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Abstract: Obesity contributes to a chronic proinflammatory state, which is a known risk factor
to develop immune-mediated diseases. However, its role in systemic sclerosis (SSc) remains to
be elucidated. Therefore, we conducted a two-sample mendelian randomization (2SMR) study to
analyze the effect of three body fat distribution parameters in SSc. As instrumental variables, we
used the allele effects described for single nucleotide polymorphisms (SNPs) in different genome-
wide association studies (GWAS) for SSc, body mass index (BMI), waist-to-hip ratio (WHR) and
WHR adjusted for BMI (WHRadjBMI). We performed local (pHESS) and genome-wide (LDSC)
genetic correlation analyses between each of the traits and SSc and we applied several Mendelian
randomization (MR) methods (i.e., random effects inverse-variance weight, MR-Egger regression,
MR pleiotropy residual sum and outlier method and a multivariable model). Our results show no
genetic correlation or causal relationship between any of these traits and SSc. Nevertheless, we
observed a negative causal association between WHRadjBMI and SSc, which might be due to the
effect of gastrointestinal complications suffered by the majority of SSc patients. In conclusion, reverse
causality might be an especially difficult confounding factor to define the effect of obesity in the onset
of SSc.
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1. Introduction

Systemic sclerosis (SSc) is an immune-mediated disease (IMD), characterized by abnor-
mal immunological activation, vascular damage and fibrosis of the skin [1]. SSc represents
a major challenge for clinicians, as it has a deep impact on the life quality and life ex-
pectancy of the affected patients [1]. Recent efforts in the study of the genetic factors
that contribute to the onset and progression of SSc, such as several large-scale genetic
association studies and genome-wide association studies (GWAS) [2], have contributed to
identifying genetic susceptibility markers both in the human leukocyte antigen (HLA) locus
and outside this highly polymorphic region [3]. The largest GWAS to date comprised more
than 9000 patients with SSc and allowed the identification of 19 non-HLA loci associated
with the disease [2]. Moreover, recent studies have identified specific HLA-DQA1 alleles
exclusively associated with different clinical subtypes of SSc [3]. Therefore, the number of
relevant loci that have been firmly associated with this condition has remarkably increased
over the last decade. Although the use of genetic risk factors to predict the risk of devel-
oping SSc was explored in a recent genomic risk score (GRS) [4], the involvement of these
genetic risk factors in the disease pathogenesis and the affected biological pathways have
not been fully established yet [5].

Despite the advances in the identification of the genetic factors contributing to the
heritability of SSc, the complex nature of this disorder is an intrinsic obstacle to studying
the pathological mechanisms that lead to the disruption of the immune homeostasis and
to the onset of fibrotic processes in affected individuals. Well-established environmental
triggers for SSc are silica and solvents, extreme or long-term exposure to which is related to
the disease’s development [6,7]. Moreover, demographic and clinical characteristics, such
as sex, age, ethnical origin, hormone levels, etc., have been pointed out as risk factors for
SSc [6,8]. However, the roles of lifestyle and environmental triggers in the manifestation
and prognosis of SSc are still elusive.

Mendelian randomization (MR) uses SNPs as instrumental variants (IVs) in order to
determine if they are acting on a disease or outcome through a risk factor or exposure [9,10].
The principle of the method is that alleles are randomly distributed during gametogenesis
and their presence pre-exists the disease. These genetic facts mimic the random distribution
of clinical trials and take away the causality of the disease on the variable, reducing
confounding factors [11]. For a genetic variant to be considered an IV, it is assumed that it
is associated with exposure. However, an IV cannot be associated with any confounding
factor related to the risk factor or the outcome, either directly or indirectly. Additionally,
the effects of the IV on the outcome should only be mediated by the exposure [9]. Therefore,
only when genetic polymorphisms are relevant, independent and have a restricted effect
on the outcome, can they be considered IVs. In a classical MR study, the allele effects on
outcome and exposure are obtained from the same individuals [9,10]. However, detailed
information for multiple traits is difficult to obtain in a large population. Two-sample
MR (2SMR) methods allow us to combine the estimations of the IV allele effects relying
only on GWAS summary statistics for the outcome and for the exposure from independent
studies. The implementation of these methods has improved the statistical power to detect
causal associations between risk factors and disease, which has shown promising results in
several conditions [12].

