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Simple Summary: Early detection of PCa (PCa) has evolved towards clinically significant PCa (csPCa)
after the spread of pre-biopsy multiparametric magnetic resonance imaging (mpMRI). However,
PCa suspicion remains based on prostate-specific antigen (PSA) elevation and/or abnormal digital
rectal examination (DRE). This change of paradigm and approach has reduced unnecessary prostate
biopsies and overdetection of insignificant PCa, while the demand for mpMRI has skyrocketed
despite its implementation not being allowed at all sites. The European Association of Urology (EAU)
proposes risk-organized models for early detection of csPCa stratifying the initial PCa suspicion to
reduce MRI scans and then prostate biopsies after mpMRI. Risk calculators are efficient tools for
individualizing the risk of csPCa, especially when prostate volume is included in the predictive
models. After the development and external validation of the Barcelona MRI risk calculator (BCN-
RC 2) for the selection of candidates for prostate biopsy, we have now developed and externally
validated BCN-RC 1 with the aim of reduce mpMRI demand. Both BCN-RC 1 and RC 2 are ready to
be integrated in a risk-organized model for early detection of csPCa.

Abstract: A predictive model including age, PCa family history, biopsy status (initial vs repeat), DRE
(normal vs abnormal), serum prostate-specific antigen (PSA), and DRE prostate volume ca-tegory
was developed to stratify initial PCa suspicion in 1486 men with PSA > 3 ng/mL and/or abnormal
DRE, in whom mpMRI followed; 2- to 4-core TRUS-guided biopsies where Prostate Imaging Report
and Data System (PI-RADS) > 3 lesions and/or 12-core TRUS systematic biopsies were performed
in one academic institution between 1 January 2016–31 December 2019. The csPCa detection rate,
defined as International Society of Uro-Pathology grade group 2 or higher, was 36.9%. An external
validation of designed BCN-RC 1 was carried out on 946 men from two other institutions in the same
metropolitan area, using the same criteria of PCa suspicion and diagnostic approach, yielded a csPCa
detection rate of 40.8%. The areas under the receiver operating characteristic curves of BCN-RC
1 were 0.823 (95% CI: 0.800–0.846) in the development cohort and 0.837 (95% CI: 0.811–0.863) in
the validation cohort (p = 0.447). In both cohorts, BCN-RC 1 exhibited net benefit over performing
mpMRI in all men from 8 and 12% risk thresholds, respectively. At 0.95 sensitivity of csPCa, the
specificities of BCN-RC 1 were 0.24 (95% CI: 0.22–0.26) in the development cohort and 0.34 (95% CI:
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0.31–0.37) in the validation cohort (p < 0.001). The percentages of avoided mpMRI scans were 17.2%
in the development cohort and 22.3% in the validation cohort, missing between 1.8% and 2% of csPCa
among men at risk of PCa. In summary, BCN-RC 1 can stratify initial PCa suspicion, reducing the
demand of mpMRI, with an acceptable loss of csPCa.

Keywords: prostate cancer; suspicion; clinically significant; predictive model; risk calculator; external
validation; magnetic resonance imaging; development; external validation

