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Abstract
Pancreatic cancer and biliary tract cancer have a poor prognosis. In recent years, the development of new diagnostic tech-
niques has enabled the identification of the main genetic alterations involved in the development of these tumours. Multiple 
studies have assessed the ability of certain biomarkers, such as BRCA  in pancreatic cancer, IDH1 or FGFR2 in biliary tract 
cancer and microsatellite instability or NTRK fusions in an agnostic tumour fashion, to predict response to treatment.
In this consensus, a group of experts selected by the Spanish Society of Medical Oncology (SEOM) and the Spanish Society 
of Pathology (SEAP) reviewed the role played by these mutations in the process of carcinogenesis and their clinical impli-
cations. As a result, this article proposes a series of recommendations to optimize the determination of these biomarkers to 
help standardize the diagnosis and treatment of these tumours.

Keywords Molecular diagnosis · Targeted therapies · Prognostic value · Predictive value · Pancreatic cancer · Biliary tract 
cancer

Introduction

Pancreatic and biliary tract cancers (BTCs) have a poor 
prognosis and are leading causes of cancer-related death [1]. 
Pancreatic cancer was responsible for 6.7% of cancer deaths 
in Spain in 2020, and BTC accounted for 4.9% [2].

Advances in diagnostic techniques and molecular biol-
ogy in recent years have enabled a better understanding of 
the main molecular alterations involved in the development 
of these tumours. This consensus reviews the main recom-
mendations regarding the determination of these molecular 
alterations in pancreatic and BTCs, the frequency of these 
alterations and the role these alterations play in the process 
of carcinogenesis, as well as their clinical implications.

Multiple studies have explored predictive biomarkers of 
responses to specific therapies (chemotherapy, immunother-
apy or targeted therapy). The most prominent of these bio-
markers in pancreatic cancer are breast cancer gene (BRCA ) 
1 and 2 mutations, which are associated with greater thera-
peutic benefit under treatment with platinum-based chemo-
therapy and poly-ADP-ribose polymerase (PARP) inhibitors 
[3, 4]. For BTC, mutations in isocitrate dehydrogenase-1 
(IDH1) have been associated with greater clinical benefits 
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with ivosidenib [5]. In turn, fusions or rearrangements of 
fibroblast growth factor receptor-2 (FGFR2) have been asso-
ciated with greater sensitivity to treatment with selective 
FGFR inhibitors [6].

Some of these tumour biomarkers have been studied 
agnostically, such as microsatellite instability-high (MSI-
H) or neurotrophic tyrosine receptor kinase (NTRK) fusions 
as predictive factors of the response to immunotherapy and 
to tropomyosin kinase receptor inhibitors, respectively [7, 8].

This consensus document of the Spanish Society of Medi-
cal Oncology (SEOM) and the Spanish Society of Pathol-
ogy (SEAP) proposes, based on current scientific evidence, 
several recommendations for these molecular biomarkers to 
standardize diagnostic processes involving biological sam-
ples in health centres.

Clinical aspects

Pancreatic cancer

Advanced pancreatic cancer has two standard first-line treat-
ments: the combination of gemcitabine and nab-paclitaxel 
and the combination of folinic acid, 5-fluorouracil, irinote-
can and oxaliplatin (FOLFIRINOX) [9, 10]. Clinical aspects 
guide the choice of one or the other. The FOLFIRINOX regi-
men is preferred in young patients in good general condition.

Retrospective data have shown that patients with pan-
creatic cancer carrying mutations in DNA repair genes 
have better survival if treated with platinum-based chemo-
therapy [4]. Thus, although the data are not prospectively 
validated, the presence of mutations in DNA repair genes is 
a predictive biomarker for the response to platinum-based 
chemotherapy.

The POLO study, a phase III clinical trial, evaluated the 
efficacy of olaparib as a maintenance treatment in patients 
with metastatic pancreatic cancer who carry a germinal 
mutation in BRCA1 or BRCA2 [3]. This study included 
3,315 patients, of whom 7.5% carried such a mutation. 
Patients were treated with platinum-based chemotherapy for 
a minimum of 16 weeks, and more than 80% received FOL-
FIRINOX. A total of 154 patients who did not progress after 
chemotherapy were randomized to be treated with olaparib 
(300 mg/12 h) or placebo. The outcomes of this study were 
positive, achieving its main objective, i.e. an increase in pro-
gression-free survival, with a median of 7.4 months in the 
group treated with olaparib and 3.8 months in the placebo 
group (hazard ratio [HR]: 0.53). The study also reported a 
higher response rate and longer response duration for the 
group treated with olaparib than for the placebo group (23% 
and 24.9 months versus 12% and 3.7 months, respectively). 
However, no differences were observed in terms of over-
all survival (OS) between the two treatment groups (18.9 

months compared to 18.1 months; HR: 0.91). Therefore, the 
presence of a germinal mutation in BRCA1 or BRCA2 is a 
predictive biomarker of response to olaparib if platinum-
based chemotherapy has been administered without progres-
sion. On the basis of these results, the American Food and 
Drug Administration (FDA) and the European Medicines 
Agency (EMA) have approved the use of olaparib as a main-
tenance treatment in these patients.

A total of 93-95% of patients with pancreatic cancer have 
a mutation in the kirsten rat sarcoma virus (KRAS) gene, one 
of the leading disease genes [11, 12]. Some publications 
indicate that young populations (< 50 years) with pancre-
atic cancer more frequently present the nonmutated KRAS 
gene [12].

