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Abstract
Background and Objectives
Certain demographic and clinical characteristics, including the use of some disease-modifying
therapies (DMTs), are associated with severe acute respiratory syndrome coronavirus 2 in-
fection severity in people with multiple sclerosis (MS). Comprehensive exploration of these
relationships in large international samples is needed.

Methods
Clinician-reported demographic/clinical data from 27 countries were aggregated into a data
set of 5,648 patients with suspected/confirmed coronavirus disease 2019 (COVID-19).
COVID-19 severity outcomes (hospitalization, admission to intensive care unit [ICU], re-
quiring artificial ventilation, and death) were assessed using multilevel mixed-effects ordered
probit and logistic regression, adjusted for age, sex, disability, and MS phenotype. DMTs were
individually compared with glatiramer acetate, and anti-CD20 DMTs with pooled other DMTs
and with natalizumab.

Results
Of 5,648 patients, 922 (16.6%) with suspected and 4,646 (83.4%) with confirmed COVID-19
were included. Male sex, older age, progressive MS, and higher disability were associated with
more severe COVID-19. Compared with glatiramer acetate, ocrelizumab and rituximab were
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Go to Neurology.org/NN for full disclosures. Funding information is provided at the end of the article.

The Article Processing Charge was funded by the authors.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading
and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 1

http://dx.doi.org/10.1212/NXI.0000000000200021
mailto:liesbet.peeters@uhasselt.be
https://nn.neurology.org/content/9/6/e200010/tab-article-info
http://creativecommons.org/licenses/by-nc-nd/4.0/


associated with higher probabilities of hospitalization (4% [95%CI 1–7] and 7% [95%CI 4–11]), ICU/artificial ventilation (2%
[95% CI 0–4] and 4% [95% CI 2–6]), and death (1% [95% CI 0–2] and 2% [95% CI 1–4]) (predicted marginal effects).
Untreated patients had 5% (95%CI 2–8), 3% (95%CI 1–5), and 1% (95%CI 0–3) higher probabilities of the 3 respective levels
of COVID-19 severity than glatiramer acetate. Compared with pooled other DMTs and with natalizumab, the associations of
ocrelizumab and rituximab with COVID-19 severity were also more pronounced. All associations persisted/enhanced on
restriction to confirmed COVID-19.

Discussion
Analyzing the largest international real-world data set of people with MS with suspected/confirmed COVID-19 confirms that
the use of anti-CD20 medication (both ocrelizumab and rituximab), as well as male sex, older age, progressive MS, and higher
disability are associated with more severe course of COVID-19.

The ongoing coronavirus disease 2019 (COVID-19) pan-
demic has had significant effects on health and wellbeing
worldwide. Beyond its general effects, however, there is in-
terest in the effects on patient populations, including people
with multiple sclerosis (MS). Several clinic-based and other
studies have been undertaken to assess the epidemiology of
COVID-19 severity among people with MS.1-4 The Covisep
clinical registry study in France studied 347 people with MS
with suspected or confirmed COVID-191; finding disease-
modifying therapies (DMTs) with a higher infection risk were
associated with more than 4 times greater risk of more severe
COVID-19. Sormani and colleagues described the results of
the national Musc-19 Italian registry study, including 593
suspected and 191 confirmed COVID-192; finding anti-CD20
DMTs, ocrelizumab and rituximab, were associated with 2.4
and 2.7 times greater risk of more severe COVID-19, re-
spectively, compared with the untreated and with dimethyl
fumarate. These results were replicated in a pooled analysis
comprising 1,066 Italian and 721 French patients with con-
firmed COVID-19, finding anti-CD20 DMT use was associ-
ated with 2.1 times greater risk of more severe COVID-19
than the untreated, although evaluating each DMT in-
dividually, the association of rituximab was twice as strong as
ocrelizumab (OR 3.78 vs 1.79).4 In the United States/
Canada, Salter and colleagues conducted the large multicenter
CoviMS study, comprising 281 suspected and 1,345 con-
firmed COVID-19,3 evaluating DMTs compared with the
untreated, and the authors found rituximab and ocrelizumab
were associated with greater risk of hospitalization; however,
only rituximab showed positive trends for intensive care unit
(ICU) admission/artificial ventilation and death. Langer-
Gould and colleagues used data from the Kaiser Permanente
patient population to evaluate COVID-19 severity between
1,895 people with MS treated with rituximab and 4.8 million
non-MS patients; finding rituximab-treated patients with MS
was more likely to be hospitalized because of COVID-19,
although none died.5

Although there has been some variability in the comparators
used, including DMTs with less infection risk,1 dimethyl fu-
marate,2 and no treatment,2-4 broadly, these studies show a
detrimental association of the anti-CD20 DMTs, ocrelizumab
and rituximab. We have previously examined COVID-19 se-
verity among 2,340 people with MS and suspected or con-
firmed COVID-19 up to October 2020; finding older age,
progressive MS phenotype, and greater disability were each
associated with more severe COVID-19, including hospitali-
zation, admission to ICU, artificial ventilation, and death.6 We
also showed ocrelizumab and rituximab were associated with
higher frequencies of hospitalization, admission to ICU, and
need for artificial ventilation.

