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Abstract: Gastrointestinal stromal tumors (GISTs) harboring mutations in the PDGFRA gene occur
in only about 5–7% of patients. The most common PDGFRA mutation is exon 18 D842V, which
is correlated with specific clinico-pathological features compared to the other PDGFRA mutated
GISTs. Herein, we present a miRNA expression profile comparison of PDGFRA D842V mutant GISTs
and PDGFRA with mutations other than D842V (non-D842V). miRNA expression profiling was
carried out on 10 patients using a TLDA miRNA array. Then, miRNA expression was followed
by bioinformatic analysis aimed at evaluating differential expression, pathway enrichment, and
miRNA-mRNA networks. We highlighted 24 differentially expressed miRNAs between D842V and
non-D842V GIST patients. Pathway enrichment analysis showed that deregulated miRNAs targeted
genes that are mainly involved in the immune response pathways. The miRNA-mRNA networks
highlighted a signature of miRNAs/mRNA that could explain the indolent behavior of the D842V
mutated GIST. The results highlighted a different miRNA fingerprint in PDGFRA D842V GISTs
compared to non-D842Vmutated patients, which could explain the different biological behavior of
this GIST subset.

Keywords: gastrointestinal stromal tumors; GISTs; PDGFRA; D842V; miRNAs; microRNAs

1. Introduction

Gain-of-function mutations KIT and PDGFRA tyrosine kinases (TK) are responsible
for between 85 and 90% of gastrointestinal stromal tumors (GIST), with the latter occurring
only in approximately 5–10% of cases [1]. PDGFRA mutations commonly arise in exon
18 (~5%), with the Asp842Val (D842V) amino acid change accounting for more than 50% of
PDGFRA-mutated GIST. More rarely, PDGFRA mutations emerge in the juxtamembrane
domain encoded by exon 12 (~1%) or the ATP-binding domain coded by exon 14 (<1%) [1,2].
Irrespective of the exon, KIT or PDGFRA mutations lead to constitutive activation of these
receptors and downstream signals, including PI3K/AKT/mTOR and RAS/RAF/MAPK,
both essential for cell proliferation and survival [2–5]. Despite sharing downstream signal-
ing, the variety of KIT/PDGFRA mutants across their exonic sequences results in different
prognoses and responses to standard therapies with TK inhibitors (TKIs). Specifically,
PDGFRA D842V mutant GISTs (referred to as D842V GISTs) represented, until recently,
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one of the major unmet needs in GIST clinical management. Indeed, this mutation con-
fers primary resistance to first-line imatinib, and no proven efficacy is reported for the
other approved TKIs [6–12]. In fact, D842V GISTs were considered orphan drugs until
January 2021, when avapritinib demonstrated unprecedented clinical activity in this sub-
group of patients, thereby achieving FDA regulatory approval [13–15]. Despite the recent
achievement in the treatment of PDGFRA D842V GISTs, the therapeutic armamentarium
for this rare subgroup remains limited, as there are no other effective treatments beyond
avapritinib progression. In particular, the failure of identifying actionable events other than
the PDGFRA D842V mutation prevents the identification of novel targets and, therefore,
new drug development [16]. In addition, genetic alterations, epigenetic mechanisms play
a key role in disease biology by controlling gene expression at the post-transcriptional
level [3,17]. In this context, research interest in miRNAs has quickly increased and several
studies have investigated the role of miRNAs in GIST development, classification, and
prognosis [18–20]. However, most of the studies focused on KIT mutants or KIT/PDGFRA
wild-type (WT) GISTs, leaving the molecular biology of PDGFRA-mutant GISTs largely
unexplored. In view of these considerations, we performed a miRNA expression analysis
in PDGFRA D842V versus PDGFRA non-D842V GISTs. Additionally, we integrated the
results with the gene expression profile (GEP) [21] of the same sample set, previously
published, in order to construct an original miRNA-mRNA regulatory network that may
provide a significant contribution to future investigations, aiming at the identification of
novel targets.