Different publications indicate a greater proportion of 
molecular alterations that are potential therapeutic targets 
in patients without KRAS mutations (native) than in popula-
tions with pancreatic cancer and KRAS mutations. Examples 
of these alterations are pathogenic variants at the germinal 
level in different genes, such as BRCA1, BRCA2 or partner 
and localizer of BRCA2 (PALB2), or somatic-level fusions in 
neuregulin 1 (NRG1), rearranged during transfection (RET) 
or NTRK. Some clinical studies have shown promising anti-
tumor activity with drugs that act directly or indirectly on 
the oncogenic molecular pathways associated with these 
fusions [7, 13, 14].

Immunotherapy, thus far, has not demonstrated clinically 
significant efficacy in pancreatic cancer. MSI-H is rare in 
pancreatic cancer (approximately 1% of patients). Some 
studies that have evaluated the efficacy of immunotherapy 
in different MSI-H tumours have shown modest activity in 
pancreatic cancer [8]. Despite this, the ability to screen for 
MSI-H tumours can identify a group of patients with pancre-
atic cancer in whom immunotherapy may be more effective.

To summarize, these are the key points: (i) the presence 
of mutations in DNA repair genes is a predictive biomarker 
of platinum-based chemotherapy efficacy; (ii) the presence 
of a germinal mutation in BRCA1 or BRCA2 is a predictive 
biomarker of olaparib efficacy; (iii) the presence of native 
KRAS allows the identification of a subgroup of patients 
with a higher probability of presenting a molecular altera-
tion that may be a possible therapeutic target; and (iv) the 
presence of MSI-H is a predictive biomarker of response to 
immunotherapy.

Biliary tract cancer

Chemotherapy based on cisplatin plus gemcitabine has been 
the standard first-line treatment for a decade in patients with 
BTC and has shown benefits over gemcitabine monotherapy, 
with a median OS of 11.7 months [15]. In recent years, new 
therapeutic options have been developed, both for first-line 
treatment and for more advanced lines of treatment. Among 
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such options are new chemotherapy combinations, such as 
folinic acid, 5-fluorouracil and oxaliplatin (FOLFOX) [16]), 
capecitabine and irinotecan (XELIRI) [17] and gemcitabine/
nab-paclitaxel plus cisplatin [18], as well as targeted thera-
pies that are not guided by biomarkers, such as regorafenib 
[19].

BTC comprises a set of very heterogeneous tumours in 
multiple aspects, such as anatomical location, aetiology, 
clinical presentation, prognosis and surgical treatment. 
However, from the classical oncological point of view, all 
are grouped into a single entity. Fortunately, rapid advances 

in the molecular understanding of these tumours have rev-
olutionized their screening and treatment (Fig. 1). BTC, 
especially the intrahepatic cholangiocarcinoma (IH-CCA) 
subtype, is a target-rich disease, from the molecular point of 
view, allowing for targeted therapies. Forty per cent of IH-
CCA patients present targetable molecular alterations [20].

MOSCATO-01 was a “proof of concept” study that dem-
onstrated the usefulness of conducting a molecular study 
in patients with BTC; 68% of the patients evaluated had 
treatable alterations, and 53% were candidates for matched 
targeted therapy, a percentage higher than that observed for 

Fig. 1  Historical and current framework of biliary tract carcinoma. 
ALK anaplastic lymphoma kinase, ARID1A/B AT-rich interactive 
domain 1A/B, BAP1 ubiquitin carboxyl-terminal hydrolase BAP1, 
BRAF B-Raf proto-oncogene, BRCA1 breast cancer gene 1, BRCA2 
breast cancer gene 2, CDKN2A/B cyclin dependent kinase inhibitor 
2A/B, FGFR1-3 fibroblast growth factor receptor 1-3, FGFR2 fibro-

blast growth factor receptor-2, HER2 human epidermal growth factor 
receptor 2, IDH1 isocitrate dehydrogenase-1, IDH2 isocitrate dehy-
drogenase-2, MET mesenchymal epithelial transition factor, MSI-H 
microsatellite instability-high, NRG1 neuregulin 1, NTRK neuro-
trophic tyrosine receptor kinase, PIK3CA mesenchymal epithelial 
transition factor, ROS ROS proto-oncogene
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the entire set of tumours. The study reported a disease con-
trol rate of 88% and a median OS of 17 months in patients 
treated with targeted therapy, compared to 5 months for 
patients who did not [21].

NTRK rearrangements and MSI-H, although infrequent 
in BTC (< 1%), are tumour-agnostic biomarkers for the use 
of tropomyosin receptor kinase inhibitors (iTRKs), such as 
entrectinib and larotrectinib [20] and immune checkpoint 
inhibitors (ICIs) [22], respectively. Other alterations, such as 
FGFR2 rearrangements or mutations (10-15%), B-Raf proto-
oncogene (BRAF) V600 mutations (3%), Human Epidermal 
growth factor Receptor 2 (HER2) amplifications or muta-
tions (15%) and IDH1 mutations (13%), are more prevalent, 
especially in patients with IH-CCA [22]. The combina-
tion of BRAF and mitogen-activated protein kinase (MEK) 
inhibitors (such as dabrafenib-trametinib) in patients with 
BRAF V600E [23] and, very recently, the double inhibition 
of HER2 with trastuzumab and pertuzumab in patients with 
amplified HER2 [24] have demonstrated efficacy in terms 
of the radiological response rate in nonrandomized phase 
I and II trials.