1. Introduction

The European Randomised Screening Prostate Cancer (ERSPC) trial continues to show
that early detection of clinically significant prostate cancer (csPCa) decreases PCa mortal-
ity beyond twenty years of follow-up [1]. After the stated position of the US Preventive
Services Task Force against PCa screening with prostate-specific antigen (PSA), due to
the high percentage of unnecessary prostate biopsies and overdetection of insignificant
PCa (iPCa) [2], early detection of PCa has evolved towards csPCa due to the spread of
pre-biopsy multiparametric magnetic resonance imaging (mpMRI) [3]. However, PCa
suspicion remains based on serum PSA elevation and/or abnormal digital rectal exami-
nation [4,5]. Currently, mpMRI exhibits a high enough negative predictive value to allow
for the avoidance of prostate biopsies when the Prostate Imaging Report and Data Sys-
tem (PI-RADS) score is less than 3 [6]. In addition, mpMRI also allows targeted biopsies
on suspicious lesions, improving the sensitivity for csPCa of classic systematic prostate
biopsies [7,8]. Therefore, the current approach of csPCa requires pre-biopsy mpMRI after
serum PSA > 3.0 ng/mL and/or abnormal DRE and targeted biopsies to Prostate Imaging
Report and Data System (PI-RADS) lesions ≥ 3, complemented with systematic prostate
biopsies [4]. This paradigm change in the early detection of PCa has triggered the demand
for mpMRI scans, which are not allowed at some sites [9]. In experienced centers, mpMRI
has been replaced with biparametric MRI (bpMRI), reducing the MRI scan time fourfold
while maintaining the quality and reproducibility of PI-RADS [10]. Further, PSA density,
modern markers, and predictive models have been proposed to improve the selection of
candidates for prostate biopsy after MRI in uncertain scenarios where a high percentage of
unnecessary biopsies or overdetection of iPCa remain [11]. However, any increase in the
current cost of early detection of csPCa is generally rejected [12]. The European Association
of Urology (EAU) proposes risk-organized models of early detection of csPCa based on
stratifying the initial PCa suspicion to reduce unnecessary MRI scans and, after that, a new
stratification for reducing unnecessary prostate biopsies [9,13].

Prostate volume is a valuable predictor of csPCa, its inverse relationship with csPCa
risk having recently been confirmed in a systematic review of studies carried out over the
last thirty years [14]. An accurate prostate volume is essential for PSA density calculation,
requiring measurement by transrectal ultrasonography (TRUS) since its introduction [15].
Today, MRI provides the most accurate prostate volume measurement [16]; TRUS is mainly
used to perform prostate biopsies but infrequently to assess prostate volume alone [17].
However, prostate volume is needed for PSA density calculation and for some new markers
assessment [18] to improve the efficacy of predictive models to stratify the initial suspicion
of PCa [9]. Roobol et al. showed how the Rotterdam risk calculator´s prostate volume
estimated with DRE can replace TRUS prostate volume [19,20]. Classically, urologists have
performed a complete DRE, with great efficiency, detecting abnormalities in the posterior
prostate gland surface and categorizing the prostate volume [21]. Regrettably, the use of
DRE is limited even among physicians who diagnose and treat prostate cancer [22].

After developing and externally validating the Barcelona MRI predictive model and
designing the risk calculator, now named BCN-RC 2, for selecting proper candidates for
prostate biopsy after mpMRI [23], we aim to develop a new predictive model of csPCa
to stratify the initial suspicion of PCa, including the DRE prostate volume category, for
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avoiding unnecessary MRI scans. External validation of designed web BCN-RC 1 in the
Barcelona metropolitan area was also performed. Our second objective is to propose a risk-
organized model for the early detection of csPCa by sequencing both BCN-RC 1 and RC 2.

2. Materials and Methods

This predictive model was developed and externally validated from the same cohorts
in which BCN-RC 2 was developed and externally validated.

2.1. Development Cohort

A group of 1486 men with serum PSA > 3 ng/mL and/or abnormal DRE were recruited
from 1 January 2016–31 December 2019 in an academic institution of the metropolitan area
of Barcelona (Vall d´Hebron Hospital), Spain. Pre-biopsy 3 Tesla mpMRI was performed
followed by 2- to 4-core transrectal TRUS visual-guided biopsies for all PI-RADS v.2
>3 lesions and 12-core TRUS systematic biopsy and 12-core TRUS systematic biopsy in men
with PI-RADS v.2 < 3. The dataset was recruited prospectively according to the standards
of reporting for MRI-targeted biopsy studies (START) [24]. Men under 5-α reductase
inhibitors and prior PCa detected were excluded, as well as those with prior atypical small
acinar proliferation or high-grade prostate intraepithelial neoplasia with atypia.

