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The subretinal space is devoid of any immune cells under normal conditions and is
an immune privileged site. When photoreceptors and/or retinal pigment epithelial cells
suffer from an injury, a wound healing process will be initiated. Retinal microglia and the
complement system, as the first line of retinal defense, are activated to participate in the
wound healing process. If the injury is severe or persists for a prolonged period, they
may fail to heal the damage and circulating immune cells will be summoned leading to
chronic inflammation and abnormal wound healing, i.e., subretinal or intraretinal fibrosis,
a sight-threatening condition frequently observed in rhematogenous retinal detachment,
age-related macular degeneration and recurrent uveoretinitis. Here, we discussed the
principles of subretinal wound healing with a strong focus on the conditions whereby
the damage is beyond the healing capacity of the retinal defense system and highlighted
the roles of circulating immune cells in subretinal wound healing and fibrosis.

Keywords: retina, inflammation, innate immunity, adaptive immunity, age-related macular degeneration, macular
fibrosis, proliferative vitroretinopathy

INTRODUCTION

Fibrosis is the formation of an abnormal amount of fibrous tissue in an organ as the result of
dysregulated inflammation or wound healing. A variety of stimuli such as tissue injury, infection,
autoimmune and allergic responses or radiation can trigger fibrosis (Wynn, 2008). Despite the
large diversity of noxious signals, studies have reported that ischemia, abnormal angiogenesis, and
chronic inflammation play an important role in the development and progression of fibrosis. When
tissue suffers from injuries, the damaged cells release alarmins which recruit innate immune cells to
remove the dead cells and repair the damage. However, if the injury is severe or persists, the wound
healing process fails, and the tissue-educated innate immune cells summon adaptive immune cells
for assistance (Matzinger and Kamala, 2011). The innate and adaptive immune systems may remove
threats and tissue heals without fibrosis or scarring; they may also fail to solve the problem and the

Abbreviations: AMD, age-related macular degeneration; BRB, blood retinal barrier; CFB, complement factor B; CFH,
complement factor H; CNV, choroidal neovascularization; COVID-19, Coronavirus disease 2019, DCs, dendritic cells;
EAU, experimental autoimmune uveitis; ECM, extracellular matrix; EndoMT, endothelial-to-mesenchymal transitions; EMT,
epithelial-to-mesenchymal transition; FFG-2, fibroblast growth factor-2; iBRB, inner blood retinal barrier; IL, interleukin;
IP, immune privilege; MMT, macrophage-to-myofibroblast transition; nAMD, neovascular AMD; oBRB, outer blood
retinal barrier; OIR, oxygen-induced retinopathy; PEDF, pigment epithelium derived factor; PDGF, platelet-derived growth
factor; PDR, proliferative diabetic retinopathy; PVR, proliferative vitroretinopathy; RPE, retinal pigment epithelium; RRD,
rhematogenous retinal detachment; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TGF-β, transforming
growth factor-ß; TNF-α, tumor necrosis factor-α; VEGF, vascular endothelial growth factor.
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tissue is filled with, or even replaced by inflammatory
fibrovascular membrane characterized by accumulation of
various immune cells, new blood vessels, myofibroblasts and
extensive deposition of Extracellular Matrix (ECM) proteins.
During this process, the type of immune cells that infiltrate
the tissue and their functions will determine the fate of the
affected tissue. However, tissues are not simply passive recipients
of immune protection but are active participants in their own
defense (Matzinger and Kamala, 2011). Therefore, when tissues
suffer from an insult, first, they must decide whether or not to
call for assistance from the circulating immune system. They will
then decide which immune cells should be summoned and what
functions the immune cells will do. The type of immune cells
and their released mediators vary in different tissues and under
different conditions. The retina, particularly the subretinal space,
is an immune privileged (IP) site. When damage occurs, such
as in age-related macular degeneration (AMD), rhegmatogenous
retinal detachment (RRD), or retinal penetrating injury, healing
and repair can be very different from other tissues.