2. Results
2.1. Differential miRNA Expression between PDGFRA D842V Mutant versus PDGFRA
Non-D842V Mutant GIST

The principal component analysis (PCA) did not show a clear difference between the
two subgroups (Figure S1). However, the array highlighted 24 deregulated miRNAs out of
the 768 analyzed. In particular, 10 miRNAs were upregulated and 14 were downregulated
in D842V GISTs compared to non-D842V GISTs. All the differentially expressed miRNAs
are reported in Table 1.

Table 1. Deregulated miRNAs identified comparing D842V vs. non-D842V GIST patients.

miRNA ID Delta Ct D842V vs.
Non-D842V p-Value Predicted Targets among the Deregulated

Gene in Our Cohort of Patients *

hsa-miR-1825 −5.31 ↑ 0.027 NLK(2)

hsa-miR-431-3p −4.96 ↑ 0.009

hsa-miR-20b-3p −3.87 ↑ 0.015

hsa-miR-149-3p −3.40 ↑ 0.037 SPRY4(2)

hsa-miR-9-5p −2.98 ↑ 0.038
GNPNAT1(2), SIRT1(3), CREB5(2),

POU2F1(3), BCL6(3), PXDN(3), RNF169(2),
FBN2(3), PTAR1(2), NIN(2)

hsa-miR-604 −2.82 ↑ 0.044

hsa-miR-661 −1.64 ↑ 0.049 IL17RA(2)

hsa-miR-133b −1.43 ↑ 0.032 PPP2R2D(2), SP1(2), ZHX3(2), CREB5(2),

hsa-miR-133a-3p −1.38 ↑ 0.044

hsa-miR-1233-3p −1.07 ↑ 0.042

hsa-miR-545-3p 1.32 ↓ 0.048 TSPAN2(2)

hsa-miR-210-3p 1.56 ↓ 0.046 NPTX1(1)

hsa-miR-221-3p 1.59 ↓ 0.039

hsa-miR-135b-5p 2.10 ↓ 0.027
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Table 1. Cont.

miRNA ID Delta Ct D842V vs.
Non-D842V p-Value Predicted Targets among the Deregulated

Gene in Our Cohort of Patients *

hsa-miR-33a-5p 2.12 ↓ 0.043

hsa-miR-452-5p 2.18 ↓ 0.044

hsa-miR-219a-5p 2.43 ↓ 0.019

hsa-miR-499a-5p 2.72 ↓ 0.017

hsa-miR-517c-3p 2.79 ↓ 0.024

hsa-miR-873-5p 3.07 ↓ 0.027

hsa-miR-512-3p 3.60 ↓ 0.032

hsa-miR-708-5p 3.92 ↓ 0.002

hsa-miR-122-5p 4.45 ↓ 0.010 CD320(2)

hsa-miR-15a-5p 6.43 ↓ 0.025 RSPO3(2)

↑: up-regulation; ↓: down-regulation; * in brackets: number of in silico tools predicting the same target which was
also deregulated in previous gene expression analysis see ref. [21].

Hierarchical clustering of all samples separated PDGFRA D842V GISTs and non-D842V
GISTs into two clusters (Figure 1).
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Figure 1. miRNA hierarchical clustering. The heatmap shows miRNAs identified as differentially
expressed between PDGFRA D842V mutant GISTs compared to non-D842V mutant GISTs. * indicates
3p (i.e., miR-149-3p; miR-431-3p).
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Pathway enrichment analysis of the 24 deregulated miRNAs was performed using
the miRNet tool; functional enrichment analysis is based on gene ontology (GO) terms or
pathways according to Reactome databases [22]. Results are reported in the Supplemental
Table S1; interestingly, we observed that deregulated miRNAs targeted genes mainly
involved in the immune response pathways (Table 2 and Figure 2).

Table 2. Top 25 pathways related with immune system.