In this full and final analysis data set, we applied an ordered
probit regression methodology to an expanded cohort of
people with MS followed until September 2021 to describe
the associations of severity of COVID-19 with clinical and
treatment-related factors, with a goal to confirm our previous
findings6 and to unify the analytical approach.

Methods
Study Design
This was a multicenter cross-sectional study; patients with
suspected or confirmed COVID-19 were assessed for the
characteristics of COVID-19 severity outcomes. Data were
acquired through an international online central data-entry
platform and 11 independent registries and cohorts from 27
countries, including Argentina (n = 173), Australia (n = 11),
Azerbaijan (n = 2), Bahamas (n = 1), Belgium (n = 36), Brazil
(n = 225), Bulgaria (n = 3), Chile (n = 15), Colombia
(n = 14), Czech Republic (n = 14), Denmark (n = 157),
Ecuador (n = 26), France (n= 2),Germany (n= 168),Honduras
(n = 3), Italy (n = 30), Kuwait (n = 102), Mexico (n = 5), the
Netherlands (n = 65), New Zealand (n = 1), Paraguay (n = 1),

Glossary
aβ = adjusted β; BMI = body mass index; COVID-19 = coronavirus disease 2019;DMT = disease-modifying therapy; EDSS =
Expanded Disability Status Scale; ICU = intensive care unit; MS = multiple sclerosis; RRMS = relapsing-remitting MS.
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Romania (n = 3), Saudi Arabia (n = 6), Serbia (n = 3), Spain (n =
273), Sweden (n = 880), Turkey (n = 412), the United Kingdom
(n= 26), andCanada/theUnited States (n = 2,911). Some of the
constituent registries and cohorts includedmultiple countries, but
the enumeration of these data sources is platform (n = 114),
source 1 (n = 880), source 2 (n = 664), source 3 (n = 214),
source 4 (n = 3), source 5 (n = 90), source 6 (n = 25), source
7 (n = 157), source 8 (n = 214), source 9 (n = 79), source
10 (n = 2,910), and source 11 (n = 218).

Data were entered in 3 fashions: (1) direct entry to the central
platform, (2) patient-level data-sharing through participating
registries/cohorts which uploaded their COVID-19 core data
set into the central data platform at interval, and (3) aggre-
gated data-sharing through participating registries/cohorts as
described previously.6 Multidimensional contingency tables
from the constituent data sources were merged, and from this,
a combined anonymized data set was reconstructed. Data
were entered for each given participant once, but information
for that participant could be reentered, this then replacing the
original record.

Clinicians entered demographic, lifestyle, andMS-specific and
COVID-19–specific clinical characteristics, as described pre-
viously.7 In this article, only age, sex, MS phenotype, disability,
DMT use, glucocorticoid use, smoking status, body mass in-
dex (BMI), comorbidities, COVID-19 status, hospitalization,
ICU admission, artificial ventilation, and death are described.
Study participation was restricted to patients with MS aged 18
years or older with suspected or confirmed COVID-19.
Confirmed COVID-19 was based on a positive PCR test,
while suspected COVID-19 was based on clinician judgement
of the clinical presentation and its alignment with COVID-19.

Standard Protocol Approvals, Registrations,
and Patient Consents
This study was approved by the ethical committee of Hasselt
University (CME2020/025). Other ethics information from
data custodians, MSBase data were provided with the consent
of individual participants and principal investigators at each
MSBase participating center. The GMSR was first approved by
the ethics committee of the Julius-Maximilians-University of
Würzburg (vote number 142/12). After switching to the web-
based documentation system, further positive votes, e.g., by the
ethics committee of the Thuringia state chamber of physicians,
followed by several ethics’ committees of different universities,
were given, and all patients signed an informed consent. Re-
search subject protection was sought from the Washington
University in the St. Louis Institutional Review Board for
housing COViMS Registry data, who determined it to be “not
human subjects” research and therefore exempt from active
IRB oversight at WUSTL and did not require patient consent.
The patient data sent to analyses resulting in the study “As-
sociations of DMT therapies with COVID-19 severity in
multiple sclerosis” originated from a study approved by the
ethics Committee of the Faculdade de Medicina de Botucatu,
Universidade Estadual Paulista under internal review board

number CAAE 31021220.2.0000.5411. All participants signed
a written informed consent form before enrollment. The
Cemcat cohort study was approved by the ethics committee of
the Vall d’Hebron University Hospital (XMG-INT-2014-01),
and all patients signed an informed consent.