Obesity-related diseases are becoming a public health issue in Western countries [13],
since obesity rates are increasing due to unhealthy lifestyles. Obesity is defined by an
excess of fat in the body and body fat distribution can be measured by a variety of methods,
for instance body mass index (BMI) and waist to hip ratio (WHR). BMI is the most common
body fat proxy and it is the gold standard for obesity. BMI is measured as the body
weight normalized by height squared (kg/m2) [14], and it is known that BMI > 25 kg/m2 is
associated with an increased risk of suffering from chronic diseases such as cardiovascular
disease, type II diabetes or specific cancers [15]. Nevertheless, BMI has certain limitations,
and anthropometric measures of abdominal obesity, such as WHR, seem to be better
indicators of excessive fat mass [16]. Since WHR measures both visceral and gluteal
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fat, it stands out among other anthropometric traits [17]. If WHR is adjusted for BMI
(WHRadjBMI), it is possible to obtain an anthropometric measure which is independent
from the overall adiposity, and to combine the most standardized measure of obesity and
the anthropometric measure that best captures the distribution of body fat [17,18]. Taking
advantage of the publicly available GWAS results, MR approaches have been successful
in identifying risk factors for IMDs, such as obesity-related traits [19,20]. Excess of fat has
been associated with a low but persistent proinflammatory state that is believed to promote
IMDs [13,21]. However, in the case of SSc, the relationship between body fat distribution
and SSc remains to be explored.

Consequently, in order to analyze the effect of nutritional status on SSc risk, we
applied the novel 2SMR methods on the largest GWAS of SSc patients [2] with European
ancestry and the biggest GWAS meta-analysis for anthropometric fat distribution measures
to date [22].

2. Materials and Methods
2.1. Instrumental Variables

The study design of the 2SMR study of SSc and three obesity-related traits is sum-
marized in Figure 1. The outcome instrumental variables (IV-outcome), i.e., the selected
genetic variants and their effect sizes in SSc, were obtained from the largest SSc GWAS
meta-analysis, which included 9846 SSc patients and 18,333 healthy controls from 14 differ-
ent cohorts with European ancestry [2]. Patient demographic data are shown in Table S1.
Additionally, SNP effect sizes after stratification by sex, serological and clinical subtype, as
reported elsewhere [3], were also analyzed. Finally, we performed sex-specific analyses,
including only either the female or the male individuals from the different cohorts and
following the previously described analysis framework [2].
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Figure 1. Schematic representation of the study design. The study is divided into several phases,
i.e., selection of the instrumental variables for the outcome and the exposures, data harmonization
and generation of different Mendelian randomization models.

In the case of the exposures, we obtained the IVs (IV-exposure) from a recent GWAS
meta-analysis between the cohorts included in the Genetic Investigation of Anthropometric
Traits consortium (GIANT) project and those recruited for the UK Biobank (UKBB) repos-
itory for different anthropometric measures [23]. We only used the summary statistics
comprising individuals with European ancestry, which included 806,810 individuals and
27,381,302 SNPs for BMI, a classical obesity parameter, and for two parameters that assess
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body fat distribution: WHR, comprising 697,734 individuals and 27,376,273 SNPs, and
WHRadjBMI, covering 694,649 individuals and 27,375,636 SNPs [23]. None of the partic-
ipants recruited in the SSc studies overlapped with the exposure GWASs to the best of
our knowledge.

2.2. Genomic Association Analysis

Genetic correlation. To determine causality between obesity risk factors and SSc, we
calculated the total genomic correlation between them. First, we performed an approxi-
mation implemented in the linkage disequilibrium regression score (LDSC) software [24].
Then, to study the contribution of specific regions (pairwise local genetic correlation), we
used the methods supported by ρ-HESS software (version 0.5.3) [25]. Briefly, ρ-HESS
software splits the genome into 1703 small regions through the chromosomes and uses LD
matrices to create eigenvectors and to project the GWAS effect sizes. Then, the local SNP
heritability per trait is calculated and, finally, genetic covariance between traits is estimated.
We adjusted our significance thresholds for multiple testing, i.e., 1.1 × 10−3 (0.05/45) for
LDSC and 2.9 × 10−5 (0.05/1703) for ρ-HESS.