2.2. Validation Cohort

The validation was formed with 946 men with the same criteria of PCa suspicion as
those of the development cohort, retrospectively recruited in two academic institutions (Parc
de Salut Mar and Germans Trias i Pujol Hospital) of the Barcelona metropolitan area, Spain.
The diagnostic approach of csPCa was also the same as that of the development cohort.

2.3. MpMRI Characteristics

MpMRI was acquired with 3-Tesla scanners and surface phased-array coil. T2-weighted
imaging (T2W), diffusion-weighted imaging (DWI), and dynamic-contrast-enhanced (DCE)
imaging were analyzed according to the guidelines of European Society of Urogenital
Radiology [25]. An expert radiologist with more than three years’ experience and more
than 300 reports per year reported mpMRI scans with the PI-RADS v.2.0 [26]. All reports of
mpMRI included the prostate volume.

2.4. DRE-Prostate Volume Category Assessment

The prostate volume categories assessable with DRE were defined as category I when
MRI prostate volume was less than 30 mL, category II when it was between 30 and 59 mL,
and category III when MRI prostate volume was 60 mL or higher [19,20].

2.5. CsPCa Definition

All cores were separately submitted to the pathology departments. Expert pathologists
analyzed material and csPCa was defined by the International Society of Uro-Pathology
(ISUP) grade group 2 or higher [27].

2.6. Predictive Model Development

Age (years), ethnicity (Caucasian vs non-Caucasian), serum PSA level (ng/mL), DRE
(normal vs abnormal), PCa family history (no vs first-degree), biopsy status (biopsy-naïve
vs prior negative biopsy), and DRE prostate volume category (I to III) were explored as
predictive variables of csPCa.

2.7. Endpoint Measurements

Avoided mpMRI scans and missed csPCa.
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2.8. Statistical Analysis

Reporting tumour marker prognostic studies recommendations were followed (RE-
MARK) [28], as well as update standards for reporting diagnostic accuracy studies (STARD
2015) [24]. Comparison between proportions and medians were made with the chi-squared
test and Mann–Whitney U tests. A binary logistic regression of csPCa candidate predictors
was used to generate the predictive model. Continuous variables were modeled as linear
or nonlinear predictors using restricted cubic splines. Calibration of the predictive model
was assessed in developed and validation cohorts. Discrimination ability was assessed
from receiver operating characteristic (ROC) curves [29], and areas under the curve (AUC)
were compared with the DeLong test [30]. The net benefit of stratifying PCa suspicion
with the predictive model and perform mpMRI to all men was analyzed with decision
curve analysis (DCA) [31]. Clinical utility was assessed via clinical utility curve (CUC),
exploring potential rates of missed csPCa and avoided mpMRI scans [32]. Specificities for
the 80, 85, 90, and 95% sensitivity of csPCa of the predictive model in development and
external validation cohorts were compared with chi-squared test. Sensitivity, specificity,
and positive and negative predictive value were analyzed, and the rates of avoidable MRI
exams and potentially undetected csPCa were analyzed. Odds ratios (OR) and 95% confi-
dence intervals (CI) were calculated. For external validation, transparent reporting of the
multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statements
followed. Statistical analysis was conducted with the R programming language v.4.0.3
(R Foundation for Statistical Computing, Vienna, Austria) and SPSS v.25 (IBM, statistical
package for social sciences, San Francisco, CA, USA).

3. Results
3.1. Characteristics of the Development and Validation Cohorts

Characteristics of the development and validation cohorts are summarized in Table 1.
We note significance in younger men with higher serum PSA in the external validation
cohort (p < 0.001). We also note a higher percentage of abnormal DRE and repeat prostate
biopsies in the validation cohort, compared with a lower percentage of men with PCa family
history (p < 0.001). Prostate volume was similar in both cohorts (p = 0.559). Caucasian
ethnicity was predominant in both cohorts (p = 0.738). A similar distribution of DRE
prostate volume categories was observed in both cohorts (p = 0.675). There was a different
case-mix of PI-RADS categories in both cohorts (p < 0.001). An increased trend of csPCa
and a significant increase of iPCa (p < 0.001) was found in the validation cohort (p = 0.058).
The distribution of csPCa according to the PI-RADS categories was similar in both cohorts
when they were > 3, and a higher percentage of csPCa existed in men with PI-RADS < 3 in
the validation cohort (p < 0.001).