Variables
Definitions for all terms were provided to data partners and
were available on the MS Data Alliance platform: msdataal-
liance.com/wp-content/uploads/2020/04/Data-Dictionary-
for-COVID-19-in-people-with-MS.docx. As described pre-
viously,6 hospitalization was queried as Admission in hospital
because of COVID-19 (suspicious) infection? ICU admission
was queried as Stay in ICU because of COVID-19 (suspi-
cious) infection? Requiring artificial ventilation was queried as
Ventilation needed during hospital stay? Death due to
COVID-19 was queried as Did the patient die because of the
(suspected) COVID-19 infection? Clinicians made all
judgements regardless of how data were entered.

As described previously,6 patient age was categorized into 3
groups: 18–49, 50–69, and ≥70 years. MS phenotype was
grouped into relapsing-remitting MS (RRMS) and progressive
MS (secondary progressive MS and primary progressive MS).
Disability was assessed by the Expanded Disability Status Scale
(EDSS)8,9 and dichotomized into 0–6.0 and >6.0. Comor-
bidities were queried, including cardiovascular disease, hyper-
tension, diabetes, chronic liver disease, kidney disease, other
neurologic/neuromuscular disorder, lung disease, or malignant
neoplasia. BMI was categorized as nonobese (BMI ≤30) and
obese (BMI >30). Current smoker status was queried as yes or
no. Current DMT use was queried, including alemtuzumab,
cladribine, dimethyl fumarate, fingolimod, glatiramer acetate,
interferons, natalizumab, ocrelizumab, rituximab, siponimod,
teriflunomide, or another DMT, this latter queried as On an-
other drug not listed. In addition, the use of glucocorticoids was
queried; although dose and frequency were queried, this was
insufficiently completed and so only dichotomous glucocorti-
coid use was evaluated. Data on DMT dose and duration were
not queried.

Statistical Analysis
Mixed-effects ordered logistic regression was assessed, but
models failed the proportional odds assumption. Accordingly,
mixed-effects ordered probit regression, random effects grouped
by data source, was used to evaluate associations with ordered
COVID-19 severity, categorized as none, hospitalization, ICU
admission/requiring artificial ventilation, and death. All models
were adjusted for age, sex, MS phenotype, and disability. From
these, the marginal effects of each covariate level relative to its
reference were estimated at means of model covariates.

In addition, associations with dichotomous hospitalization,
ICU admission, artificial ventilation, and death outcomes were
assessed using multilevel mixed-effects logistic regression,
random effects grouped by data source, as univariable and
adjusted for age, sex, MS phenotype, and disability.
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Adjustment for multiple comparisons was undertaken using
the family-wise Holm step-down method such that within
each hypothesis and within models 1 and 2, statistical tests
were ranked by lowest p value and significance threshold
evaluated relative to the number of statistical tests within that
family. Associations reaching significance after this adjust-
ment are annotated as such in tables.

Subgroup analyses were also undertaken where data on comor-
bidities, BMI, and smoking were available, allowing additional
adjustment for these covariates. Due to the way data were ag-
gregated, these covariates could not be assessed in the ordered
probit regression analyses. All analyses were complete-case.

Individual DMT associations with outcomes were assessed
relative to glatiramer acetate because it has little immunosup-
pressive activity that might affect infection risk and, thus, rep-
resents an ideal comparator. Next, ocrelizumab and rituximab,
as well as the untreated, were evaluated relative to all other
pooled DMTs. Afterward, ocrelizumab and rituximab were
evaluated relative to natalizumab to account for a possibility of
ascertainment bias due to treatment with high-efficacy DMT.

In addition, with a goal to assess whether DMT associations
were just a function of underlying COVID-19 severity risk
predisposing characteristics, stratified analyses by age (≥70 vs
<70 years), MS phenotype (progressive vs RRMS), and EDSS
(>6 vs ≤6) were undertaken. These were assessed by in-
cluding a product term between the interaction covariate and
the primary predictor, the significance of this term denoting
the significance of the intergroup difference.

Intergroup differences were accounted for by mixed-effects
regression. Leave-one-out analyses serially excluding each
data source were also undertaken (data not shown).

All statistical analyses were undertaken in STATA/SE 16.0
(StataCorp, College Station, TX).

Data Availability
Data used in this study are in the custody of the participating
registries and databases. For further enquiries, those in-
terested in access to the data liaise with the MS Data Alliance.

Results
The cohort comprised 5,568 participants with suspected or
confirmed COVID-19, of whom 83.4% were confirmed
COVID-19. In evaluating COVID-19 severity outcomes be-
tween data sources, those patients in the platform, source C-3,
and source C-11 had higher rates of hospitalization, but
source C-4 and source C-5 had lower hospitalization. ICU
admission was more frequent among patients in the platform
and did not occur in source C-4 and source C-6, but otherwise
did not differ. Requiring artificial ventilation was more com-
mon among patients in the platform, source C-3, and source
C-5, and less common in source C-4 and source C-7. Death

was more common among patients in source C-7 but did not
occur in sources C-4, C-5, C-6, C-8, and C-9.