Of all the possible targets, FGFR2 and IDH1 are the most 
clinically important in BTC due to their incidence and phar-
macological development. The ClarIDHy trial was the first 
positive phase III study that evaluated a biomarker-guided 
therapy in patients with BTC, resulting in FDA approval 
of ivosidenib in August 2021 for the treatment of patients 
with advanced or metastatic refractory CCA with IDH1 
mutations.

FGFR2 inhibitors in patients with FGFR2 rearrange-
ments have also exhibited efficacy and safety in nonrand-
omized phase II clinical studies. Although there are multiple 
drugs in development, pemigatinib (approved by the FDA 
and the EMA) and infigratinib (approved by the FDA) are 
the most developed at the clinical level [25, 26].

In 2018, the European Society of Medical Oncology 
(ESMO) published a scale for the clinical performance of 
molecular targets (Scale for Clinical Actionability of Molec-
ular Targets of the ESMO [ESCAT]), defining 6 levels of 
clinical evidence in relation to the therapeutic management 
of patients [27]. ESCAT level 1 indicates that the associa-
tion between the alteration and the drug has been validated 
in clinical trials and therefore should guide therapeutic 
decisions. In 2020, based on the number of patients who 
would have to be analysed for each tumour to identify one 
that could benefit from ESCAT level 1 targeted treatment, 
ESMO’s Precision Medicine Working Group recommended 
routine next-generation sequencing (NGS) of four tumours 
types: cholangiocarcinoma (CCA), non-small cell lung can-
cer, prostate cancer and ovarian cancer [28].

Anatomopathological aspects

Anatomopathological diagnosis

To provide an adequate and effective treatment, especially 
for cases of unresectable neoplasias, it is necessary to make 
an anatomopathological diagnosis as accurately as possible 
through the identification of the origin of the primary neo-
plasia (pancreatic or biliary tract) or metastases.

Sample types

Pancreatic cancer Samples can be obtained from biopsy, 
or by puncture of the primary pancreatic neoplasm, of the 
resection specimen or of the metastases.

In the vast majority of cases, the diagnosis is made by 
obtaining material from the pancreatic tumour by fine-
needle aspiration (FNA) or by transgastric or transduodenal 
endoscopic ultrasound-guided fine-needle aspiration (EUS-
FNA) [29]. Currently, biopsy is performed percutaneously 
or with core needle biopsy (CNB). As the material obtained 
is usually scarce, an attempt should be made to optimize col-
lection as much as possible. Commercial fixatives should be 
used for sample preservation and fixation. Tissue fragments 
should be embedded in paraffin and sectioned for haema-
toxylin and eosin (H&E) staining, immunohistochemistry 
(IHC) and histochemistry. Remaining material should be 
processed for liquid cytology with Papanicolaou staining 
and for IHC, if necessary.

If the specimen extracted during a Whipple resection or 
cephalic pancreaticoduodenectomy is available, the histo-
logical diagnosis will already have been made, and the mate-
rial obtained should be used for pathological staging and 
molecular diagnosis.

Finally, liver or lymph node biopsy obtained by transgas-
tric or transduodenal EUS-guided FNA or CNB or percu-
taneous ultrasound-guided or computed tomography (CT)-
guided FNA/CNB is usually used to confirm the diagnosis 
in patients with advanced neoplasia who are not candidates 
for initial surgery (by locoregional extension or by distance 
extension).

Extrahepatic biliary tract cancer Samples can be obtained 
from primary neoplasms of the extrahepatic bile duct or 
from metastases.

If specimens are obtained by EUS-guided FNA/CNB, 
preparation similar to that described for pancreatic cancer 
specimens should be performed. If the sample is obtained by 
endoscopic retrograde cholangiopancreatography (ERCP), 
brush cytology should be used for processing; samples 
should also be prepared for Papanicolaou staining and IHC, 
if necessary. Finally, small biopsies can be obtained with 
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cholangioscopy-guided microforceps biopsy by direct endo-
scopic imaging of intraductal lesions of the intrahepatic and 
extrahepatic bile ducts. These biopsy specimens should be 
fixed in 10% formaldehyde and processed as a biopsy.

Intrahepatic cholangiocarcinoma Samples can be obtained 
from primary neoplasms of the intrahepatic bile duct or 
from metastases.

Depending on location, specimens can be obtained by 
percutaneous hepatic CNB or by EUS-FNA or EUS-CNB 
and prepared as tissue blocks or for cytology, with the mate-
rial obtained by EUS processed similarly to that described 
for pancreatic cancer samples. If a specimen is obtained by 
ERCP, brush cytology should be used to process the mate-
rial; the sample should also be processed for Papanicolaou 
staining and IHC, if necessary. Similarly, to that described 
for extrahepatic bile duct biopsies, small biopsies can be 
obtained with cholangioscopy-guided microforceps biopsy. 
These biopsy specimens should be fixed in 10% formalde-
hyde and processed as a biopsy.

Microscopic study

Pancreatic cancer A histological diagnosis of pancreatic 
ductal adenocarcinoma (PDAC) is characterized by the 
formation of glandular structures lined by mucinous cubic 
cells surrounded by an abundant desmoplastic stroma. A 
histological grade (1, 2 or 3) is assigned based on glandular 
differentiation, mitotic activity, nuclear pleomorphism and 
mucin production [29, 30].

PDACs express cytokeratin 7 (CK7); however, CK7 is 
not an unequivocal IHC marker of PDAC because it is also 
expressed in the epithelium of the extrahepatic bile duct, 
gallbladder and neoplasms originating in these tissues. For 
this reason, a basic IHC panel that includes CK7, cytokera-
tin 20 (CK20), synaptophysin and trypsin should be per-
formed for the differential diagnosis of other primary solid 

pancreatic neoplasms, especially well-differentiated neu-
roendocrine tumours (NETs), neuroendocrine carcinoma 
and acinar carcinoma, or of metastases of other neoplasms 
(Table 1).