Mendelian randomization analysis. In order to assess if there was a causal relationship
between body fat distribution and SSc or any of the stratified sets of patients, we performed
a 2SMR study implementing the R package “TwoSampleMR” [10]. Considering the complex
linkage disequilibrium (LD) patterns and the strong genetic associations described in the
HLA locus SSc [2,3,26], the extended HLA region (chromosome 6: 20,000,000–40,000,000 bp)
was excluded from the MR analyses in order to prevent biases.

The selected IVs were based on the original independent signal analysis reported by
Pulit et al. [23]. Briefly, the independent signals from results from the inverse variance
meta-analysis (p < 5 × 10−9) were identified by LD-based clumping (r2 > 0.05 and ±5 Mb).
Secondary signals were also defined by conditional analyses (p < 5 × 10−9) and locus LD
clumping. We extracted the association estimates for these SNPs or the best available proxy
(according to the LD patterns observed in the UKBB cohort) that was present in the SSc
dataset. The number of shared SNPs between SSc and the exposures reached 533, 247 and
262 for BMI, WHR and WHRadjBMI, respectively (Table S2).

Three gold-standard 2SMR methods were selected. A random effects inverse-variance
weight (IVW) approach was taken, which pools the effects of each IV and balances the
global pleiotropy to zero by assuming the validity or invalidity of all the SNPs [10]. An MR-
Egger regression method [27] was applied, which is able to estimate causality even when
all IVs are weak or invalid and to calculate horizontal pleiotropy. Although these methods
are very robust for MR analysis, both of them have limitations in dealing with outlier IVs.
For that reason, we also applied the MR pleiotropy residual sum and outlier (MR-PRESSO)
method [28]. The MR-PRESSO algorithm detects outlier IVs that exert horizontal pleiotropy
in a multi-instrument Mendelian randomization analysis. Moreover, MR-PRESSO provides
outlier-free causality estimates.

Additionally, to estimate the effect of the IVs controlling for their effect on other
exposures, we performed a multivariable Mendelian randomization analysis (MVMR),
implemented in the TwoSampleMR package [29]. This analysis included a set of unique
LD-clumped IV exposures for both BMI and WHR, which were regressed against SSc
together, weighting for the inverse variance of SSc for these IVs.

The Benjamini–Hochberg false discovery rate (FDR) correction was applied, and we
considered p < 0.05 as significant [30].

2.3. Sensitivity Analysis

The statistical power of our analyses was calculated using the algorithm described by
Brion et al. for MR studies [31]. Aiming to control for the effect of potential confounding
factors, we removed any of the SNPs with reported associations with known obesity-
related confounding factors (Table S3) from the MR analysis, as reported by the GWAS
catalog [32], SNPnexus [33] and ClinVar [34]. We studied the contribution of each SNP to
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the observed effects by carrying out a leave-one-out sensitivity analysis, implemented in
the “TwoSampleMR” package [10]. By these means, we observed that the exclusion of one
SNP at a time did not affect the observed results.

3. Results

Leveraging Mendelian randomization as a novel methodological strategy, we studied
for the first time the causal contribution of body fat distribution to the risk of suffering
from SSc (Figure 1). Here we used the GWAS summary statistics of the largest SSc meta-
analysis [2] as an outcome and three obesity-related traits GWAS comprising thousands of
European ancestry individuals as exposures.

3.1. Genomic Correlation. Only the HLA Locus Harbours Local Genetic Correlation between SSc
and Body Fat Distribution

At a genomic scale, we observed a strong genome-wide correlation between BMI and
WHR (rg = 0.59, [95% CI −0.016–0.051]) and between WHR and WHRadjBMI (rg = 0.78,
[95% CI −0.01–0.03]), but not between WHRadjBMI and BMI (rg = −4.02 × 10−2, [95%
CI −0.016–0.049]), as previously described [19] (Figure 2). However, our results show
no evidence of correlation between SSc and the three tested obesity-related traits (BMI
rg = −0.039 [95% CI −0.033–0.102]; WHR rg = −0.054, [95% CI −0.035–0.106]; WHRadjBMI
rg = −0.041, [95% CI −0.04–0.122], all observed p > 0.05) (Figure 2).
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Figure 2. Pairwise global genetic correlation observed between the three obesity-related exposures
and SSc. * = p > 0.05 (suggestive for statistical significance); ** = p > 0.00625 (Bonferroni-corrected).