Cohort characteristics of the sample were typical for MS, being
majority female (73.1%), predominantly younger than 50 years
(66.3%), and largely of RRMS phenotype (84.3%) and EDSS
<6 (81.8%, Table 1). The most commonly used DMTs were
ocrelizumab (19.8%), rituximab (11.4%), and dimethyl fuma-
rate (11.1%). In the subgroup of participants with data on these
parameters, 2,479 of 4,890 (50.7%) were of MS duration >10
years, 1,932 of 4,347 (44.4%) had comorbidities, 1,089 of 2,998
(36.3%) were of obese BMI, 141 of 3,635 (3.9%) were taking
glucocorticoid medication, and 1,209 of 5,568 (21.7%) were
current smokers. Of the total sample, 14.6% were hospitalized,
3.7% admitted to ICU, 3.4% required artificial ventilation, and
1.6% died (Table 2). Similar proportions were seen on re-
striction to confirmed COVID-19.

Characteristics of COVID-19 Severity According
to MS Therapy
We first evaluated the demographic and clinical characteristics
of COVID-19 severity as an ordered polychotomous term,
ranging fromno hospitalization, hospitalization, ICU admission/
requiring artificial ventilation, and death. Evaluating the pre-
dicted probabilities of these outcomes by patient characteristics,

Table 1 COVID-19 and Demographic Cohort
Characteristics

Suspected and
confirmed (n = 5,568)

Confirmed
(n = 4,646)

Confirmed COVID-19 status 4,646 (83.4) 4,646 (100.0)

Hospitalization 815 (14.6) 761 (16.4)

ICU admission 208 (3.7) 201 (4.3)

Artificial ventilation 187 (3.4) 170 (3.7)

Death 89 (1.6) 82 (1.8)

Sex, female 4,069 (73.1) 3,381 (72.8)

Age

18–49 3,691 (66.3) 3,026 (65.1)

50–69 1,688 (30.3) 1,459 (31.4)

≥70 147 (2.6) 129 (2.8)

Missing 52 (0.8) 32 (0.7)

BMI

<30 1,909 (34.3) 1,660 (35.7)

≥30 1,089 (19.6) 994 (21.4)

Missing 2,570 (46.2) 1,992 (42.9)

Current smoker 1,209 (21.7) 1,035 (22.3)

Abbreviations: BMI = body mass index; COVID-19 = coronavirus disease
2019; ICU = intensive care unit.
Data are presented as n (%) unless otherwise specified.
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female patients were less likely to have more severe COVID-19
(adjusted β [aβ] −0.21, 95% CI −0.31 to −0.12), while older age
(>50–70 years: aβ 0.31, 95% CI 0.21–0.40; >70 years: aβ 0.56,
95%CI 0.30–0.81), progressiveMS phenotype (aβ 0.22, 95%CI
0.08–0.35), and higher disability (aβ 0.69, 95% CI 0.56–0.81)
were associated with more severe COVID-19 (Table 2), per-
sisting on restriction to confirmed COVID-19 (eTable 1, links.
lww.com/NXI/A739). Similar results were seen evaluating the 4
outcomes as separate dichotomous terms by multilevel mixed-
effects logistic regression (eTables 2–5). In the analyses where
data were available, glucocorticoids and comorbidities were as-
sociatedwith all 4 dichotomous outcomes, while higher BMIwas
associated with increased risks of hospitalization, ICU admission,

and requiring artificial ventilation, and smoking was associated
with increased risk of death (Tables 3 and 4).

Evaluating individual DMTs relative to glatiramer acetate, the
untreated were 5% (95% CI 2–8) more likely to be hospitalized,
3% (95% CI 1–5) more likely to require ICU admission/
ventilation, and 1% (95% CI 0–3) more likely to die (Table 2).
Patients on treatment with ocrelizumab and rituximab were 4%
(95% CI 1–7) and 7% (95% CI 4–11) more likely to be hos-
pitalized (Figure 1), 2% (95% CI 0–4) and 4% (95% CI 2–6)
more likely to require ICU admission/artificial ventilation
(Figure 2), and 1% (95% CI 0–2) and 2% (95% CI 1–4) more
likely to die (Figure 3). Compared with pooled other DMTs
combined, ocrelizumab and rituximab users were 5% (95% CI
3–7) and 8% (95%CI 6–11)more likely to admit to hospital, 3%
(95%CI 1–4) and 5% (95%CI 3–6) more likely to require ICU
admission/artificial ventilation, and 1% (95% CI 0–2) and 2%
(95% CI 1–4) more likely to die. Compared with natalizumab,
ocrelizumab and rituximab users were 7% (95% CI 4–10) and
11% (95% CI 8–15) more likely to admit to hospital, 4% (95%
CI 2–6) and 6% (95% CI 3–9) more likely to require ICU
admission/artificial ventilation, and 1% (95% CI 0–3) and 2%
(95% CI 1–4) more likely to die. On restriction to confirmed
COVID-19, the results were generally comparable, although
probabilities for the anti-CD20 s were slightly enhanced (eTa-
ble 1, links.lww.com/NXI/A739). Similar results were seen
evaluating the 4 outcomes as separate dichotomous terms by
multilevel mixed-effects logistic regression (eTables 6–7).

