, HER2-negative MBC patients. Patients’ charac-
teristics were previously published. Three patients were ex-
cluded from the analysis due to missing PR status.11
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Figure 3. CTCs enumeration simulation of on an independent cohort comprising HR-positive, HER2-negative first-line MBC patients. The classifier was 
capable to stratify patients both in terms of OS (A) and PFS (B).
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Of the 443 eligible patients, 345 (77.9%) were classi-
fied as Simulated IVindolent and, among them, 126 (36.5%) 
received first-line CT, whereas 219 (63.5%) received ET 
without targeted companions (eg, PI3K inhibitors, CDK 
4/6 inhibitors (CDK4/6i)). On the other hand, 98 patients 
(22.2%) were classified as Simulatedaggressive and among them 
46 (46.9%) received first-line CT, while 48 (53.1%) received 
ET. Patients classified as Simulatedaggressive had a significantly 
worse outcome compared with the Simulated IVindolent sub-
group, in terms of OS (HR: 1.82; 95%CI 1.38-2.39; P < 
.001; median: 23.74 vs 41.06 months) (Fig. 3A) and a non-
significant numerical difference with respect to PFS (HR: 
1.24; 95%CI 0.98-1.59; P = .074, median: 8.91 vs 11.70 
months) (Fig. 3B).

The prognostic impact for OS was also investigated 
through multivariable analysis to test the independent role of 
the classifier on outcome. Simulatedaggressive retained its prog-
nostic significance in terms of OS (HR: 1.58; 95%CI 1.17-
2.15; P = .003; Table 2) and its addition increased the model’s 
overall concordance index (Harrell’s C = 0.6381 and 0.6581, 
respectively, before and after the addition of the classifier to 
the multivariable model).

The model was also able to further stratify clinical sub-
groups usually considered prognostically homogeneous. 
Similarly to what was observed with CTCs enumeration in 
the pooled population (Fig. 4A), patients with bone only 
metastases classified as Simulated IVaggressive had a signifi-
cantly worse prognosis with respect to the Simulated IVindolent 

counterpart (P < .0001) (Fig. 4C). Consistently, patients with 
liver metastases classified as Simulated IVindolent had a signifi-
cantly better prognosis than the Simulated IVaggressive counter-
part (P < .0001; Fig. 4D).

CTCs Classifier and Impact of Treatment Type
As a proof of principle, the differential prognostic impact of 
first-line ET and CT was explored across the Simulatedaggressive 
and Simulatedindolent subgroups. Consistently with previously 
published results, no significant differences were observed be-
tween ET and CT in the overall population, both in terms 
of PFS (HR: 1; 95%CI 0.81-1.23; P = .998) and OS (HR: 
HR: 0.92; 95%CI 0.72-1.18; P = .511) (Fig. 5A, D). Similar 
results were obtained in the Simulatedindolent subgroup (HR: 
1.13; 95%CI 0.89-1.44; P = .301 and HR: 0.95; 95%CI 
0.72-1.28; P = .759 respectively for PFS and OS) (Fig. 5B, 
E). On the other hand, a statistically significant difference, 
favoring CT over ET was observed among Simulatedaggressive 
patients (HR: 0.62; 95%CI 0.40 – 0.96; P = .030 and HR: 
0.60; 95%CI 0.37 – 0.97; P = .037, respectively, for PFS and 
OS; Fig. 5C, F).

Discussion
The present study explored the concept of simulating the 
CTC-based prognostication to investigate the impact of dif-
ferent therapeutic approaches in existing databases that are 
lacking for this characterization. A KNN supervised machine 

Table 2. Main prognostic factors in terms of OS both on uni and multivariable analysis