Even when there is no correlation between traits at a genome-wide level, it is possible
that the traits show local correlation at specific loci. To address this potential correlation, we
performed a local genetic correlation analysis between BMI, WHR, WHRadjBMI and SSc
(Figure A1). The local correlation observed in these regions reached local-rg = 8.5 × 10−4

and local-rg = 2.6 × 10−4 (Figure A1).

3.2. The Analysis of the Causal Relationship between Obesity-Related Traits and Systemic Sclerosis
Is Limited by Confounding Factors

Despite the limited genetic correlation found, we explored the possible causal rela-
tionship between body fat distribution and SSc. Considering the complex LD patterns in
the HLA regions and the local genetic correlation found only in this locus, it was excluded
from the following MR analyses. The available SSc dataset was powerful enough to detect
associations of 25% increased risk of SSc with BMI (99%), WHR (83%) and WHRadjBMI
(92%) (Table S4), considering an explained phenotypic variance of 2.5–5% and the complete
set comprising 28,179 individuals (34.9% cases). We were confident about the statistical
power estimated for the largest subsets of patients, for instance, females (BMI power = 79%,
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WHR power = 82% and WHRadjBMI = 87%), lcSSc (BMI power = 94%, WHR power = 70%
and WHRadjBMI = 81%) and ACA+ (BMI power = 83%, WHR power = 53% and WHRad-
jBMI = 65%). However, the analyses for the less frequent patient groups, i.e., males (BMI
power = 30%, WHR power = 8% and WHRadjBMI = 10%) and ATA+ (BMI power = 14%,
WHR power = 10% and WHRadjBMI = 12%) were clearly insufficient to identify true causal
relationships (Table S4).

As reported in Table 1 and Table S5, classical MR methods showed no significant
evidence of causality for BMI or WHR on SSc, whether including only the index SNPs or
considering both the index SNPs and the secondary signals. The results for BMI under
the random effects IVW model show a suggestive positive association with BMI, but this
association did not reach statistical significance (OR under random effects IVW = 1.15
[95% CI 0.67–1.98]). A trend of negative association considering index and secondary
signals was only observed in the case of the random effects IVW model for WHR (Table 1).
All the remaining models showed p > 0.05 and the ORs were in the range of 0.93–1.15 for
BMI and 0.27–0.82 for WHR. In the case of WHRadjBMI (WHR after regressing out the effect
of BMI), a negative association with SSc reached statistical significance in the three tested
models (OR under random effects IVW = 0.73 [95% CI 0.56–0.94], MR-Egger = 0.43 [95% CI
0.20–0.90], MR-PRESSO = 0.77 [95% CI 0.60–0.99]). These associations with WHRadjBMI
remained negative in the analyses that included only index signals, but only the MR-Egger
model was significant after multiple testing correction (OR under MR-Egger = 0.69 [95% CI
0.51–0.93], see Table S5).

Table 1. Association between genetically predicted obesity-related traits and risk of SSc. Analysis
including index and secondary signals for the obesity-related traits and excluding the HLA region.
BMI: body mass index, WHR: waist to hip ratio, WHRadjBMI: WHR adjusted for BMI, MR: Mendelian
randomization, nSNPs: number of single nucleotide polymorphisms, OR: Odds Ratio, CI: confidence
interval, p: p value, p adj: p value after FDR correction for multiple testing, IVW: inverse-variance
weight, PRESSO: pleiotropy residual sum and outlier, NA: not applicable.