Here, we discuss the principles of the immune response to
severe and/or persistent damages in the subretinal space, with
a particular focus on the innate and adaptive immune cells and
the mediators that may lead to the development of subretinal
fibrosis. The majority of subretinal fibrosis develops secondary
to neovascularization in AMD (nAMD) and RRD. In nAMD, the
fibrotic lesion is located in the macula, therefore, is often called
macular fibrosis. However, clinically, macular fibrosis includes
pre-retinal macular fibrosis (also known as epiretinal membrane,
retinal pucker) and subretinal macular fibrosis. The aetiologies of
pre-retinal and subretinal macular fibrosis are different. To avoid
any confusion, this article only discusses subretinal/intraretinal
wound healing and fibrosis.

WOUND HEALING AND FIBROSIS IN
THE SUBRETINAL SPACE

Subretinal Space – An Immune Privileged
Site
The subretinal space refers to the interface between the
neuroretina and RPE/choroid where the adherence between
neuroretina and RPE cells is relatively weak. It is considered
an IP site and is devoid of any immune cells under normal
physiological conditions. The IP is achieved by the physical
barrier (i.e., the blood-retina-barrier, BRB), the lack of lymphatic
system, and the immunological barrier i.e., the immune
suppressive properties of retinal neurons and RPE cells (Forrester
et al., 2008). The physical barrier includes the inner BRB (iBRB)
formed by tight junctions between retinal endothelial cells and
the outer BRB (oBRB) formed by tight junctions between RPE
cells. The oBRB regulates the passage of solutes and nutrients
from the choroid to the retina and prevents the leakage of
macromolecules and harmful agents into the retina (Cunha-Vaz
et al., 2011). Subretinal injury often leads to oBRB damage and
the development of inflammatory or degenerative conditions,
such as nAMD, RRD, or diabetic retinopathy (Smith et al., 1992;
Cunha-Vaz et al., 2011). The iBRB may also be affected during

subretinal injury likely due to injury-mediated oxidative stress
and inflammation (Toris and Pederson, 1985).

The immunological barrier in the subretinal space is achieved
by RPE and photoreceptor cells. RPE cells contribute to the
establishment of IP state in the subretinal space due to their
constitutive expression of CD95 ligand, known to be expressed
in immune privilege tissues (Wenkel and Streilein, 2000). In
addition, RPE cells produce various immune regulators that
can induce effector T cells apoptosis (Lau and Taylor, 2009)
or convert them into regulatory T cells (Kawazoe et al.,
2012). RPE cells can also modulate macrophage complement
expression at the retina-choroidal interface. For example, they
can upregulate the expression of C1 inhibitor (C1INH) in
infiltrating macrophages (Luo et al., 2018). Under disease
conditions, activated RPE cells can release a range of pro- and
anti-inflammatory factors (Zamiri et al., 2006). Photoreceptors
also express various immune regulators such as CD47 and CD59
(Liu et al., 2020). Thus, RPE cells together with photoreceptors
tightly regulate the microenvironment of subretinal space and
maintain its IP state. When damage occurs, they will decide
which immune cells to recruit and guide them to do what they
are supposed to do in the subretinal space. However, if the
damage is severe, photoreceptors may die and RPE cells may
undergo epithelial-to-mesenchymal transition (EMT) leading
to the loss of IP.