Variable Univariate Multivariate

HR 95% CI P-value HR 95% CI P-value 

BC subtype

Luminal A 1 1

Luminal B 1.57 1.16-2.12 0.003 1.46 1.06-2.00 .020

BMI

≤25 1

>25 1.15 0.87-1.53 0.327

CTCs simulation

Simulatedindolent 1 1

Simulatedaggressive 1.82 1.38-2.39 < 0.001 1.58 1.17-2.14 .003

Age at treatment start

<70 years 1

≥70 years 1.84 1.43-2.36 < 0.001 2.08 1.57-2.76 <.001

ET naïve

No 1 1

Yes 0.71 0.55-0.90 0.005 0.51 0.29-0.89 .017

CT naïve

No 1

Yes 0.81 0.63 -1.02 0.077

Stage IV onset

Relapsed 1 1

De novo 0.73 0.57 - 0.94 0.016 1.03 0.58-1.82 .931

ECOG PS

0-1 1 1

≥2 1.62 1.17-2.25 0.004 1.58 1.11-2.25 .011
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learning model was trained on a pooled dataset of 2436 MBC 
patient from EPAC and MDACC with a resulting 57.1% sen-
sitivity (95%CI: 50.8-63.3%), a 61.6% specificity (95%CI: 
55.9-67.0%) and a notably comparable risk stratification 
with respect to the real CTCs enumeration (StageIVindolent 
vs Simulatedindolent HR 1.18, 95%CI 0.93-1.51 P = .177; 
StageIVaggressive vs Simulatedaggressive HR 0.88, 95%CI 0.70-1.09, 
P = .242).

As a proof of concept, the classifier was applied to a real-
world cohort of 446 patients affected by HR-positive HER2-
negative MBC to investigate the differential prognostic 
impact of first-line ET and CT across the Simulatedaggressive and 
the Simulatedindolent subgroups in a clinically homogeneous 
population. The dataset was previously analyzed through 
a propensity score matching approach to explore the prog-
nostic impact of CT vs ET as first-line treatment showing 
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Figure 4. CTCs stratification and simulation among patients with bone-only (BO) disease (A, C) and liver (Liv) involvement (B, D). In the pooled 
population, patients with bone only metastases classified as StageIVaggressive had a significantly worse prognosis with respect to StageIVindolent (P < .0001) 
(A). Similar results were observed in the Simulated counterpart (P < .0001) (C). Consistently, patients with liver metastases classified as StageIVindolent 
had a significantly better prognosis than the StageIVaggressive counterpart (P < .0001) (B) Similar results were observed in Simulatedindolent patients with 
liver metastases (P < .0001) (D).
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no significant differences.11 As expected, Simulatedaggressive 
patients experienced a worse outcome both in terms of PFS 
and OS (Fig. 3), the latter confirmed also in multivariable 
analysis. Intriguingly, a differential prognostic impact of ET 
and CT was observed within the 2 simulated cohorts. In the 
Simulatedindolent subgroup, no difference in outcome was ob-
served when patients were treated with ET or CT. In contrast, 
the Simulatedaggressive subgroup had a significantly better out-
come in patients receiving CT over ET, both in terms of PFS 
and OS (Fig. 5).

The use of ET-based treatments with respect to CT, is sup-
ported by a therapeutic benefit burdened by lower toxicities 
and better quality of life. Moreover, novel combinations of 
ET plus targeted treatments, including CDK4/6i, have shown 
remarkable efficacy in patients with HR-positive HER2-
negative MBC.12,13 Therefore, current guidelines recommend 
ET-based treatments with CDK4/6i as first-line therapy for 
HR-positive HER2-negative MBC, whereas CT should be 
considered as the preferred treatment strategy in patients with 
visceral disease that acutely threaten organ function.11

Bone-only disease is often regarded as a distinct clinical sub-
group characterized by a favorable prognosis and a prolonged 
OS, and therefore these patients are potentially eligible to re-
ceive a lower-intensity treatment and disease monitoring.14 
However, we observed a subset of patients with CTC-defined 
bone-only disease that experienced a significantly worse prog-
nosis (Fig. 4) which accounted for 49.6% of patients with 
bone-only disease in the pooled cohort (198 out of the total 
399). The present study, therefore, suggests that additional 

biomarkers, such as CTCs enumeration, could be useful to 
further stratify this subpopulation and identify patients that 
may benefit from a different therapeutic approach. Many 
studies have been conducted so far to evaluate clinical features 
such as disease-free interval, number, and type of metastatic 
sites as clinical markers potentially useful to guide treatment 
decision. However, none of these have been shown to be a 
useful predictive marker.15 In this scenario, CTCs enumeration 
could provide a potentially useful tool.

A similar concept was explored by the phase III STIC CTCs 
trial.8 The study randomized 761 MBC patients between a 
clinically-driven choice or a CTC-driven choice defined on the 
established ≥5 CTC/7.5ml cutoff.4 Patients classified as “high 
risk” based on the assigned approach received CT, while those 
classified as “low-risk” received ET. PFS was showed to be 
not inferior in the CTC-driven with respect to the clinically-
driven one (HR 0.98, 90%CI 0.84-1.13).8 Intriguingly, 
StageIVaggressive patients that were clinically defined as “low-
risk” had a significantly longer PFS when treated with CT (in 
the CTCs arm) with respect to those treated with ET (in the 
clinically driven arm), highlighting the impact of treatment 
type on patient outcome (PFS HR 0.67, 95%CI 0.49-0.92 
P = .01). Importantly, these results are consistent with those 
generated by the classifier in our study, further supporting its 
reliability and potential utility.