Index and secondary SNPs (p < 5 × 10−9)

MR Approach nSNPs OR (95% CI) p p adj p for Heterogeneity or
Pleiotropy

MR-Egger
533

1.0575(0.6403–1.7466) 0.827 0.8273 0.6005
Random-effects IVW 0.9326(0.7787–1.117) 0.449 0.4485 <0.001

B
M

I

MR-PRESSO (1) * 0.943(0.7892–1.1269) 0.5189 NA NA

MR-Egger
247

0.2698(0.0914–0.7965) 0.0185 0.0384 0.0519
Random-effects IVW 0.7564(0.5567–1.0278) 0.0743 0.11145 <0.001

W
H

R

MR-PRESSO (3) * 0.7809(0.5907–1.0324) 0.0838 NA NA

MR-Egger
262

0.4251(0.2014–0.8971) 0.0256 0.0384 0.1344
Random-effects IVW 0.7269(0.5603–0.9431) 0.0163 0.0489 <0.001

W
H

R
a

dj
B

M
I

MR-PRESSO (1) * 0.77(0.6015–0.9857) 0.039 NA NA

* Number of outlier SNPs detected by MR-PRESSO.

We carried out a sensitivity analysis, which implied the removal of SNPs associated
with known obesity-related confounders (Table S3), to address the effect of these con-
founders on the lack of significance for the BMI models and the negative relationships with
WHR and WHRadjBMI. As shown in Table 2 and Table S6, the confounder-free models
did not change the observed negative relationship and none of them reached a significant
result after FDR correction. Although we observed effect size heterogeneity for the different
genetic variants (Table S7), the analyses of the intercept parameter in the MR-Egger models
did not reveal any signs of horizontal pleiotropy, and the effects were not affected by the
removal of the outlier SNPs identified by the MR-PRESSO algorithm (Tables 1, 2, S5 and S6).
Furthermore, leave-one-out analyses did not highlight that these effects were influenced
only by one variant (Figure A2).
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We decided to implement an MVMR model, considering the significant associations
observed for WHRadjBMI and the limitations of the univariate models, to test for the
combined influence of several exposures and to control for the effect of confounding
factors. This analysis allowed us to directly test the association of BMI and WHR with SSc,
controlling for the effects of both parameters at the same time. As expected, the results of
these analyses show an effect for WHR (MVMR OR 0.80 [95% CI 0.57–1.13]) that is similar
to the previously identified effect for WHRadjBMI (Table 3). Nevertheless, no significant
association of BMI with SSc was revealed (MVMR OR 1.03 [95% CI 0.79–1.33]) (Table 3).
These findings might point towards a negative or inexistent effect of WHR in SSc and, if
any, a very modest risk effect for BMI.

Table 2. Association between genetically predicted obesity-related traits and risk of SSc. Analysis
including index and secondary signals for the obesity-related traits and excluding the HLA region
and known obesity-related confounder SNPs. BMI: body mass index, WHR: waist to hip ratio,
WHRadjBMI: WHR adjusted for BMI, MR: Mendelian randomization, nSNPs: number of single
nucleotide polymorphisms, OR: odds ratio, CI: confidence interval, p: p value, p adj: p value after
FDR correction for multiple testing, IVW: inverse-variance weight, PRESSO: pleiotropy residual sum
and outlier, NA: not applicable.

Index and Secondary SNPs (p < 5 × 10−9)

MR Approach nSNPs OR (95% CI) p p adj p for Heterogeneity or
Pleiotropy

MR-Egger
483

1.422(0.721–2.803) 0.3103 0.3103 0.1769
Random-effects IVW 0.909(0.741–1.115) 0.3598 0.3598 0.0011

B
M

I

MR-PRESSO (1) * 0.922(0.754–1.128) 0.4288 NA NA

MR-Egger
221

0.301(0.086–1.060) 0.0629 0.09435 0.1391
Random-effects IVW 0.752(0.535–1.057) 0.1007 0.15105 < 0.001

W
H

R

MR-PRESSO (2) * 0.764(0.559–1.044) 0.0927 NA NA

MR-Egger
237

0.335(0.137–0.819) 0.0172 0.0516 0.0772
Random-effects IVW 0.716(0.534–0.961) 0.0261 0.0783 < 0.001

W
H

R
a

dj
B

M
I

MR-PRESSO (1) * 0.769(0.582–1.015) 0.0651 NA NA
* Number of outlier SNPs detected by MR-PRESSO.