Pathway Adjusted p Value

Fc epsilon receptor (FCERI) signaling 1.88 × 10−11

Signaling by the B Cell Receptor (BCR) 4.35 × 10−10

Innate Immune System 6.25 × 10−10

Downstream signaling events of B Cell Receptor (BCR) 7.55 × 10−9

Adaptive Immune System 1.82 × 10−7

TAK1 activates NFkB by phosphorylation and activation of
IKKs complex 2.35 × 10−6

Toll Like Receptor 10 (TLR10) Cascade 2.51 × 10−6

Toll Like Receptor 5 (TLR5) Cascade 2.51 × 10−6

MyD88 cascade initiated on plasma membrane 2.51 × 10−6

TRAF6 mediated induction of NFkB and MAP kinases upon
TLR7/8 or 9 activation 2.74 × 10−6

Toll Like Receptor 7/8 (TLR7/8) Cascade 2.92 × 10−6

MyD88 dependent cascade initiated on endosome 2.92 × 10−6

MyD88:Mal cascade initiated on plasma membrane 4.24 × 10−6

Toll Like Receptor TLR1:TLR2 Cascade 4.24 × 10−6

Toll Like Receptor TLR6:TLR2 Cascade 4.24 × 10−6

Toll Like Receptor 2 (TLR2) Cascade 4.24 × 10−6

IRAK1 recruits IKK complex 4.26 × 10−6

IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation 4.26 × 10−6

Cytokine Signaling in Immune system 4.27 × 10−6

TRAF6 mediated NF-kB activation 5.53 × 10−6

Toll Like Receptor 9 (TLR9) Cascade 3.67 × 10−6

CLEC7A (Dectin-1) signaling 1.29 × 10−6

Interleukin-1 signaling 1.29 × 10−6

Role of LAT2/NTAL/LAB on calcium mobilization 1.81 × 10−6

DAP12 signaling 1.09 × 10−4
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2.2. miRNA and mRNA Arrays Network

Among the 24 deregulated miRNAs, six had experimentally verified associations with
their targets. Amongst the target genes, we highlighted the existence of three potential
regulatory networks: miR-9-5p→ BCL6 and SIRT1, miR-133B→ SP1, and miR-210-3p→
NPTX1. Networks are depicted in Figure 3.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 12 
 

 

2.2. miRNA and mRNA Arrays Network 
Among the 24 deregulated miRNAs, six had experimentally verified associations 

with their targets. Amongst the target genes, we highlighted the existence of three poten-
tial regulatory networks: miR-9-5p  BCL6 and SIRT1, miR-133B  SP1, and miR-210-3p 
 NPTX1. Networks are depicted in Figure 3. 

 
Figure 3. Networks between miRNAs and genes: deregulated miRNAs and deregulated genes in 
PDGFRA D842V GISTs vs. non-D842V GISTs. Green color represents up-regulation and red color 
represents down-regulation. 

3. Discussion 
KIT and PDGFRA genotypes in GISTs are associated with clinicopathological prog-

nostic or predictive features, including response to TKIs, thus underscoring intrinsic bio-
logical differences between the diversity of driver mutations [23]. However, it has yet to 
be understood the underlying biological mechanisms behind specific clinicopathological 
features and the KIT/PDGFRA genotype. This sea of uncertainty precludes the oppor-
tunity to develop novel drugs, which is of particular importance for D842V GISTs. Indeed, 
even if TKIs have revolutionized the treatment of advanced metastatic or unresectable 
GISTs [17], D842V GISTs are primarily resistant to imatinib, and based on targeted kinase 
inhibition. Currently, the only available pharmacological option for this subset of GISTs 
is the recently approved avapritinib. However, after the onset of resistance, there are no 
treatment alternatives. In this scenario, investigating the epigenetic landscape may pro-
vide novel insights into the biology of this specific GIST molecular subgroups with poten-
tial implications for GIST therapeutics. Based on this, comparison of miRNA expression 
profiles between PDGFRA D842V and non-D842V mutant-GISTs was undertaken for the 
first time. To further deepen into the biology of PDGFRA-mutant GISTs, we applied bio-
informatics tools to generate miRNA-mRNA networks, using GEP data from the same 
sample set publicly available [21]. The generation of miRNA-mRNA networks may rep-
resent a promising approach to develop specific interventions and the selection of poten-
tial pharmacological targets in PDGFRA-mutant GISTs. 