Table 1. Characteristics of men making up the development and validation cohort.

Variable Development Cohort Validation Cohort p-Value

Number of men 1486 946 -
Caucasian ethnicity, n (%) 1.465 (98.6) 931 (98.4) 0.738

Median age at biopsy (IQR), years 69 (62–74) 67 (61–72) <0.001
Median serum PSA (IQR), ng/mL 6.0 (4.4–9.2) 7.4 (5.5–10.9) <0.001

Abnormal DRE, n (%) 329 (22.1) 283 (29.9) <0.001
PCa family history, n (%) 127 (8.5) 34 (3.6) <0.001

Prior negative prostate biopsy, n (%) 388 (26.1) 293 (31.0) =0.010
Median prostate volume (IQR), mL 55 (40–76) 55 (40–78) =0.559

DRE-prostate volume category, n (%) =0.675
I 140 (9.4) 96 (10.2)
II 681 (45.8) 417 (44.2)
III 665 (44.8) 431 (45.7)
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Table 1. Cont.

Variable Development Cohort Validation Cohort p-Value

PI-RADS v.2.0, n (%) <0.001
1 242 (16.3) 185 (19.6)
2 73 (4.9) 50 (5.3)
3 444 (29.9) 201 (21.2)
4 450 (30.3) 391 (41.3)
5 277 (18.6) 119 (12.6)

PCa detection, n (%) 693 (46.6) 521 (55.1) <0.001
csPCa detection, n (%) 548 (36.9) 386 (40.8) =0.058
iPCa detection, n (%) 145 (9.8) 135 (14.3) <0.001

csPCa detection according to PI-RADS <0.001
<3 13 (4.1) 42 (17.9)
3 68 (15.3) 41 (20.4)
4 236 (52.4) 203 (51.9)
5 231 (83.4) 100 (84.0)

IQR = interquartile range; n = number; PSA = prostatic specific antigen; DRE = digital rectal examination;
PI-RADS = Prostate Imaging Reporting and Data System; PCa = prostate cancer; csPCa = clinically significant
PCa; iPCa = insignificant PCa; I = up to 30 mL; II = between 30 and 59 mL; III = 60 mL or above.

3.2. Development of the Predictive Model and Its Calibration in the Development and
Validation Cohorts

Independent predictors of csPCa were selected to generate the predictive model; ORs
with 95% CIs in univariate and multivariate analysis are presented in Table 2. We note that
the DRE prostate volume category was an independent predictor of csPCa. The non-linear
dependence of PSA analysed by restricted cubic splines was adjusted by a logarithmic
transformation. The developed nomogram is presented in Figure 1. Calibration curves of
the developed model in the development and validation cohorts are presented in Figure 2.
We note a good agreement between predictions and real outcomes in both development
(A) and validation (B) cohorts. In the validation cohort, a slight underestimation of csPCa
incidence was observed with a calibration of approximately 0.118, showing a minimum
difference between the mean observed and the mean predicted and an almost perfect slope
of 1.013.

Table 2. Odds ratios and 95% confidence intervals for csPCa of independent predictive values in
univariate and multivariate analysis.