Table 3. Multivariable MR (MVMR) model including BMI. WHR and risk of SSc. Analysis including
index and secondary signals for the obesity-related traits and excluding the HLA region, with and
without known obesity-related confounding SNPs. BMI: body mass index, WHR: waist to hip ratio,
MR: Mendelian randomization, nSNPs: number of single nucleotide polymorphisms, OR: odds ratio,
CI: confidence interval, p: p value.

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 8 of 14 
 

 

We decided to implement an MVMR model, considering the significant associations 
observed for WHRadjBMI and the limitations of the univariate models, to test for the com-
bined influence of several exposures and to control for the effect of confounding factors. 
This analysis allowed us to directly test the association of BMI and WHR with SSc, con-
trolling for the effects of both parameters at the same time. As expected, the results of 
these analyses show an effect for WHR (MVMR OR 0.80 [95% CI 0.57–1.13]) that is similar 
to the previously identified effect for WHRadjBMI (Table 3). Nevertheless, no significant 
association of BMI with SSc was revealed (MVMR OR 1.03 [95% CI 0.79–1.33]) (Table 3). 
These findings might point towards a negative or inexistent effect of WHR in SSc and, if 
any, a very modest risk effect for BMI. 

Table 3. Multivariable MR (MVMR) model including BMI. WHR and risk of SSc. Analysis including 
index and secondary signals for the obesity-related traits and excluding the HLA region, with and 
without known obesity-related confounding SNPs. BMI: body mass index, WHR: waist to hip ratio, 
MR: Mendelian Randomization, nSNPs: number of Single Nucleotide Polymorphism, OR stand for 
Odd Ratio, CI: confidence interval, p: p value. 

Before Confounder SNP Removal. After Confounder SNP Removal 

Index and secondary SNPs (p < 5 × 10−9) Index and secondary SNPs (p < 5 × 10−9) 

Outcome Exposure nSNP OR (95% CI) p Outcome Exposure nSNP OR (95% CI) p 

SSc 
BMI 666 1.026(0.79–1.331) 0.849 

SSc 
BMI 610 1.027(0.760–1.387) 0.863 

WHR 666 0.804(0.573–1.128) 0.207 WHR 610 0.812(0.552–1.195) 0.291 

Index SNPs (p < 5 × 10−9) Index SNPs (p < 5 × 10−9) 

Outcome Exposure nSNP OR (95% CI) p Outcome Exposure nSNP OR (95% CI) p 

SSc 
BMI 581 0.99(0.749–1.309) 0.946 

SSc 
BMI 524 1.013(0.726–1.412) 0.941 

WHR 581 0.876(0.607–1.263) 0.477 WHR 524 0.881(0.574–1.352) 0.561 

Considering the well-known clinical and genetic differences between the SSc subsets 
of patients [35], we explored subset-specific effects for the selected exposures. Several as-
sociations remained significant in the stratified analyses, especially in the largest and more 
powerful subsets, such as lcSSc (Table S8). However, the direction and magnitude of the 
exposure effects were consistent in all the subsets (Table S8), which suggested a uniform 
effect, if any, in all the patients. There were no significant differences between the models 
with and without the secondary signals (Table S8). Moreover, taking into account the 
higher frequency of SSc in females (9 female: 1 male ratio) [8], we performed sex-specific 
analyses too. In these analyses, we relied on female-only and male-only GWAS summary 
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Considering the well-known clinical and genetic differences between the SSc subsets
of patients [35], we explored subset-specific effects for the selected exposures. Several
associations remained significant in the stratified analyses, especially in the largest and
more powerful subsets, such as lcSSc (Table S8). However, the direction and magnitude of
the exposure effects were consistent in all the subsets (Table S8), which suggested a uniform
effect, if any, in all the patients. There were no significant differences between the models
with and without the secondary signals (Table S8). Moreover, taking into account the higher
frequency of SSc in females (9 female: 1 male ratio) [8], we performed sex-specific analyses
too. In these analyses, we relied on female-only and male-only GWAS summary statistics
for both SSc and the obesity-related risk factors. Once more, although the risk effect of BMI,
WHR and WHRadjBMI seemed more evident in men, these effects did not reach statistical
significance (Table S8).