Adjustment for BMI in the subgroup where data were avail-
able found BMI to be a weak positive confounder (eTable 8,
links.lww.com/NXI/A739).

Stratified Analyses by Age, MS Type,
and Disability
With a goal to assess whether DMT associations withCOVID-19
severity reflected underlying disease propensity, we next evalu-
ated models of DMTs stratified by age (≥70 vs <70 years), MS
phenotype (progressive vs RRMS), and EDSS (>6 vs ≤6).
Among participants with suspected + confirmed and confirmed-
only COVID-19, in the ordered probit regression analyses, there
was no indication that the associations of anti-CD20 DMTs with
the COVID-19 severity level were a function of underlying
demographic/clinical risk profile (eTables 9 and 10, links.lww.
com/NXI/A739), nor did associations with hospitalization, ICU
admission, requiring artificial ventilation, and death either seem
solely evident among persons in the lower risk group (<70 years)
(eTables 11 and 12), RRMS phenotype (eTables 13 and 14),
EDSS ≤6 (eTables 15 and 16) or did not statistically differ.

Discussion
Evaluating COVID-19 severity as a single ordered 4-level
outcome upheld our previous findings6 showing demographic
and clinical characteristics, particularly DMT exposure, were
associated with increased COVID-19 severity in people with
MS. Regardless of the comparator, rituximab and ocrelizumab

Table 2 Clinical Cohort Characteristics

Suspected and
confirmed (n = 5,568)

Confirmed
(n = 4,646)

RRMS MS phenotype 4,694 (84.3) 3,913 (84.2)

EDSS 0–6 4,553 (81.8) 3,799 (81.8)

MS duration

0–10 y 2,411 (43.3) 2,038 (43.9)

>10 y 2,479 (44.5) 2,086 (44.9)

Missing 678 (12.2) 522 (11.2)

Has comorbidities 1,932 (34.7) 1,658 (35.7)

Missing 1,221 (21.9) 910 (19.6)

Taking
glucocorticoids?

141 (2.5) 123 (2.7)

Missing 1,933 (34.7) 1,520 (32.7)

DMT

Untreated 484 (8.7) 431 (9.3)

Alemtuzumab 59 (1.1) 53 (1.1)

Cladribine 85 (1.5) 71 (1.5)

Dimethyl fumarate 619 (11.1) 518 (11.2)

Fingolimod 527 (9.5) 440 (9.5)

Glatiramer acetate 286 (5.1) 237 (5.1)

Interferon beta 300 (5.4) 247 (5.3)

Natalizumab 558 (10.0) 477 (10.3)

Ocrelizumab 1,100 (19.8) 948 (20.4)

Rituximab 636 (11.4) 504 (10.9)

Siponimod 29 (0.5) 26 (0.6)

Teriflunomide 303 (5.4) 246 (5.3)

Other DMT 158 (2.8) 125 (2.7)

Missing 424 (7.6) 323 (7.0)

Abbreviations: DMT = disease-modifying therapy; EDSS = Expanded Disability
StatusScale;MS=multiplesclerosis;RRMS= relapsing-remittingmultiplesclerosis.
Data are presented as n (%) unless otherwise specified.
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were associated with more severe COVID-19, although as-
sociations of rituximab were consistently of greater magni-
tudes. This is consistent with our previous comparison against
dimethyl fumarate6 and persists across both polychotomous
and separate dichotomous analysis methods. Our results are
consistent with both our and other groups’ previously
reported findings.1-4,6 Indeed, despite a fairly heteroge-
neous set of comparators used across the studies, including
glatiramer acetate/interferons,1 dimethyl fumarate,2,6 the
untreated,2-4 and glatiramer acetate, the anti-CD20 DMTs
have shown a remarkable consistency in being associated with
more severe COVID-19. Moreover, anti-CD20 DMTs asso-
ciations with COVID-19 severity were not only seen among
those of older age, progressive MS phenotype, and disability
but were more pronounced in the low-risk groups, suggesting
these associations were not merely reflective of underlying
clinical predisposition. Thus, although these characteristics
are factors to consider when describing the severity of
COVID-19, the anti-CD20 DMTs, particularly rituximab, in-
dependently contribute to the risk of more severe COVID-19.
Taken together, this internal and external consistency is
strongly indicative of a greater risk of more severe COVID-19
course among patients treated with anti-CD20 DMTs.