Extrahepatic biliary cancer Most carcinomas are pancreati-
cobiliary adenocarcinomas, but there are other histological 
types, such as intestinal; these carcinomas should be differ-
entiated by their prognostic and therapeutic implications. 
The IHC profile of different histological types of carcino-
mas allows them to be distinguished; for example, the pan-
creaticobiliary type expresses CK7 and mucin 5a (MUC5a), 
and the intestinal type expresses CK20, caudal-type home-
obox 2 (CDX2) and mucin 2 (MUC2) (Table 1) [30].

Intrahepatic biliary cancer Intrahepatic BTC is also called 
intrahepatic CCA, and there are two subtypes: large duct 
and small duct [33].

Large duct intrahepatic CCA is a perihilar tumour, with a 
morphology and IHC profile similar to that for extrahepatic 
CCA described in the previous section.

Small duct intrahepatic CCA is a peripherally located 
tumour that expresses immunohistochemical markers of 
cholangiolar differentiation, such as CK7, cytokeratin 19 
(CK19) and epithelial membrane antigen. There are cases 
of patients who present with tumours combined with hepa-
tocarcinoma (hepatocholangiocarcinoma) [33].

Determination of biomarkers

Biomarkers of pancreatic cancer

The genetics of pancreatic cancer are characterized by a 
group of alterations in four genes in more than 90% of cases, 
with very high variability in genetic and epigenetic altera-
tions as well as variable levels of genomic instability.

Table 1  Immunohistochemical staining in the differential diagnosis of pancreatic cancer and histological subtypes of  cholangiocarcinomaa

a Classification of digestive system tumours of the World Health Organization  [64] 
CK7 cytokeratin 7, CK20 cytokeratin 20, MUC2 mucin 2, MUC5 mucin 5, CDX2 caudal-type homeobox 2

Pancreatic cancer CK7 Synaptophysin Trypsin

Ductal adenocarcinoma + − −
Well-differentiated neuroendocrine tumour − + −
Neuroendocrine carcinoma +/− + −
Acinar cell carcinoma +/− +/− +

Histological subtypes of cholangiocar-
cinoma

CK7 CK20 MUC2 MUC5 CDX2

Pancreaticobiliary + − − + +
Intestinal − + + − +
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The main genes altered in pancreatic cancer are the KRAS 
oncogene and the tumour suppressor genes cyclin dependent 
kinase inhibitor 2A (INK4A), tumour protein 53 (TP53) and 
SMAD family member 4 (SMAD4). These four genes encode 
proteins involved in cell proliferation, and their alteration 
eliminates the control of quiescence, the state in which the 
vast majority of cells of the pancreas are found. KRAS alter-
ations are considered to be nearly universal in pancreatic 
cancer because they are present in more than 90% of cases. 
These alterations can be identified in pancreatic intraepi-
thelial neoplasia 1 (PanIN-1) and pancreatic intraepithelial 
neoplasia 2 (PanIN-2) lesions (premalignant); therefore, 
they constitute early alterations. These alterations can be 
detected in gastric juice, bile, faeces and circulating plasma, 
with limited sensitivity [31], and the determination of KRAS 
can be performed in tissue or cells using polymerase chain 
reaction (PCR).

The INK4A gene encodes p16 and p14 and is involved in 
the regulation of the cell cycle through the retinoblastoma 
pathway (p16) and in the regulation of genetic damage and 
cell cycle arrest through the p53 pathway (p14). This gene is 
inactivated in almost 100% of cases of pancreatic cancer and 
is detected in PanIN-2 lesions and carcinomas, indicating 
that inactivation occurs after rat sarcoma virus (RAS) altera-
tion. Using IHC, p16 and p14 can serve as surrogate markers 
when differentiating among dysplasia, carcinoma or reactive 
changes. In these cases, IHC can be used to detect insulin-
like growth factor II messenger ribonucleic acid (mRNA) 
binding protein 3 (IMP3), which in the pancreas and the 
bile duct is expressed in high-grade dysplastic lesions but 
not expressed in normal or reactive ducts and rarely in low-
grade dysplasias [32].

Alterations in TP53 are present in 50-70% of cases of 
pancreatic carcinoma and are only detected in PanIN-3 
lesions and carcinomas. Alterations in the SMAD4 gene are 
present in the protein encoded by the gene, which is involved 
in this pathway. Transforming growth factor beta (TGF-β) is 
inactivated in almost 60% of cases. Alterations in this gene 
are also exclusive to PanIN-3 and carcinomas; therefore, the 
loss of nuclear expression of SMAD4, as determined through 
IHC, helps to distinguish malignancies (in situ or invasive) 
from benign tumours. This alteration is very useful, espe-
cially in the identification of pancreatic cancer in biopsies 
of metastases of unknown origin [33].

In the small group of patients with wild-type or nonmu-
tated KRAS pancreatic adenocarcinoma, mutations in other 
genes, such as NTRK and NRG1, are more likely to be found 
[34]. The frequencies of NTRK and NRG1 fusions are 0.3 
and 0.5%, respectively [35].