4. Discussion

This report addressed the risk effect of body fat distribution in SSc for the first time. We
exhaustively exploited public GWAS summary statistics for both SSc and for anthropometric
traits and the development of novel MR methods. We did not observe global genomic corre-
lation between the outcome and any of the exposures. Moreover, local genetic correlation
was only found in the HLA locus, a highly complex region. Different MR methods were
then applied to identify possible causal relationships between the obesity traits and SSc.
However, no significant causal risk effect of the exposures was found in this case.

Although our results do not support the causal relation between exposures and
outcome, it should be noted that the statistical power of the SSc dataset is modest compared
to similar studies performed to date in other IMDs, such as RA or IBD [36] (Table S2). SSc
is a rare IMD and, despite recent advances [1,2,26], the recruitment of large patient cohorts
remains challenging. Therefore, future efforts to enlarge the size or to complement the
available SSc GWAS information might help to identify causal risk factors.

We found that the effect of confounders might be more severe in the case of SSc than
in other IMDs. Gastrointestinal involvement (GI), which affects more than 70% of SSc
patients [36], hinders food ingestion, and patients are mostly thin [37]. In fact, weight loss
has been used as one of the SSc diagnostic markers [35]. This direct effect of the onset
symptoms in the exposures is known as reverse causality, and it is a remarkably difficult
confounding factor to control for [38]. Reverse causality might be the cause behind both the
lack of significant risk effects of BMI in SSc and the reported negative relationship between
WHR and SSc, which becomes more evident when the effect of BMI is subtracted in the
analysis of WHRadjBMI (Tables 1 and 2, Table S5 and Table S6).

Bad diet habits and obesity are associated with an increased risk to suffer from IMDs
such as RA and IBD [19,20,39]. Higher BMI has been associated with increased risk to
Crohn’s disease (CD) and Rheumatoid Arthritis (RA), but negative associations with
BMI have been reported for ulcerative colitis (UC), and a recent study found reverse
causality between WHR and RA [19,20,39]. IMDs are often present as comorbidities and
share altered molecular pathways, environmental triggers and genetic risk factors [40].
Furthermore, the role of adipocytes in the activation of the immune system is prominent,
especially due to the release of adipokines [41]. Adipokines are molecules known to be
involved in the “obesity–autoimmunity” relationship [13,42], such as lectins or cytokines,
especially adiponectin, but also interleukins and tumor necrosis factor alpha (TNFA) [13].
Interestingly, patients with SSc and a high BMI have been shown to have higher lectin levels
than healthy controls [43], and it has been established that subcutaneous adipocytes can act
as progenitor cells for fibroblasts [44,45]. These fibroblasts may eventually transdifferentiate
into myofibroblasts [46], activated profibrotic fibroblasts that are characteristic of the fibrotic
lesions observed in SSc patients, and recent evidence has shown that the activation of
adipocyte-derived mesenchymal cells from SSc skin biopsies to myofibroblasts is possible
using soluble molecules present in the skin microenvironment in SSc [47].
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In order to rule out the role of obesity as a risk factor for SSc, body fat distribution
measures from the patients before the onset of GI or BMI-matched case-control sets would
be very valuable resources.

The negative association that is observed for WHR might be due to additional confound-
ing factors that are inherent to SSc and that affect body fat distribution, for example, sex or
lipid profiles [15]. Remarkably, WHR is different in women than in men and there is a clear
sex bias in SSc [35]. Therefore, we hypothesized that there could be a sex-specific association
and performed stratified analyses with the female and male cohorts separately. Our results
show significant causal associations with SSc only in females, but considering the statistical
power differences and the similarity between the effect sizes, the lack of significance for the
male group may be likely due to the reduced sample size (Table S4). The key role of sample
size as a limitation of our study to identify weak risk effects was also clear in other stratified
analyses, as we found consistent ORs for all the tested clinical subtypes of SSc patients, but
the models reached statistical significance only in the largest subsets (Table S8).

In conclusion, this study found no significant evidence that supported the role of body fat
distribution as a causal risk factor for SSc using 2SMR methods. Nevertheless, the current GWAS
have a limited statistical power to identify modest contributions to SSc risk and the intrinsic
nature of the SSc clinical complications might be acting as potential constraints in this study.
Consequently, further analyses are needed to rule out the role of obesity in the onset of Ssc.
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