Our previous study evaluated each of the 4 severity outcomes as
separate dichotomous variables.6 This method fails to capture
the interrelated nature of these outcome levels, with increasing
severity necessarily a function of the preceding severity incre-
ments. Some of the previous studies have endeavored to reflect
this in their methods but with some limitations, either having to
consolidate outcome ICU and death or not capturing the or-
dered nature of their outcome variable. In this article, we have
improved on the methods of previous studies, evaluating a 4-
level ordered COVID-19 severity variable by statistical methods
that capture this ordered nature. The ordered probit regression
method estimates marginal probabilities, rather than odds ratios,
and so precludes direct comparison of magnitudes with previous
studies. It is necessary to evaluate the magnitudes in the context
of their particular outcome. That is, differences in the probabil-
ities of outcomes must be considered relative to the average
predicted probabilities of each. Therefore, for example, the
marginal probabilities for rituximab vs glatiramer acetate for
hospitalization (7%), ICU admission/ventilation (4%), and
death (2%) are not indicative of weaker effects on ICU/
ventilation and death but rather should be considered rel-
ative to the total average probabilities of these outcomes of
13%, 5%, and 3%. In that context, the associations of

Table 3 Demographic/Clinical Characteristics of COVID-19 Severity by Ordered Probit Regression, Suspected +
Confirmed

aβ (95% CI)

Marginal effects (95% CI)

None Hospitalization
ICU/artificial
ventilation Death

Average predicted
probabilities (95% CI)

0.79 (0.74 to 0.85) 0.13 (0.10 to 0.16) 0.05 (0.03 to 0.07) 0.03 (0.01 to 0.04)

Sex

Female 20.21 (20.31 to 20.12)a 0.06 (0.03 to 0.08) 20.03 (20.04 to 20.02) 20.02 (20.03 to 20.01) 20.01 (20.01 to 20.00)

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.003

Age

50–69 0.31 (0.21 to 0.40)a 20.08 (20.11 to 20.05) 0.04 (0.03 to 0.06) 0.02 (0.01 to 0.03) 0.01 (0.00 to 0.02)

≥70 0.56 (0.30 to 0.81)a 20.14 (20.21 to 20.07) 0.08 (0.04 to 0.12) 0.04 (0.02 to 0.07) 0.02 (0.01 to 0.04)

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.001

MS phenotype,
progressive

Progressive 0.22 (0.08 to 0.35)a 20.06 (20.09 to 20.02) 0.03 (0.01 to 0.05) 0.02 (0.01 to 0.03) 0.01 (0.00 to 0.02)

p = 0.002 p = 0.002 p = 0.002 p = 0.004 p = 0.014

EDSS >6

>6 0.69 (0.56 to 0.82)a 20.18 (20.23 to 20.13) 0.10 (0.08 to 0.12) 0.05 (0.04 to 0.07) 0.03 (0.01 to 0.04)

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Abbreviations: aβ = adjusted β; COVID-19 = coronavirus disease 2019; EDSS = Expanded Disability Status Scale; ICU = intensive care unit; MS = multiple
sclerosis.
Analysis by multilevel mixed-effects ordered probit regression, estimating aβ (95% CI). All models adjusted for age, sex, MS phenotype, and EDSS. Results in
boldface denote statistical significance (p < 0.05).
a Significant after family-wise Holm step-down multiple comparison adjustment.

6 Neurology: Neuroimmunology & Neuroinflammation | Volume 9, Number 6 | November 2022 Neurology.org/NN

http://neurology.org/nn


rituximab with the more severe outcomes are actually
stronger than those seen for hospitalization despite the
smaller marginal probabilities; this in line with the results
seen where individual dichotomous outcomes are assessed.
This statistical methodology is superior to the separate di-
chotomous outcomes methods which have primarily been
used in previous studies, making more efficient and com-
prehensive use of the ordered nature of the data. It is im-
portant that, however, regardless of the method applied,
results are consistent in the deleterious nature of the de-
mographic and characteristics of COVID-19 severity found,
particularly anti-CD20 DMTs.

Rituximab consistently showed stronger associations with the
COVID-19 outcomes than ocrelizumab, in agreement with our

previous study6 and other studies.2-4,10,11 As discussed pre-
viously,6 the binding characteristics of rituximab differ from
ocrelizumab, including a differing provenance and particularly a
stronger affinity to CD20 at the epitope both DMTs bind.12 In
addition, although in our present analysis, ocrelizumab shows a
positive trend with the need for artificial ventilation, rituximab
shows consistent associations with COVID-19 outcomes, in-
cluding death. Although it is possible that these differences could
result from an unmeasured confounding, particularly here where
our ability to control for covariates is limited to those in the
questionnaire, the consistency of this difference in associations
across cohorts and over time is intriguing. Therefore, relation-
ships of the new anti-CD20 DMT, ofatumumab, which binds a
different locus on the CD20 protein,12 with COVID-19 severity
are of interest for future research.