For both pancreatic cancer and biliary tract tumours, IHC, 
fluorescence in situ hybridization (FISH) and reverse tran-
scription PCR (RT-PCR) can be used for screening [36]. 
Studies using pan-TRK monoclonal antibody mixtures have 

revealed positive TRK expression in tumour samples [37, 
38], with a sensitivity of 75%. Up to 45% of tumours with 
NTRK3 fusions can be negative by IHC [39]. False negatives 
may be related to sample preparation (e.g. during fixation). 
Similarly, positive results by IHC must be confirmed by a 
molecular method that verifies the presence of a fusion (e.g. 
FISH or NGS) to avoid the detection of overexpressed wild-
type TRK proteins [40].

The study of repair protein genes (MutL homolog 1 
[MLH1], MutS homolog 2 [MSH2], MutS homolog 6 
[MSH6] and PMS1 homolog 2, mismatch repair system com-
ponent [PMS2]) has become routine in the daily analysis of 
biopsies. The loss of repair activity of these proteins results 
in a hypermutator phenotype. The sensitivity and specificity 
of two IHC panels for PMS2 and MSH6 is 100% for detect-
ing mismatch repair (MMR) protein deficiency; therefore, a 
four-panel test is not strictly necessary [41, 42].

Biomarkers of biliary tract cancer

Defects in the MMR system are very rare in extrahepatic 
biliary tract carcinomas but are currently considered essen-
tial to identify Lynch syndrome. IHC should be employed to 
study repair proteins (MLH1, MSH2, MSH6 and PMS2) and 
evaluate the possible loss of their expression that correlates 
with MSI in tumours.

Extrahepatic biliary tract carcinomas that overexpress 
HER2/neu are being described when using the same crite-
ria as those used for breast cancer (3+ by IHC). Given its 
therapeutic implications, IHC for the detection of HER2/neu 
overexpression is recommended.

Determination of biomarkers by next‑generation 
sequencing

Tumour sequencing with high-efficiency techniques, such as 
NGS or “parallel NGS”, has been incorporated into oncolog-
ical management [43]. They are fast and relatively low-cost 
techniques based on searching for molecular alterations in 
DNA and/or RNA fragments by PCR using a panel of genes 
chosen according to the type of tumour. These methods 
require little material, allow the detection of a high number 
of possible molecular alterations in a tumour with a single 
test and are applicable to blood and cytological samples of 
both fresh and paraffin-embedded tissue [44].

Method and steps

Study indication Depending on the characteristics of each 
patient, procedures can be performed by either an oncolo-
gist or pathologist.
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Sample selection Clinicians should select an area for his-
tological preparation with the following requirements: (i) 
a percentage of tumour cellularity greater than 10% with 
respect to the total cellularity of the tissue; (ii) no extensive 
areas of necrosis; and (iii) sufficient amount of the tumour 
in the sample to allow the extraction of at least 40 ng of 
DNA or RNA, for which ten 10-µm sections containing 
tumour can be made after adequate fixation and preserva-
tion. Depending on availability, in exceptional cases, for 
quantities as small as 10 ng, NGS can be performed.

Extraction of  the  material and  preparation of  libraries 
and  sequencing These procedures should be performed 
by a pathology technician supervised by a molecular biol-
ogist or biochemist. DNA is extracted and then amplified 
with DNA primers, allowing the simultaneous sequenc-
ing of multiple regions and the preparation of libraries for 
sequencing by PCR in second-generation sequencers.

Analysis and  interpretation of  results Analysis and inter-
pretation of the results require a molecular biologist or a 
biochemist in collaboration with a bioinformatician or soft-
ware with remote support.

Integration of  results This should be performed by the 
pathologist with the multidisciplinary team responsible 
for the patient, in which an oncologist, a molecular biolo-
gist or biochemist, etc., serve as the core of a committee 
for tumours with molecular alterations (Molecular Tumour 
board) [44].

Recommended biomarker determinations based on current 
evidence

Pancreatic cancer Table  2 describes the current clinical 
application of NGS in advanced ductal pancreatic carci-
noma [28, 45]. Currently, there are several drugs in clini-
cal development for advanced ductal pancreatic carcinoma 
(Table 3).

Biliary tract cancer The percentage of “actionable” genetic 
alterations varies between intrahepatic, extrahepatic or gall-
bladder CCA [46]. Table 4 provides the current recommen-
dations for the use of NGS in intrahepatic, extrahepatic and 
gallbladder BTC. Regarding BTC, the FDA has recently 
approved drugs that inhibit IDH1 and FGFR2, genes that 
are most frequently altered in intrahepatic CCA, but which 
have also demonstrated efficacy in extrahepatic biliary tract 
tumours with the same genetic alteration. Other drugs for 
the treatment of intrahepatic, extrahepatic and gallblad-
der carcinoma of the bile duct are currently being studied 
(Table 5) [47].

Role of liquid biopsy

The difficulty of obtaining a tumour tissue sample has 
long been an obstacle in the management of patients with 
biliopancreatic tumours. Endoscopic ultrasound-guided 
pancreatic aspiration or ERCP cytology/aspirates of the 
bile duct provide low tumour cellularity, which at most 
confirms malignancy but frequently requires repetition of 
the procedure, with consequent morbidity and therapeutic 

Table 2  Current clinical application of next-generation sequencing in the treatment of advanced ductal pancreatic carcinoma

BRCA1/2 breast cancer gene 1 and 2, EPCAM epithelial cellular adhesion molecule, ICI immune checkpoint inhibitor, IHC immunohistochem-
istry, MLH1 MutL homolog 1, MSH2 MutS homolog 2, MSH6 MutS homolog 6, MSI-H microsatellite instability-high, NGS next-generation 
sequencing, NTRK neurotrophic tyrosine receptor kinase, PMS2 PMS1 homolog 2, mismatch repair system component
1 ESCAT scale for clinical actionability of molecular targets of the European Society for Medical Oncology (ESMO) [28]
2 ASCO clinical practice guidelines [45]