Predictive Variable Univariate OR (95% CI) p-Value Multivariate OR (95% CI) p-Value

Age at biopsy, years 1.08 (1.06–1.09) <0.001 1.08 (1.06–1.10) <0.001
Median log serum PSA, ng/mL 8.03 (5.31–12.14) <0.001 12.96 (7.69–21.84) <0.001

Abnormal DRE, yes vs. no 4.51 (3.48–5.84) <0.001 3.19 (2.34–4.34) <0.001
PCa family history, yes vs. no 1.77 (1.23–2.56) =0.002 1.69 (1.06–2.68) =0.026
Prior negative prostate biopsy,

yes vs. no 0.68 (0.53–0.87) =0.002 0.63 (046–0.85) =0.003

DRE-prostate volume category,
II vs. I 0.37 (0.25–0.55) <0.001 0.35 (0.22–0.55) <0.001

DRE-prostate volume category,
III vs. I 0.11 (0.07–0.16) <0.001 0.07 (0.04–0.12) <0.001

O.R. = odd ratio; C.I. = confidence interval; PCa =prostate cancer; DRE =digital rectal examination; PSA =prostate-
specific antigen; I = < 30 mL; II = 30–59 mL; III = > 60 mL.
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Figure 2. Calibration curves of predictive model in development cohort (A) and validation cohort (B).

3.3. Discrimination Ability of BCN-RC 1 for csPCa, Net Benefit over Performing mpMRI in All
Men, Clinical Utility and Performance in the Development and Validation Cohorts

A web app for BCN-RC 1 was designed and is freely available with the BCN-RC 2 at
https://mripcaprediction.shinyapps.io/MRIPCaPrediction/ (accessed on 16 October 2022).
The discrimination ability for csPCa of BCN-RC 1 in the development and validation co-
horts, analysed through ROC curves, are presented in Figure 3. The AUC of BCN-RC 1 was
0.823 (95% CI: 0.800–0.846) in the development cohort and 0.837 (95% CI: 0.810–0.863) in
the validation cohort (p = 0.447).

BCN-RC 1 showed net benefit, analysed with DCAs, over performing mpMRI in all
men in the development cohort from 12% threshold probability (A) and from 8% threshold
probability in the validation cohort (B), Figure 4.

Finally, the clinical utility of BCN-RC 1 in the development and validated cohorts is
reported through CUCs in Figure 5. Percentages of avoided mpMRI and missed csPCa are
presented for a continuous expression of csPCa risk threshold.

https://mripcaprediction.shinyapps.io/MRIPCaPrediction/
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Specificities obtained with the probability thresholds at 0.80 to 0.95% sensitivities
for csPCa are presented in Table 3. We note that at 11.1% and 13.3%, which were the
0.95 sensitivity thresholds, that specificity in the development cohort was 0.24 (95% CI:
0.22–0.26), compared with 0.34 (95% CI: 0.31–0.37) in the validation cohort (p < 0.001),
Table 3. At 0.80 and 0.85 sensitivities, the specificities were similar in both development
and validation cohorts, while at 0.90 and 0.95 sensitivities, the specificities in the validation
cohort were significantly higher than those observed in the development cohort.

Table 3. Specificities of developed predictive model corresponding to sensitivities of 0.80, 0.85, 0.90,
and 0.95 in the development and validation cohorts.

Sensitivity
Development Cohort Validation Cohort

p Value
Specificy (95% CI) Threshold (%) Specificy (95% CI) Threshold (%)

0.80 0.70 (0.68–0.72) 30.8 0.70 (0.67–0.73) 30.3 0.927
0.85 0.59 (0.56–0.61) 23.4 0.63 (0.59–0.66) 25.1 0.187
0.90 0.45 (0.43–0.48) 17.2 0.53 (0.49–0.56) 30.3 <0.001
0.95 0.24 (0.22–0.26) 11.1 0.34 (0.31–0.37) 13.3 <0.001

CI = confidence interval.

We found that, using the probability threshold of missing 5% of all detected csPCa,
which represents 1.8% and 2% of missed csPCa among the men at risk of PCa in the
development and validation cohorts, respectively, the percentage of saved mpMRI scans
was 17.2% in the development cohort but reached up to 22.3% in the validation cohort
(p < 0.001) (Table 4, Figure 5). Performance parameters of BCN-RC 1 at 0.95 sensitivity
threshold (11.1%) in the development cohort and validation cohort (13.3%) are presented in
Table 4.

Table 4. Performance of developed predictive model of csPCa in development and validation cohorts
from the 95% sensitivity threshold of csPCa of the development cohort.