Table 4 DMT Characteristics of COVID-19 Severity by Ordered Probit Regression, Suspected + Confirmed

aβ (95% CI)

Marginal effects (95% CI)

None Hospitalization ICU/artificial ventilation Death

Average predicted
probabilities (95% CI)

0.79 (0.74 to 0.85) 0.13 (0.10 to 0.16) 0.05 (0.03 to 0.07) 0.03 (0.01 to 0.04)

DMT

Untreated 0.35 (0.12 to 0.59)a 20.09 (20.15 to 20.03) 0.05 (0.02 to 0.08) 0.03 (0.01 to 0.05) 0.01 (0.00 to 0.03)

Alemtuzumab 0.20 (−0.26 to 0.65) −0.05 (−0.17 to 0.07) 0.03 (−0.04 to 0.09) 0.02 (−0.02 to 0.05) 0.01 (−0.01 to 0.03)

Cladribine 0.02 (−0.40 to 0.44) −0.01 (−0.11 to 0.10) 0.00 (−0.06 to 0.06) 0.00 (−0.03 to 0.03) 0.00 (−0.02 to 0.02)

Dimethyl fumarate −0.05 (−0.29 to 0.19) 0.01 (−0.05 to 0.08) −0.01 (−0.04 to 0.03) −0.00 (−0.02 to 0.01) −0.00 (−0.01 to 0.01)

Fingolimod −0.17 (−0.43 to 0.08) 0.04 (−0.02 to 0.11) −0.02 (−0.06 to 0.01) −0.01 (−0.03 to 0.01) −0.01 (−0.02 to 0.00)

Glatiramer acetate 0.00 [Ref] 0.00 [Ref] 0.00 [Ref] 0.00 [Ref] 0.00 [Ref]

Interferon −0.09 (−0.36 to 0.19) 0.02 (−0.05 to 0.09) −0.01 (−0.05 to 0.03) −0.01 (−0.03 to 0.01) −0.00 (−0.01 to 0.01)

Natalizumab −0.16 (−0.42 to 0.09) 0.04 (−0.02 to 0.11) −0.02 (−0.06 to 0.01) −0.01 (−0.03 to 0.01) −0.01 (−0.02 to 0.00)

Ocrelizumab 0.27 (0.06 to 0.49) 20.07 (20.13 to 20.01) 0.04 (0.01 to 0.07) 0.02 (0.00 to 0.04) 0.01 (0.00 to 0.02)

Rituximab 0.52 (0.28 to 0.77) 20.14 (20.20 to 20.07) 0.07 (0.04 to 0.11) 0.04 (0.02 to 0.06) 0.02 (0.01 to 0.04)

Siponimod 0.40 (−0.12 to 0.92) −0.10 (−0.24 to 0.03) 0.06 (−0.02 to 0.13) 0.03 (−0.01 to 0.07) 0.02 (−0.01 to 0.04)

Teriflunomide −0.06 (−0.33 to 0.22) 0.01 (−0.06 to 0.09) −0.01 (−0.05 to 0.03) −0.00 (−0.03 to 0.02) −0.00 (−0.01 to 0.01)

Other DMT 0.06 (−0.26 to 0.37) −0.01 (−0.10 to 0.07) 0.01 (−0.04 to 0.05) 0.00 (−0.02 to 0.03) 0.00 (−0.01 to 0.01)

Pooled other DMT 0.00 [Ref] 0.00 [Ref] 0.00 [Ref] 0.00 [Ref] 0.00 [Ref]

Ocrelizumab 0.34 (0.22 to 0.45)a 20.09 (20.12 to 20.05) 0.05 (0.03 to 0.07) 0.03 (0.01 to 0.04) 0.01 (0.00 to 0.02)

Rituximab 0.59 (0.44 to 0.74)a 20.15 (20.20 to 20.10) 0.08 (0.06 to 0.11) 0.05 (0.03 to 0.06) 0.02 (0.01 to 0.04)

No DMT 0.41 (0.27 to 0.56)a 20.11 (20.15 to 20.06) 0.06 (0.04 to 0.08) 0.03 (0.02 to 0.05) 0.02 (0.01 to 0.03)

Natalizumab 0.00 [Ref] 0.00 [Ref] 0.00 [Ref] 0.00 [Ref] 0.00 [Ref]

Ocrelizumab 0.44 (0.25 to 0.64)a 20.12 (20.18 to 20.06) 0.07 (0.04 to 0.10) 0.04 (0.02 to 0.06) 0.01 (0.00 to 0.03)

Rituximab 0.72 (0.50 to 0.94)a 20.20 (20.26 to 20.13) 0.11 (0.08 to 0.15) 0.06 (0.03 to 0.09) 0.02 (0.01 to 0.04)

Abbreviations: aβ = adjustedβ; COVID-19 = coronavirus disease 2019; DMT= disease-modifying therapy; EDSS = ExpandedDisability Status Scale; ICU = intensive
care unit; MS = multiple sclerosis.
Analysis by multilevel mixed-effects ordered probit regression, estimating aβ (95% CI). All models adjusted for age, sex, MS phenotype, and EDSS. Results in
boldface denote statistical significance (p < 0.05).
a Significant after family-wise Holm step-down multiple comparison adjustment. Note: Other DMT was queried as on another drug not listed.
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It is interesting to compare the results of this work with the
reports of anti–severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) vaccine response because studies
have shown that people with MS on some DMTs have de-
ficient serologic response to both the SARS-CoV-2 pathogen
and vaccines, including the anti-CD20 DMTs and the S1PR
modulators.13-17 At the same time, others have evaluated
post–vaccine-dose near-term reactions, finding reactions to
be lower among those treated with S1PR modulators,
whereas anti-CD20 DMTs were not associated with the
vaccine reaction.18 In our study, fingolimod was generally
associated with less COVID-19 severity, although the
other S1PR modulator, siponimod, showed no such inverse
associations. Further investigation of the effect of DMTs
on humoral and cellular immune response to the SARS-
CoV-2 pathogen and vaccine and its protective role are
needed to better understand these relationships and guide
decision-making regarding DMTs and COVID-19, including
vaccination.