Gen Alteration Prevalence Method Level of evidence
ESCAT 1/ASCO2

Drugs

BRCA1/2 Germinal mutation
Somatic mutation

1–4%
3%

NGS
NGS

IA1

Strong  recommendation2

High quality of  evidence2

IIIB1

Strong  recommendation2

Low quality of  evidence2

Olaparib
Rucaparib

NTRK Fusion 0.3–0.6% NGS IC1

Moderate  recommendation2

Low quality of  evidence2

Larotrectinib and entrectinib

MLH1, MSH2,
MSH6, PMS2 and 

EPCAM

MSI-H mutation 0.8–2% NGS/IHC Strong  recommendation2

Low quality of  evidence2
ICI (pembrolizumab)
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delays. Even less effective is NGS-type molecular studies 
with such samples, yet these studies can be very relevant for 
therapeutic decisions. In a retrospective study that analysed 
149 histological samples from patients with advanced CCA, 
the sample failure rate was 27%; that is, only 1 in every 4 
samples was valid for NGS, mainly due to the lack of tumour 
content.

Although it is not yet considered a standard test, liquid 
biopsy (LB) has been in development for years with the aim 
of overcoming these obstacles. It consists of a rapid and non-
invasive test based on the detection and analysis of tumour 
genetic material released (by shedding) into biological fluid 

(blood, urine, bile, etc.), which can be used to indicate the 
molecular heterogeneity of these tumours [48]. There are 
several types of LB in development, such as the analysis of 
circulating tumour cells (CTCs) or exosomes (extracellular 
vesicles of endosomal origin), and the study of circulating 
tumour DNA (ctDNA) is gaining strength. The potential 
clinical utilities of ctDNA are very broad. Among them 
are early diagnosis with a potential increase in detection 
of resectable and therefore curable stages, the detection of 
minimal residual disease (MRD) that allows the selection 
of patients who may benefit from adjuvant treatment, the 
early detection of recurrence, the real-time monitoring of the 

Table 3  Drugs under development for the treatment of advanced pancreatic carcinoma

ALK anaplastic lymphoma kinase, BRAF B-Raf proto-oncogene, ERBB2 receptor tyrosine-protein kinase erbB-2, ICI immune checkpoint inhibi-
tor, KRAS kirsten rat sarcoma virus, MDM2 murine double minute 2, NGS next-generation sequencing, NRG1 neuregulin 1, PCR polymerase 
chain reaction, PIK3CA phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha, RET rearranged during transfection, ROS1 ROS 
proto-oncogene 1, TMB tumour mutational burden, TMB-H tumour mutational burden-high
1 ESCAT scale for clinical actionability of molecular targets of the European Society for Medical Oncology (ESMO) [28]

Gen Alteration Prevalence Method Level of evi-
dence

Drugs

KRAS Mutation (G12C) 90% NGS/PCR IIIA1 Adagrasib
PIK3CA Access point mutation 3% NGS IIIA1 MK2206, alpelisib and buparlisib
BRAF Mutation 3% NGS IIIA1 Dabrafenib and trametinib
MDM2 Amplification 2% NGS IIIA1 Nutlin-3
ERBB2 Amplification/mutation 1-2% NGS IIIA1 Trastuzumab and pertuzumab
NRG1 Fusion 1% NGS IIIA1 Afatinib
ALK/RET/ROS1 Fusion < 1% NGS IIIA1 TPX-00005 and repotrectinib
TMB TMB-H 10% NGS IIIA1 ICI (pembrolizumab)

Table 4  Current clinical application of next-generation sequencing in the treatment of intrahepatic, extrahepatic and gallbladder carcinoma of 
the bile duct

aPD1 anti-programmed cell death protein 1, EH extrahepatic, EPCAM: epithelial cellular adhesion molecule, FGFR2 fibroblast growth fac-
tor receptor-2, ICI immune checkpoint inhibitor, IDH1 isocitrate dehydrogenase-1, IH intrahepatic, IHC immunohistochemistry, MLH1 MutL 
homolog 1, MSH2 MutS homolog 2, MSH6 MutS homolog 6, MSI-H microsatellite instability-high, NGS next-generation sequencing, NTRK 
neurotrophic tyrosine receptor kinase, PMS2 PMS1 homolog 2, mismatch repair system component
1 ESCAT scale for clinical actionability of molecular targets of the European Society for Medical Oncology (ESMO) [28]
2 ASCO clinical practice guidelines [45]

Gen Alteration Prevalence Method Level of evidence
ESCAT 1/ASCO2

Drugs

EH and gallbladder IH

IDH1 Mutation 3% 10–20% NGS IA1

Strong  recommendation2

High quality of  evidence2

Ivosidenib

FGFR2 Fusion/rearrangement 1% 4–15% NGS IB1 Pemigatinib, infigratinib
NTRK Fusion/rearrangement 2% 2% NGS/IHC IC1

Moderate  recommendation2

Low quality of  evidence2

Larotrectinib and entrectinib

MLH1, 
MSH2,

MSH6, 
PMS2, 
EPCAM

Mutation (MSI-H) 0.5-2% 1% NGS/IHC IA1

Strong  recommendation2
Pembrolizumab (aPD1)
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response or resistance to treatment and the ability to describe 
the intratumoural heterogeneity in tumours [49]. The use 
of ctDNA in advanced disease allows the identification of 
potential therapeutic targets, especially in BTC. The main 
limitation of this technique is the scarcity of ctDNA, which 
poses a risk to its sensitivity for biomarker detection.