Parameter Development Cohort Validation Cohort

Sensitivity, number (%) 520/548 (95.0) 367/386 (95.0)
Specificity, number (%) 228/938 (24.3) 192/560 34.3)

Positive predictive value, number (%) 520/1230 (42.3) 367/737 (49.8)
Negative predictive value, number (%) 228/256 (89.1) 192/209 (91.9)

Accuracy, number (%) 748/1486 (50.3) 559/946 (59.1)
Avoided mpMRI exams, number (%) 256/1486 (17.2) 211/946 (22.3)

Missed csPCa, number (%) 28/548 (5.0) 19/386 (5.0)
Odds ratio (95% confidence interval) 6.19 (4.06–9.43) 9.92 (6.06–16.24)

MpMRI = multiparametric magnetic resonance imaging.

Finally, Table 5 describes the number of missed csPCa and saved mpMRI scans in
a hypothetical 1000 men with PCa suspicion in the development and validation cohorts
according to threshold probabilities of csPCa from 1 to 100%.

Table 5. Number of missing csPCa and mpMRI scans saved for different thresholds in a hypothetical
1000 cases of PCa suspicion in development and validation cohorts.

Threshold
Probability

Development Cohort Validation Cohort

Missed csPCa Saved mpMRI Missed csPCa Saved mpMRI

1 0 0 0 0
2 0 1 1 2
3 0 7 2 6
4 1 20 2 17
5 2 38 2 35
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Table 5. Cont.

Threshold
Probability

Development Cohort Validation Cohort

Missed csPCa Saved mpMRI Missed csPCa Saved mpMRI

6 3 55 3 49
7 7 81 6 74
8 8 97 7 106
9 11 124 10 127
10 15 146 11 150
11 19 170 14 177
12 24 197 16 195
13 27 224 20 217
14 29 247 22 238
15 30 278 22 259
16 32 295 27 280
17 36 318 31 302
18 39 336 34 317
19 40 353 35 326
20 43 374 38 344
21 46 392 44 369
22 52 410 49 379
23 54 424 52 395
24 58 439 56 418
25 60 451 59 428
26 63 466 64 442
27 65 476 70 456
28 67 491 73 468
29 68 497 74 478
30 73 507 79 494
35 87 569 98 543
40 110 625 117 592
45 125 664 137 631
50 145 699 154 670
55 168 742 178 709
60 196 779 197 743
65 219 817 214 768
70 232 836 234 800
75 257 865 259 832
80 278 898 291 872
85 300 925 317 904
90 320 950 350 938
95 342 973 370 961

100 369 1000 408 1000
mpMRI = multiparametric magnetic resonance imaging; csPCa = clinically significant prostate cancer.

4. Discussion

The designed BCN-RC 1 model, based on a new developed predictive model using
the DRE prostate volume category, was validated in the Barcelona metropolitan area with
the aim of stratifying initial suspicion of PCa to avoid unnecessary mpMRI scans. Since
pre-biopsy mpMRI and guided biopsies were performed on all suspicious lesions, BCN-
RC1 predicts csPCa risk even in the anterior prostate gland. The new BCN-RC 1 and
BCN-RC 2, designed for selecting men for prostate biopsy after mpMRI [23], could be
sequenced to establish a risk-organized model for early detection of csPCa in the Barcelona
metropolitan area, where both risk calculators were validated. This risk-organized model
can be especially useful in sites where access to mpMRI is limited [9,13].