The untreated patients also showed associations with more
severe COVID-19, especially in the ordered probit regression
analyses of the polychotomous outcome. However, in the
individual dichotomous outcome analyses, this association
only remained consistent when compared with pooled other
DMTs. These results are in agreement with other studies,

including the Covisep study which found almost 3 times
greater risk of more severe COVID-19 among the untreated
vs treated,1 and the Musc-19 study which found 50–66%
lower risks of more severe COVID-19 in treated vs the un-
treated.2 It is likely that these associations result from un-
measured confounding in a highly selected group of untreated
patients with MS. Accordingly, although we did evaluate the
untreated in comparison with glatiramer acetate and with the
pooled other DMTs, we did not regard these as appropriate to
compare other DMTs with in the fashion performed
elsewhere.2-4

This study’s robustness and generalizability are strengthened
by a particularly large global sample used to examine the
severity of COVID-19 course in people with MS. This, in
tandem with a comprehensive assessment of the most critical
clinical and demographic characteristics relevant to COVID-19,
gives us a powerful platform with which to examine the out-
comes of COVID-19. In addition, our larger data set enabled
us to examine DMT associations with COVID-19 severity
relative to glatiramer acetate, rather than dimethyl fumarate.6

As a non–immunosuppressive immunomodulator, glatiramer
acetate can be considered a more neutral comparator in its
effect on infection risk and severity than dimethyl fumarate. It
should be noted that the untreated group is typically a highly
selected group in regions with good access to DMTs. In

Figure 1 Marginal Effects of Hospitalization vs None by DMT Type Relative to Glatiramer Acetate

Adjusted for age, sex, MS phenotype, and disability. Full lines include suspected + confirmed COVID-19, while dashed lines are confirmed COVID-19 only.
COVID-19 = coronavirus disease 2019; DMT = disease-modifying therapy; MS = multiple sclerosis; * = p < 0.05; ** = p < 0.001.
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addition, our use of multiple comparison adjustment by the
Holm step-down method gives confidence to the veracity of
the observed associations, most of which were robust to type I
error. We have used 2 complementary statistical methods to
assess relationships with COVID-19 severity, expressed as an
ordered polychotomous outcome, as well as the series of di-
chotomous outcomes for hospitalization, ICU admission,
requiring artificial ventilation, and death used in our previous
analysis.6 The use of the single ordered polychotomous term,
which we evaluated by ordered probit regression, allowed us
to estimate marginal effects of the studied covariates across all
levels of COVID-19 severity simultaneously. The consistency
between these methods gives confidence in the validity of
these findings.

On the other hand, the scope of the questionnaire used to collate
the analyzed data is limited in comparison with clinic-based
registries such as the Covisep or Musc-19 studies.1,2,4 Our data
set lacks some potentially relevant information, e.g., DMT dose
or frequency, pre-COVID-19 MS treatment, other MS severity
measures (relapse rate or MRI), or other risk factors beyond
those queried. We did endeavor in this iteration of the study to
query B-cell counts and duration on DMT since last DMT
treatment. However, due to high data missingness, quantitative
assessments of these variables were not feasible. Our method of
data aggregation was heterogeneous, utilizing individual patient
data from the platform and individual registries but also

multidimensional contingency tables. It is this latter data source
which thus limited some aspects of our model covariates to
simplified forms, including simplified categorical information
about MS phenotype, disability, age, and glucocorticoid treat-
ment. This precluded our assessment of some potentially rele-
vant characteristics—BMI, smoking, MS duration, and exposure
to glucocorticoids in the ordered probit analyses. Owing to the
anonymous nature of data collection, it is possible there may be
some duplication of patient entries, both over time and between
data sources. Finally, the data about the dates of hospital or ICU
admission/discharge were insufficient to enable analyses of the
outcomes as time-dependent variables.

This is so far the largest study of COVID-19 severity out-
comes in people with MS. It confirms that older age, higher
disability, and progressive MS phenotype are associated with
more severe course of COVID-19. Regarding DMTs, severe
COVID-19 course is more frequent among patients treated
with anti-CD20 DMTs, rituximab and ocrelizumab. These
relationships are not merely a function of underlying clinical/
demographic risk profile but indicate a deleterious effect of
CD20 depletion. The COVID-19 risk should be considered in
choosing the most appropriate DMT for people with MS.
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