Notably, PDGFRA-mutant GISTs are characterized by the strongest immune-signa-
ture and immune-pathway enrichment compared to other GIST molecular subtypes, in-
cluding KIT mutant and SDH-deficient GISTs [23–25]. Conversely, our study supports 
that D842V GISTs represent a tumor subset with distinctive biological behavior compared 
to other GISTs with non-D842V PDGFRA mutations. Indeed, PDGFRA D842V GISTs dis-
play a different miRNA signature compared to non-D842V GISTs. These results, in turn, 
agree with our prior GEP analysis [21]. Specifically, both GEP and miRNA analyses 
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PDGFRA D842V GISTs vs. non-D842V GISTs. Green color represents up-regulation and red color
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3. Discussion

KIT and PDGFRA genotypes in GISTs are associated with clinicopathological prognos-
tic or predictive features, including response to TKIs, thus underscoring intrinsic biological
differences between the diversity of driver mutations [23]. However, it has yet to be under-
stood the underlying biological mechanisms behind specific clinicopathological features
and the KIT/PDGFRA genotype. This sea of uncertainty precludes the opportunity to
develop novel drugs, which is of particular importance for D842V GISTs. Indeed, even if
TKIs have revolutionized the treatment of advanced metastatic or unresectable GISTs [17],
D842V GISTs are primarily resistant to imatinib, and based on targeted kinase inhibition.
Currently, the only available pharmacological option for this subset of GISTs is the recently
approved avapritinib. However, after the onset of resistance, there are no treatment alterna-
tives. In this scenario, investigating the epigenetic landscape may provide novel insights
into the biology of this specific GIST molecular subgroups with potential implications
for GIST therapeutics. Based on this, comparison of miRNA expression profiles between
PDGFRA D842V and non-D842V mutant-GISTs was undertaken for the first time. To further
deepen into the biology of PDGFRA-mutant GISTs, we applied bioinformatics tools to
generate miRNA-mRNA networks, using GEP data from the same sample set publicly
available [21]. The generation of miRNA-mRNA networks may represent a promising
approach to develop specific interventions and the selection of potential pharmacological
targets in PDGFRA-mutant GISTs.

Notably, PDGFRA-mutant GISTs are characterized by the strongest immune-signature
and immune-pathway enrichment compared to other GIST molecular subtypes, including
KIT mutant and SDH-deficient GISTs [23–25]. Conversely, our study supports that D842V
GISTs represent a tumor subset with distinctive biological behavior compared to other GISTs
with non-D842V PDGFRA mutations. Indeed, PDGFRA D842V GISTs display a different
miRNA signature compared to non-D842V GISTs. These results, in turn, agree with our
prior GEP analysis [21]. Specifically, both GEP and miRNA analyses highlighted that,
within the PDGFRA mutant GISTs, the D842V subgroup shows a distinctive immunological
fingerprint. This could explain why, to date, despite the involvement of the immune system
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in controlling the disease, the results of immunotherapy are disappointing [26]. In view
of these differences, it is likely that some GISTs harboring unique molecular backgrounds
may benefit from specific immunotherapeutic approaches, and the identification of new
molecular targets can have translational implications. The results of our miRNA profiling
highlighted several miRNAs already reported in the literature as involved in immunity,
including miR-149-3p, miR-33a-5p, and miR-15a. Among the most significantly deregulated
miRNAs, two were downregulated—miR-708-5p and miR-1225p—, and one—miR-431-
3p—was upregulated in D842V GISTs compared to the other PDGFRA mutations. None of
these miRNAs has been previously reported as deregulated in GISTs. This could be due
to the lack of patient stratification based on molecular subgroups, which was the primary
scope of this study.

miR-708-5p and miR-122-5p function as tumor suppressors in multiple cancer types,
including colorectal and gastric cancers [27–29]. Their downregulation appears to be
associated with a lncRNA/circRNA-mediated mechanism of miRNA sponge. In this
context, lncRNAs and circRNAs analysis can be an emerging area of research in GISTs.
Further investigations are needed to deepen the biological role and therapeutic potential
of these two miRNAs, in particular in D842V GIST patients. Intriguingly, miR-431-5p is
significantly upregulated in D842V GISTs, while available data ascribes a tumor-suppressor
role to this miRNA. Considering the clinico-pathological peculiarities of the D842V group
compared to other PDGFRA-mutant GISTs, together with its uniqueness, this finding
deserves further investigation.