Wound Healing in the Subretinal Space
A wound healing response in the subretinal space can be triggered
by photoreceptor or RPE damage caused by multiple factors
such as a breach in the oBRB, oxidative stress, post-infection
and autoimmune response (e.g., autoimmune chorioretinitis),
retinal detachment of rhegmatogenous origin (Idrees et al., 2019)
or following administration of gene or cell therapy reagents
into the subretinal space, etc. (Planul and Dalkara, 2017; Jin
et al., 2019). The stressed RPE cells and/or photoreceptors will
summon innate immune cells (i.e., microglia and macrophages)
to clear the damage through phagocytosis as well as by
releasing various inflammatory mediators (e.g., chemokines and
cytokines) (Tonade et al., 2017; Detrick and Hooks, 2019). The
complement system may be activated to promote the clearance
of apoptotic cells through C3b-mediated opsonization. Retinal
cells, including photoreceptors and RPE, are known to express
complement components (Anderson et al., 2010; Xu and Chen,
2016; Liu et al., 2020). Subretinal microglia and macrophage
accumulation and complement activation have been observed in
normal aging (Xu et al., 2008; Ma et al., 2013), light-induced
retinal degeneration (Rutar et al., 2011; Sennlaub et al., 2013)
and various models of AMD (Combadière et al., 2007; Little
et al., 2020b). In addition, RPE cells can act as a scavenger
alongside the macrophages/microglia by phagocytosing debris
(Friedlander, 2007). Müller cells may also be activated to
participate in retinal repair. If the initial insult is cleared and
the dead cells are removed, the innate immune response may
heal the injury and the subretinal space returns to homeostasis
(Figure 1A). However, if the injury causes a significant number
of photoreceptor loss, active Müller cells along with ECM
proteins produced by them will fill the space left by dead cells
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FIGURE 1 | Wound healing in the subretinal space. (A) When the initial insult is mild or one-off, the injury can be promptly rectified by retinal innate immune system
(may also be assisted by infiltrating innate immune cells) and the subretinal space returns to homeostasis. If the injury causes a significant number of photoreceptor
loss, Müller cells will be activated (may also be transdifferentiated into myofibroblast). Muller cells, myofibroblasts along with ECM proteins produced by them will fill
the space left by dead cells forming gliosis without ongoing inflammation (or cold fibrosis). (B) When the insult to photoreceptors or RPE cells persists or is severe,
retinal immune system, circulating innate and adaptive immune cells may all participate in the healing process. If the subretinal damage does not involve the ingrowth
of new blood vessels, such as in GA and RRD, the damaged photoreceptor/RPE cells may be replaced by active Müller glia (i.e., gliosis) or myofibroblasts
transdifferentiated from other cells such as RPE cells or macrophages. In RRD-induced PVR, the wound healing response leads to excessive ECM deposition and
the development of subretinal fibrotic membrane; whereas, in GA, the wound is filled with active Muller glia and infiltrating immune cells without excessive ECM
deposition and damage area becomes atrophic. In nAMD, new blood vessels are a part of the pathology, and the healing process is accompanied by continued
immune cell infiltration and excessive deposition of ECM around the diseased blood vessels and eventually, the development of fibro-vascular membrane.

forming gliosis without ongoing inflammation (or cold fibrosis,
see definition below) (Figure 1A).

If the insult to photoreceptors or RPE cells is severe
or persists, adaptive immune cells may be recruited to the
subretinal space. For example, aged Nrf2 knockout mice fed
with high-fat diet developed RPE degeneration akin to dry
AMD, which was accompanied by subretinal accumulation

of MHC-II+ microglia, γδT cells and FoxP3+ regulatory T
cells (Zhao et al., 2014b). In the meantime, Müller cells,
particularly, those right on top of or near the damaged
photoreceptor/RPE area may also be activated. In addition to
their roles in maintaining retinal structure, neuroprotection and
detoxification (Bringmann et al., 2006), Müller cells are critically
involved in retinal wound healing and repair (Bringmann et al.,
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2009; Bringmann and Wiedemann, 2012). They can participate
in retinal wound healing by secreting pro-/anti-angiogenic
cytokines such as VEGF, Fibroblast Growth Factor-2 (FGF-2),
Tumor Necrosis Factor-α (TNF-α) (Bringmann et al., 2006),
Pigment Epithelium Derived Factor (PEDF), Transforming
Growth Factor-ß (TGF-ß), and thrombospondin-1 (Eichler et al.,
2004) and be an important source of collagen I-VII, IX, and
XI (Ponsioen et al., 2008). Müller cells are also believed to be
dormant resident progenitor cells that can repair retinal neurons
(Karl and Reh, 2010; Liu et al., 2013a).