The prestigious Rotterdam risk calculator was designed from the predictive models de-
veloped among the participants of the Rotterdam section of the ERSPC trial. The Rotterdam
RC 3 and RC 4 calculators were designed before the spread of mpMRI to individualize the
risk of PCa and high-grade PCa in biopsy-naïve men and those with prior negative prostate
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biopsy, respectively [33]. After the recommendation of pre-biopsy mpMRI, both risk cal-
culators have been validated for selecting candidates for MRI [34,35]. Both Rotterdam
RC 3 and RC 4 initially included the serum PSA, DRE (normal vs abnormal), hypoechoic
areas in TRUS (presence vs absence), and prostate volume assessed from TRUS as predictive
variables [34]. However, since 2012, it has been possible to introduce the estimated prostate
volume with DRE. This modification was motivated by TRUS prostate volume usually not
being available at initial PCa suspicion [19–21]. DRE categories were established from the
TRUS prostate volume intervals of less than 30 mL, 30 to 59 mL, and 60 mL or above [34,35].
Under these conditions, Alberts et al. analysed Rotterdam RC 4 in 122 men with suspected
PCa and prior negative prostate biopsy, in 26% of whom csPCa was detected. Using a
3% risk threshold for csPCa, Rotterdam RC 4 avoided 51% of mpMRI scans missing 9.7%
of detected csPCa [34]. Similarly, Manners et al. analysed Rotterdam RC 3 in 200 biopsy-
naïve suspected PCa men in 33.5% of whom csPCa was detected. After adjusting the risk
threshold to 4%, 36.5% of mpMRI scans were avoided, missing 6% of detected csPCa [35].
Remmers et al., in a recent analysis of the current Rotterdam risk calculator without MRI,
among the 206 men of the PRECISION trial MRI arm, in whom 70 csPCa were diagnosed,
observed after recalibration of the model and adjustment of the risk threshold, there was
13.1% reduction in MRI scans, missing 7.1% of detected csPCa [36].

The new BCN-RC 1 includes the same clinical predictive variables as BCN-RC 2, except
those derived from mpMRI. Age (years), PCa family history (yes vs no), biopsy status (naïve
vs repeat), serum PSA (ng/mL), DRE (normal vs abnormal), and DRE prostate volume
category (which substituted the MRI prostate volume), were found to be independent
clinical predictors of csPCa in logistic regression analysis. The calibration curves showed
a good agreement between predictions and the real outcome in both development and
validation cohorts. The discrimination ability of csPCa was similar in both development
and validation cohorts, despite their four-percentage-point difference in csPCa detection.
The observed AUCs were like those reported by Alberts et al. in men with previous
negative prostate biopsy [34]. Manners et al. [35] and Remmers et al. [36] did not report
the discrimination ability of Rotterdam RC in their studies. In both development and
validation cohorts, we observed net benefit of BCN-RC 1 over performing mpMRI for all
men when from a risk threshold of csPCa between 8 to 12%. We estimated the performance
of BCN-RC 1 with different sensitivities; however, with the 0.95 sensitivity of csPCa, which
is in our opinion appropriate at initial PCa suspicion, the specificities in the development
and validation cohort were 0.24 and 0.34, respectively, which allowed avoidance of 17.2%
and 22.3% of mpMRI scans, respectively. These percentages of saved mpMRI scans were
below the 51% reported with Rotterdam RC 4 and the 36.5% reported with Rotterdam RC 3,
although the reported missed high-grade PCa percentages were 6% and 9.7%, respectively,
compared with the up to 5% fixed for BCN-RC 1 [34,35]. In the recent Rotterdam RC 3
analysis, carried out in the PRECISION trial MRI arm, the percentage of avoided mpMRI
decreased to 13.1% compared to the 36.5% reported by Manners et al., with percentages of
missed csPCa of 7.1% and 6%, respectively [35,36]. We also have analysed the behaviour of
BCN-RC 1 in a hypothetical 1000 men with PCa suspicion, observing that while missing
5% of detected csPCa, 410 mpMRI would be saved in the development cohort, compared
to 382 in the validation cohort. Comparisons between Rotterdam RC 3 and RC 4 with
BCN-RC 1 are difficult because it was developed to stratify the initial PCa suspicion of
any men, whether biopsy-naïve or with previous negative prostate biopsy. The validation
studies of Rotterdam RC 3 and RC 4 were performed with the based TRUS prostate volume,
whereas we used the DRE prostate volume category estimated from the MRI prostate
volume [19,20]. Regrettably, DRE is not routinely performed to suspect PCa [22], which
is why we report the routine and complete achievement of DRE at initial PCa suspicion,
assessing the prostate volume category beyond the abnormalities in the posterior prostate
gland surface [20].
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The web app of BCN-RC 1 was designed from a predictive model developed and ex-
ternally validated in sizable cohorts of consecutive men of the same metropolitan area, with
the same criteria of PCa suspicion and following the same diagnostic approach of csPCa,
without limitations in age, serum PSA, or prostate volume as exist in the Rotterdam RCs.
Even so, we found a 4% difference between the csPCa detection observed in development
and validation cohorts, which was a stressful scenario for the predictive model. Despite
this difference, the discrimination ability of the developed predictive model remained, and
the rate of avoided mpMRI even increased somewhat in the validation cohort. Our study is
limited by the fact that we assumed DRE accurately classifies the prostate volume category
assessed from MRI. Roobol et al. made the same assumption regarding TRUS reported
prostate volume due to previous evidence [19,20]. Recently, Massanova et al. confirmed
a good correlation between the DRE estimated prostate volume with that assessed from
MRI [37]. However, we believe that prospective analysis to define accurate MRI prostate
volume intervals assessed by DRE categories is needed. Additionally, the current study
takes on the limitations of predictive models that provide the specific risk of csPCa based
on the landscapes in which they are developed [33]. The essential web or smartphone risk
calculators need validation in each population where they will be conducted. Usually, exter-
nal validations are carried out in populations with different characteristics and landscapes
than those of a development cohort, and recalibrations and adjustments of csPCa risk
thresholds are usually needed to obtain accurate predictions [38]. Because characteristics of
populations, PCa incidence, and diagnostic approaches frequently change, making accurate
real-time predictions adapted to the continuous evolution is challenging [39]. Continuous
updating of risk calculators from the feedback of new cases, integrating the generation of
big data, appropriate machine-learning algorithm design [40,41], and federated networks
will provide the opportunity to develop future predictive models and risk calculators
guaranteeing accurate and enduring overall and specific predictions [42].