With regard to the miRNA-mRNA networks, we highlighted the involvement of three
different miRNAs—miR-9-5p, miR-133b, and miR-210-5p—targeting four different genes:
BCL6, SIRT1, SP1, and NPTX1. Validated targets of miR-9-5p are BCL6, a nuclear protein
with transcriptional repressor activity [30], and SIRT1, a class III histone deacetylase having
multiple functions in cancer progression [26]. Specifically, BCL6, was previously found
highly expressed in mesenchymal tumors, including GISTs, with a mechanism unrelated
to rearrangements in the BCL6 gene [31]. Our study suggests that BCL6 overexpression
could depend on an epigenetic mechanism [21]. With regard to SIRT1, its role in cancer
remains controversial, although its overexpression has been associated with poor progno-
sis in several cancer types [32–34]. Therefore, its downregulation in D842V GISTs could
explain, at least in part, the indolent nature of these tumors in a localized setting, com-
pared to other GIST molecular subgroups. Notably, both miR-9-5p targets have a role in
immunity. In particular, BCL6 is induced by IL4 and IL21, a potent B-cell growth and
differentiation factor, able to induce Ig proliferation and class switching, as well as the
production of large quantities of secreted Ig [35,36]. On the other hand, SIRT1 has recently
emerged as a regulator of both innate and adaptive immune responses through different
mechanisms [28]. Therefore, miR-9-5p, together with its targets, may influence the tumor
micro-environment composition.

Regarding miR-133b, three different studies in GISTs showed its downregulation [37–39];
by contrast, our analysis revealed that miR-133b is upregulated in D842V GISTs. This could
be due to the limited sample size, which is a limitation. However, that also affects the
other reports, with the number of patients spanning from 8 to 53, mostly due to the rarity
of GIST. Nevertheless, none of the previous studies focused on PDGFRA mutant GISTs,
with most of the cases harboring KIT primary mutations. Therefore, it is possible that
miR-133b upregulation could represent a peculiar trait of D842V GISTs, an aspect which is
also supported by GEP results. Indeed, the downregulation of the validated target, SP1,
together with the predicted PPP2R2D, ZHX3, and CREB5, was identified. Remarkably,
all these genes may participate in the transcription of many important regulatory genes
correlated with cancer development and progression. Therefore, their downregulation in
D842V GISTs may also explain the indolent behavior of this subgroup of GISTs [33–36].

With regard to miR-210-3p, it is known to be involved in several human cancers,
even with some controversial results [40,41]. This miRNA has never been reported in
GISTs, therefore, even if we cannot exclude a chance-finding, we hypothesized that it is a
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peculiar trait of D842V GISTs. However, the observed miR-210-3p downregulation was
supported by the upregulation of its target, NPTX1, identified in our previous GEP analysis.
A recent study ascribes a metastasis-related significance to this miRNA [40], also known as
hypoxamiR, due to its role in cellular response to hypoxia, which includes angiogenesis,
cell proliferation, and differentiation [42].

4. Materials and Methods
4.1. Patients

Clinical and pathological characteristics of the 10 patients included in this study have
been extensively described elsewhere [21]. In brief, specimens were freshly collected from
untreated GIST localized in the stomach; all patients had a localized disease status. Table 3
summarizes the main patients’ characteristics.

Table 3. Patients’ characteristics.

Patient ID Size (cm) Mitotic Index
(HPF) * Last Follow Up § PDGRA Molecular

Analysis

GIST140 15 3/50 AWOD Exon 18 D842V

GIST165 12 2/50 AWOD Exon 18 D842V

GIST138 7 8/50 AWOD Exon 18 D842V

GIST142 3 5/50 AWOD Exon 18 D842V

GIST136 4.5 6/50 DNFD Exon 18 D842V

GIST05 7 4/50 AWOD
Exon 12 del 16117-20

CCCG + ins 16124 TC +
del 16124-30 GGACATG

GIST12 NA NA NA Exon 14 K646E

GIST15 NA NA NA Exon 18 DIMH842-845del

GIST26 NA NA NA Exon 12 V561D

GIST168 5.5 4/50 AWOD Exon 12 S566_E571 > R

* 50×High Power Field. § AWOD, alive without disease; DNFD, dead not for disease. NA: not available information.