During subretinal would healing, RPE cells can undergo
EMT and acquire macrophage- or fibroblast-like phenotype
depending on the microenvironment that they are exposed
to. Specifically, RPE cells tend to adopt fibroblast properties
when the environment is rich in collagen and fibronectin but
can switch to a macrophage-like phenotype in the presence of
vitreous or photoreceptor debris (Grierson et al., 1994). Multiple
pathways (e.g., TGF-β, Wnt, miRNA, oxidative stress/Nrf2, etc.)
are known to play a role in EMT by RPE and this topic has
been reviewed extensively recently by others (Yang et al., 2015;
Shu et al., 2020; Zhou et al., 2020; Blasiak et al., 2021). However,
the molecular cues that guide RPE cells transdifferentiating
into macrophage- or fibroblast-like phenotypes remain to be
fully elucidated. A classical wound healing has three phases:
inflammation, proliferation, and remodeling, with the aim to
clear dead cells/debris, heal and stabilize the wound. But if the
damage is severe or persists for a prolonged period, wound
healing and cell death may co-exist in the subretinal space leading
to significant overlaps in the three phases. Infiltrating innate
and adaptive immune cells, the complement system and retinal
resident cells (e.g., Müller cells, RPE cells etc.) all participate in
the healing process. When there is an increasing demand for
the removal of dead cells and debris in the subretinal space,
RPE cells may adapt to a macrophage-like phenotype through
EMT. During the proliferation and healing stages, RPE cells may
transdifferentiate into fibroblast-like cells to fill the space left by
dead cells and participate in retinal remodeling.

The subretinal space is devoid of blood vessels. If the
subretinal damage does not involve the ingrowth of new
blood vessels, such as in RRD, the damaged photoreceptor/RPE
cells may be replaced by active Müller cells (i.e., gliosis) or
myofibroblasts transdifferentiated from Müller glia, RPE cells or
macrophages. The subretinal membranes in PVR are reported
to constitute multiple types of cells, including fibroblasts, RPE
cells, Müller cells, infiltrating macrophages, CD4+ and CD8+ T
cells (Charteris et al., 1993). In nAMD, new blood vessels are a
part of the pathology, and the healing process is accompanied
by continued immune cell infiltration and excessive deposition
of ECM around the diseased blood vessels and eventually,
the development of fibro-vascular membrane (Figure 1B).
Immunohistochemistry studies revealed complement deposition
and immune cell infiltrations in subretinal fibro-vascular
membrane from nAMD patients (Grossniklaus et al., 2005; Little
et al., 2020a). To differentiate the scars that are well-settled and
contain only fibroblasts from the ones with active inflammation
and contain both myofibroblasts and immune cells, Adler et al.
(2020) defined the former as “cold fibrosis” and the later as “hot
fibrosis”.