One limitation of this study is the lack of inclusion of pa-
tients treated with CDK4/6i. On the other hand, this is the 
first proposed “in silico” approach capable to stratify patients 
according to the simulation of CTCs-based staging.

0.
00

0.
25

0.
50

0.
75

1.
00

S
u

rv
iv

al
 P

ro
b

ab
ili

ty

271 204 137 89 56ET
172 136 96 61 35CT

Number at risk

0 12 24 36 48

OS (months)

CT

ET

Log-rank test, P = .5109
A

0.
00

0.
25

0.
50

0.
75

1.
00

S
u

rv
iv

al
 P

ro
b

ab
ili

ty

215 173 119 79 51ET
126 104 71 45 26CT

Number at risk

0 12 24 36 48

OS (months)

CT

ET

Log-rank test, P = .7587
B

0.
00

0.
25

0.
50

0.
75

1.
00

S
u

rv
iv

al
 P

ro
b

ab
ili

ty

52 28 15 8 3ET
46 32 25 16 9CT

Number at risk

0 12 24 36 48

OS (months)

CT

ET

Log-rank test, P = .0348
C

0.
00

0.
25

0.
50

0.
75

1.
00

S
u

rv
iv

al
 P

ro
b

ab
ili

ty

212 89 36 14 7ET
126 58 12 5 2CT

Number at risk

0 12 24 36 48

PFS (months)

CT

ET

Log-rank test, P = .3001
E

0.
00

0.
25

0.
50

0.
75

1.
00

S
u

rv
iv

al
 P

ro
b

ab
ili

ty

52 12 3 1 1ET
46 17 7 4 3CT

Number at risk

0 12 24 36 48

PFS (months)

CT

ET

Log-rank test, P = .0286
F

0.
00

0.
25

0.
50

0.
75

1.
00

S
u

rv
iv

al
 P

ro
b

ab
ili

ty

268 103 40 16 9ET
172 75 19 9 5CT

Number at risk

0 12 24 36 48

PFS (months)

CT

ET

Log-rank test, P = .9978
D

Figure 5. Impact of first-line ET and CT in terms of OS and PFS according to the classifier’s stratification. No significant impact was observed in the 
total population (A, D) nor in the Simulatedindolent subgroup (B, E) in terms of OS and PFS, while a significantly different outcome was observed in the 
Simulatedaggressive subgroup (C, F).
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Of note, since the classifier was trained using the widely es-
tablished ≥5 CTC/7.5 ml cutoff and a large un-selected MBC 
cohort, it offers a generalizable platform for hypothesis gener-
ation that can be transferred to a broad variety of real-world 
or clinical trial databases.3-6,8,9

Previous attempts have been made to explore new sub-
groups with differential treatment benefits through machine 
learning algorithms. Patient-level data from 4580 breast 
cancer patients enrolled in 8 randomized clinical trials treated 
with CDK4/6i were analyzed through random survival forest 
models based on clinical baseline characteristics with a re-
sulting 69.2% accuracy.16

The present study designed a classifier with a 65.1% accuracy 
based on a strong, setting-independent biological biomarker, 
enabling its application on a broader set of clinical questions.

Although the present study provided evidence of an in silico 
simulation of the CTC-based stratification, its main objective 
was not to replace the real CTCs enumeration, which has 
specific biological implications and is certainly more solid in 
PFS and OS prognostication. It rather identifies patients with 
comparable prognostic characteristics for hypothesis gener-
ation and the subsequent design of prospective, biomarker-
driven, clinical trials with the ultimate goal of catalyzing 
sample size optimization and clinical trials optimization by 
exploring different levels of treatment intensity and the im-
pact of methodological aspects in subpopulations with dif-
ferent risk profiles.17

Conclusion
The present study showed the feasibility of a KNN machine 
learning classifier to simulate a baseline CTCs-based staging. 
This model could be used for hypothesis generation in specific 
case scenarios of interest to identify subpopulations which 
may benefit from higher intensity treatments due to a more 
aggressive outcome, representing a valuable tool for future 
clinical trials design and prospective, biomarker-driven, val-
idation studies.
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