This study was approved by the local Institutional Ethical Committee of Azienda
Ospedaliero-Universitaria Policlinico S.Orsola-Malpighi (number 113/2008/U/Tess). The
GIST diagnosis was confirmed by expert pathologists through histological re-evaluation
and immunohistochemistry for CD117 and DOG1. All patients harbored gain-of-function
mutations in the PDGFRA gene. Specifically, 5 patients had PDGFRA exon 18 D842V
mutation and 5 had PDGFRA non-D842V mutations (n = 3 in exon 12, n = 1 in exon 14, and
n = 1 in exon 18). Mutational analysis of KIT (exons 8, 9, 11, 13, and 17) and PDGFRA (exons
12, 14, and 18) genes was performed on genomic DNA extracted from paraffin-embedded
(FFPE) tumor tissue [21]. Total RNA was extracted from fresh frozen tumor specimens
using RNeasy Mini Kit (Qiagen, Milan, Italy).

4.2. miRNA Expression Profiling

miRNA profiling was performed using TaqMan Low Density Arrays (TLDA) and pools
A and B (Applied Biosystems, Waltham, MA, USA), which allow to analyze 768 miRNAs.
Total RNA was retrotranscribed through the TaqMan MicroRNA Reverse Transcription
Kit (Applied Biosystems) and MegaPlex RT primers (Applied Biosystems) pools A and B.
cDNAs were preamplified using TaqMan PreAmp Master Mix and PreAmp primers (pools
A and B; Applied Biosystems). The miRNA arrays were loaded with the preamplified
samples and run on a 7900HT Fast Real-Time PCR System (Applied Biosystems).
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4.3. Bioinformatic Analysis

miRNA data were analyzed with SDS Relative Quantification Software version 2.4.
(Applied Biosystems); miRNAs with Ct values≥ 35 were considered as not expressed and
were excluded from further analysis. Normalization was carried out by subtracting the
U6 mean Ct from individual Ct values. The R-Bioconductor package Limma was adopted
to evaluate the differential expression profile between the D842V and non-D842V GISTs.
Heatmaps were generated using the Multiple Experiment Viewer (MEV) tool. Analysis of
the principal component (PCA) was developed by the R CRAN package rgl and visualized
through the Cubemaker online tool. Deregulated miRNAs were analyzed using the miRNet
tool (https://www.mirnet.ca/miRNet/home.xhtml (accessed on 1 September 2022); pathway
enrichment analysis was performed with the Function Explorer module (Database Reactome)
and gene ontology was explored with the same module; the software uses standard enrich-
ment analysis based on the hypergeometric tests after adjustment for false discovery rate.
miRNet integrates data from publicly available different miRNA databases such as TarBase,
miRTarBase, and miRecords and allows users to construct miRNA-target interaction networks
at different confidence levels [43]. Subsequently, to build potential miRNA-mRNA networks,
we used GEP data previously generated from the same set of patients [21].

5. Conclusions

To the best of our knowledge, this is the first work to analyze miRNA profiles in
two subgroups of GIST patients with different mutations in PDGFRA genes. The present
study highlights a different miRNA fingerprint in PDGFRA D842V GISTs compared to the
other PDGFRA mutated patients, which could explain the indolent behavior of this GIST
subset. Interestingly, our finding is consistent with previous work on the same sample set,
highlighting a prominent immunological signature and a lack of an oncogenic signature in
the D842V group.

Aware of the limitations (i.e., the small sample size), this study underlines the im-
portance of patient stratification based not only on tumor genetics but also on epigenetic
fingerprints. This multifaced approach (i.e., stratification according to all the features
potentially contributing to tumorigenesis) could be of help in identifying further modalities
for targeting the disease.
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