Subretinal Fibrosis
Subretinal fibrosis is the end stage of various eye diseases
including RRD (Pastor et al., 2016) and nAMD (Daniel
et al., 2014), recurrent uveoretinitis (Kim et al., 1987),
proliferative diabetic retinopathy (Roy et al., 2016), or subretinal
neovascularization secondary to high myopia (Montero and
Ruiz-Moreno, 2010). When the lesion is located in the macula,
it is often called “macular fibrosis.” PVR is a major cause of
retinal detachment surgery failure in RRD patients. Vitreous
hemorrhage is known to be a risk factor for PVR (Duquesne
et al., 1996). In nAMD, macular fibrosis stabilizes the neovascular
membrane leading to non-responsiveness to the anti-VEGF
treatment (Daniel et al., 2014; Ishikawa et al., 2016). Risk factors
of nAMD-related macular fibrosis include initial worse visual
acuity, persistent damage to RPE and the outer layers of the
neuronal retina, a longer duration between disease onset and
treatment and hemorrhage (Little et al., 2018; Teo et al., 2020).
In addition to nAMD, choroidal neovascularization (CNV) also
occurs in pathologic myopia (Ohno-Matsui et al., 2021) and
recurrent uveoretinitis (Kim et al., 1987) and these patients are
normally younger than nAMD patients. Interestingly, the CNVs
in child and adolescent myopic patients are less likely to progress
into macular fibrosis compared to those in nAMD. In fact, their
CNV can regress spontaneously, and the regression is often
accompanied by macular and choroidal atrophy but not fibrosis
(Hayashi et al., 2010; Rishi et al., 2013). This suggests that old
age increases the risk of subretinal fibrosis. RPE cells in the aging
eye undergo significant cytoskeleton reorganization (Tarau et al.,
2019) and are multinucleated and have impaired wound healing
capacity (Chen et al., 2016b). The increased risk of subretinal
fibrosis in the elderly may be related to RPE senescence and
impaired wound healing.

The underlying mechanism of subretinal fibrosis is poorly
defined although inflammation is believed to play an important
role (Chen and Xu, 2015). A low-grade inflammation (para-
inflammation) exists in the aging retina and RPE/choroid (Xu
et al., 2009), which may favor a profibrotic response during
subretinal wound healing. The risk factors of PVR and macular
fibrosis in nAMD are indicatives of either severe insults to the
macula or prolonged/sustained tissue damage, which will likely
induce an inflammatory response that constitutes a variety of
innate and adaptive immune cells. Activation of these immune
cells creates a microenvironment that recruits and activates
fibroblasts in the subretinal space, particularly when the oBRB is
damaged such as in nAMD.

IMMUNE CELLS IN SUBRETINAL
FIBROSIS

After injury, a timely inflammation is essential to eliminate
harmful stimuli and initiate wound healing. The initial
inflammatory response is dominated by innate immune cells
such as neutrophil, monocytes, and macrophages (Oberyszyn,
2007). Prompt resolution of the inflammation will facilitate tissue
repair and the wound heals with “cold fibrosis.” However, if the
inflammation fails to resolve, chronic inflammation will follow
leading to further tissue damage and progressive fibrosis. Both
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the innate and adaptive immune cells participate in chronic
inflammation. In this section, we discuss the role of innate cells
and adaptive immune cells in subretinal wound healing and
fibrosis (Figure 2).

Innate Immune Cells
Macrophages
Subretinal phagocyte accumulation has been observed in the
normal aging retina (Xu et al., 2008; Lad et al., 2015), after
light damage (Sennlaub et al., 2013; Karlen et al., 2018) and is
related to defective RPE immunomodulation (Xu et al., 2009).
Although the source of subretinal phagocytes in various models

of retinal degeneration (i.e., macrophages vs. microglia) differs
(Karlen et al., 2018; Yu et al., 2020), infiltrating macrophages are
believed to play a critical role in the laser-induced CNV and its
related subretinal fibrosis (Sakurai et al., 2003; Tsutsumi et al.,
2003; Little et al., 2020a). Both pro-inflammatory monocytes and
pro-fibrotic and alternatively activated macrophages are reported
to be involved in organ fibrosis including in severe COVID-19
patients (Page et al., 2012; Wendisch et al., 2021).

Upon the damage of the RPE/Bruch’s membrane complex
in laser-induced CNV, microglia and choroidal macrophages
are parts of the first wave of infiltrating immune cells (Huang
et al., 2013; Liu et al., 2013b). More recently, using single-cell

FIGURE 2 | The role of innate and adaptive immune cells in wound healing, organ and subretinal fibrosis. Cells were adopted from BioRender.com.