Mody et al. studied ctDNA in 124 patients with advanced 
BTC (70% with IH-CCA) and found treatable alterations in 
21% of patients (BRAF [2%]; aERBB2 [5%]; fFGFR2 [2%]; 
mFGFR2 [2%]; and mIDH1 [10%]) [50]. In general, the 
agreement described between LB and tissue is quite accept-
able (60-100%) [51]. Triple comparisons have also been 
made between LB, primary tumour tissue and metastatic 
tissue [52], which revealed similar alterations; therefore, the 
authors concluded that any source would be valid if it were 
the only one available. Although the mutation detection rate 
seems optimal with LB (83% sensitivity for IDH1), the rate 
of FGFR2 rearrangement detection decreases because DNA 
fragmentation can hinder the detection of these fusions. 
The use of more modern panels, with greater coverage, 
could make these results comparable. Thus, at the 2021 

Symposium on Gastrointestinal Cancer of the American 
Society of Clinical Oncology (ASCO), the results of 174 
NGS studies with tissue and LB from patients with advanced 
CCA were reported; interestingly, the percentage of action-
able alterations found was higher in LB samples than tissue 
samples (33.1 vs. 23.2%, respectively) and for fFGFR2 (11.3 
vs. 3.4%, respectively) [53].

The use of ctDNA has allowed the description of the 
resistance mechanism of fFGFR2 and mIDH1 CCA treated 
with FGFR and IDH inhibitors [54, 55] and allowed the 
observation that in some patients, new resistance mutations 
can be overcome with new drugs in development.

In PDAC, in line with the recommendations regarding tis-
sue samples, the guidelines of the National Comprehensive 
Cancer  Network® (NCCN) recommend using LB when a 
tissue sample is not available [56]. The recommendations 
are very similar to those for BTC. The agreement between 
ctDNA and tissue biopsy has been reported as 78% [57]. In a 
recent study, 357 LBs (ctDNA) from patients with advanced 
PDAC were analysed; treatable alterations, including KRAS 
(G12C), epidermal growth factor receptor (EGFR), ataxia 

Table 5  Drugs under development for the treatment of intrahepatic, extrahepatic and gallbladder carcinoma of the biliary tract

BRAF B-Raf proto-oncogene, BRCA1/2 breast cancer gene 1 and 2, EH extrahepatic, ERBB2 receptor tyrosine-protein kinase erbB-2, FGFR2 
fibroblast growth factor receptor-2, FISH fluorescence in situ hybridization, ICI immune checkpoint inhibitor, IDH1 isocitrate dehydrogenase-1, 
IDH2 isocitrate dehydrogenase-2, IH intrahepatic, IHC immunohistochemistry, MET mesenchymal epithelial transition factor, NGS next-gener-
ation sequencing, NTRK neurotrophic tyrosine receptor kinase, PIK3CA phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha, 
TMB tumour mutational burden, TMB-H tumour mutational burden-high
1 ESCAT scale for clinical actionability of molecular targets of the European Society for Medical Oncology (ESMO) [28]
2  ASCO clinical practice guidelines [45]

Gen Alteration Prevalence Method Level of evidence
ESCAT 1/ASCO2

Drugs

EH and gallbladder IH

IDH1 Mutation 3% 10–20% NGS HMPL-306, IDH-305, FT2012 
(olutasidenib), AG881 
(vorasidenib), LY3410738

IDH2 Mutation 1% 6% NGS IIIB1 Enasidenib, LY3410738, AG881 
(vorasidenib)

FGFR2 Fusion/rearrangement 1% 4–15% NGS IB1 Futibatinib (TAS120), erdafi-
tinib, derazantinib

FGFR2 Other alterations Futibatinib (TAS120), erdafi-
tinib, derazantinib

NTRK Fusion/rearrangement 2% 2% NGS/IHC IC1

Moderate recommendation 2
Low quality of  evidence2

LOXO-195 (selitrectinib) and 
TPX-00005 (repotrectinib)

MET Amplification 2–3% 5% NGS IIIA1 Tivantinib/crizotinib
PIK3CA Access point mutation 7% 6% NGS IIIA1 MK2206, alpelisib and bupar-

lisib
BRAF Mutation 3-5% 3% NGS IIB1 Dabrafenib and trametinib

Belvarafenib
BRCA1/2 Mutations 3% 3–5% NGS IIIA1 Olaparib and rucaparib
ERBB2 Amplification/mutation 10–15% 7% NGS/FISH IIIA1 Trastuzumab and pertuzumab

Zanidatamab
Trastuzumab-deruxtecan

TMB TMB-H 3% 6%-12% NGS IIIA1 Pembrolizumab
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telangiectasia mutated (ATM), myelocytomatosis onco-
gene (MYC), BRCA , Phosphatidylinositol 4,5-bisphosphate 
3-kinase catalytic subunit alpha (PIK3CA) and BRAF, were 
found in 48% of patients [58]. Notably, 9% of LBs revealed 
mutations in homologous recombination genes, with poten-
tial therapeutic implications, such as the possibility of select-
ing a platinum-based first-line treatment [59] and the advan-
tage of obtaining results in a matter of days.