Finally, we note that sequencing predictive tools are recommended for risk-orga-nised
models of early detection of csPCa, first stratifying the initial PCa suspicion to reduce
MRI demand and after MRI to reduce unnecessary prostate biopsies [9]. Remmers et al.,
after reducing 13.1% of mpMRI requests in a first stratification, observed how in a second
stratification with the Rotterdam RC, MRI decreased up to 20.9% of prostate biopsies,
whereas the percentage of missed csPCa increased from 7% to 8.6% [36]. Recently, the
initial PCa suspicion of 2881 men has been stratified to avoid MRI scans first from the
subset of men with serum PSA > 10 ng/mL and abnormal DRE [43], and thereafter with the
PSA density calculated from the prostate volume estimated with DRE, resulting in a 20.3%
reduction of MRI scans with 3.8% missing csPCa [21]. New combinations of appropriate
tools available before and after MRI for risk-organized models of early detection of csPCa
must be explored.

5. Conclusions

Currently, the EAU recommends risk-organized models for early detection of csPCa,
stratifying the initial suspicion of PCa for avoiding MRI scans, and then stratifying men
after MRI to avoid prostate biopsies. We have designed and validated BCN-RC 1 to
stratify the initial PCa suspicion to reduce mpMRI demand. BCN-RC 1 includes the same
clinical predictors as BCN-RC 2, except those derived from mpMRI, having substituted
the MRI derived prostate volume with the DRE prostate volume category. The new BCN-
RC 1 avoided between 17.2% and 22.3% mpMRI scans while missing 5% of detected csPCa,
which represented 1.8% of men at risk in the development cohort and 2% in the validation
cohort. We report efficient accomplishment of DRE in the early detection of csPCa for an
appropriate selection for mpMRI. BCN-RC 1 is ready to be sequenced with BCN-RC 2 in a
risk-organized model of csPCa.
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