Improvements in ctDNA collection techniques and their 
increasing accessibility in the health care field, together with 
new molecular-level therapeutic evidence, will probably 
expand the use of ctDNA by clinicians for biliopancreatic 
tumours, not only in advanced disease but also in earlier 
stages and with broader uses, such as MRD detection or 
response monitoring.

Role of genetic counselling

It has been reported that 5-10% of PDACs are hereditary 
in origin [60]. In addition, retrospective studies show that 
approximately 55% of PDAC cases with a hereditary ori-
gin do not meet the clinical criteria for familial pancreatic 
cancer (presence of two or more first-degree relatives with 
PDAC) [61]. For this reason, since 2018, the NCCN and 
ASCO guidelines recommend a germinal study of predis-
position to PDAC (BRCA1, BRCA2, ATM, PALB2, MLH1, 
MSH2, MSH6, PMS2, CDKN2A, TP53 and STK11) for all 
patients with PDAC, regardless of stage, which can have 
consequent personal and family history implications, among 
which are PDAC screening programmes with magnetic reso-
nance imaging (MRI) or annual EUS. In addition, since the 
publication of the POLO study [3], in which the benefit of 
maintenance treatment with olaparib compared to placebo 
was demonstrated in patients with metastatic PDAC and ger-
mline mutations in BRCA 1/2 that had not progressed after 
a platinum-based first-line treatment, the determination of 
this biomarker before starting first-line treatment has been 
added as a recommendation in these guidelines.

Unlike other predictive somatic biomarkers of targeted 
therapy, the determination of germline BRCA  mutations 
has implications for patients and their relatives that require 
appropriate counselling adapted to their personal circum-
stances, both before and after performing the test. This 
process has traditionally been carried out in Family Can-
cer Units, with staff (doctors, nurses and psychologists) 
adequately trained and accredited for this purpose. These 
consultations, classically nonurgent, have a waiting list that 
can extend from weeks to months.

After a diagnosis of metastatic PDAC, patients should 
receive counselling and undergo testing within days to plan 
first-line systemic treatment.

There is a changing trend when referring patients to the 
Family Cancer Unit for accidental findings of pathogenic 
variants with high allelic frequencies (approximately 50%) 
obtained in somatic studies over the classic criteria of family 
history. However, currently, screening by this method alone 
is not considered adequate. In a study in which 187 patients 
with PDAC (not selected for their oncological family his-
tory) were examined both at the germinal and somatic levels, 
germline mutations were not detected in 8% of the patients 
in the somatic test [62].

This group of experts recommends that each medical 
oncology service develop a process, on the basis of its capa-
bilities, that allows the adequate assessment, at the germinal 
level, of the largest possible number of patients with a recent 
diagnosis of advanced PDAC and obtain results within a 
period of days or, at most, weeks.

Conclusion

Pancreatic cancer and BTC represent two tumours of low 
incidence but high mortality, with very poor oncological 
treatment outcomes. The most important advances have 
come from personalized medicine. For this reason, it is 
important to agree on the biomarkers recommended for use 
for these neoplasms.

In pancreatic cancer, this group of experts from the 
SEOM and the SEAP recommends determining, as a predic-
tive marker, germinal mutations in the BRCA  1 and 2 genes 
(level of evidence IA) because they are associated with 
a greater response to treatment with platinum and PARP 
inhibitors [3, 4]. MSI-H, present in only 1% of patients 
with pancreatic cancer, should be assessed, with a strong 
recommendation, because as in other tumours, it is a pre-
dictive biomarker of response to immunotherapy. Further-
more, this group recommends determining the presence of 
NTRK and NRG1 fusions, which are present in 0.3% and 
0.5% of patients, respectively, with level of evidence IC [35], 
because the FDA has approved larotrectinib, a selective TRK 
inhibitor [63]. This group of experts considers it advisable to 
determine the presence of KRAS mutations, which are pre-
sent in 93-95% of patients with pancreatic cancer. KRAS is 
not in itself a predictive biomarker, but tumours with native 
KRAS can identify a group of patients with the greatest pos-
sibility of presenting a molecular alteration that may be a 
possible therapeutic target.

BTC comprises a set of very heterogeneous tumours in 
multiple clinical and molecular aspects. Forty per cent of 
IH-CCA patients present targeted molecular alterations 
[20]. In the bile duct, there is a clear recommendation for 
the determination of the presence of IDH1 gene mutations 
(level of evidence IA), which are present in 3% of cases, and 
the fusion or rearrangement of FGFR2 (level of evidence 



2117Clinical and Translational Oncology (2022) 24:2107–2119 

1 3

IB), which are present in 4-15% of patients. These altera-
tions have specific targeted treatments, such as ivosidenib 
and pemigatinib [6]. As in pancreatic cancer, it is recom-
mended to determine the presence of NTRK rearrangements 
(recommendation IC) and MSI-H (recommendation IA); 
although their presence is infrequent in BTC (<1%), they are 
tumour-agnostic biomarkers that indicate the use of NTRK 
inhibitors, such as entrectinib and larotrectinib [20], and ICI 
inhibitors [22], respectively.

Tumour sequencing with high-efficiency techniques such 
as NGS allows detection of a high number of possible altera-
tions with a single test that requires little material [44]. This 
consensus, similar to the consensus of the ESMO Precision 
Medicine Working Group, recommends the routine perfor-
mance of NGS for CCA. Given the difficulty of obtaining 
a tumour tissue sample from these tumours, LB is an alter-
native because it has high agreement with tissue biopsy, 
offering multiple potential clinical uses. The development 
of personalized medicine in these tumours will allow deep-
ening the knowledge about and application of new targeted 
therapies.
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