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 June 2022 | Volume 16 | Article 916719

http://BioRender.com
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-16-916719 June 8, 2022 Time: 13:42 # 6

Szczepan et al. Inflammation in Subretinal Fibrosis

FIGURE 3 | Macrophages/microglia in the subretinal fibrotic lesion. Representative images, and their zoom-in images, of the lesion (left panel) and non-lesion (right
panel) area of RPE flat mounts stained for collagen-1, DAPI and F4/80 (A, macrophage marker), CX3CR1 (B, microglial marker), and Iba1 (C, marker for activated
microglia and macrophages). Scale bars = 25 µm; Zoom images Scale bars = 10 µm.

RNA sequencing analysis, Wieghofer et al. (2021) discovered
that retinal microglia were the dominant cell subset present in
CNV, suggesting an important contribution to CNV progression.
However, their role in the development of subretinal fibrosis
remains unknown. In the two-stage laser-induced subretinal
fibrosis, we detected a large number of F4/80+, CX3CR1+,
IBA-1+ cells both inside and around the collagen-1+ or
fibronectin+ fibrotic lesion (Little et al., 2020b; Figure 3). The
primary role of infiltrating macrophages is undoubtedly to
remove debris and initiate retinal repair, but they can promote
subretinal fibrosis during chronic inflammation through multiple
mechanisms (Figure 2).

First, macrophages can directly transdifferentiate into
myofibroblasts, a process called macrophage-to-myofibroblast
transition (MMT). MMT has been shown to contribute to
renal fibrosis (Meng et al., 2016). It has been reported that M2,
especially CD206+ macrophages, rather than M1, undergo the
transition (Wang et al., 2017). More recently, a study from
our group demonstrated the existence of MMT in subretinal
fibrosis (Little et al., 2020b) and further showed that, in
addition to TGF-β, the anaphylatoxin C3a could induce MMT
(Little et al., 2020a).

Second, macrophages can release pro-angiogenic and pro-
fibrotic mediators that can either recruit and activate fibroblasts
or induce mesenchymal transition from endothelial or epithelial
cells (Wynn and Vannella, 2016; Zhu et al., 2017b). In the
case of subretinal fibrosis, infiltrating macrophages may recruit
choroidal fibroblasts or circulating fibrocytes to the site of CNV.
They may also release pro-fibrotic mediators to induce EMT in
RPE cells or endothelial-to-mesenchymal transitions (EndoMT)
from choroidal vessels or CNV (Shu et al., 2020; Song et al., 2021).

Third, in response to prolonged tissue damage, macrophages
can further promote subretinal inflammation, including the
recruitment of other immune cells and complement activation.
Macrophages can synthesize various complement components
and directly contribute to subretinal complement activation
(Luo et al., 2012). Uncontrolled complement activation is
believed to drive AMD pathology (Xu and Chen, 2016; Armento
et al., 2021). We reported that RPE cells could enhance the
expression of complement C3 and complement factor B (CFB)
and downregulate complement factor H (CFH) and CD59a
expression in macrophages under inflammatory conditions (Luo
et al., 2013). Higher plasma level of C3a, C4a, and C5a is related to
subretinal fibrosis in nAMD (Lechner et al., 2016), indicative of
the involvement of the complement system in subretinal fibrosis.

In humans, there are three functional monocytes subsets
(i.e., precursors of macrophages), classical (CD14+CD16−), non-
classical (CD14−CD16+), and intermediate (CD14+CD16+)
(Wong et al., 2012). We reported that intermediate monocytes
in nAMD patients expressed higher levels of HLA-DR (Chen
et al., 2016a) and that monocytes from nAMD patients without
macular fibrosis, produced higher levels of interleukine-8 (IL-
8) and CCL2 (Lechner et al., 2017). The exact subsets of
monocytes giving rise to pro-fibrotic macrophages in nAMD
remain to be elucidated.

Dendritic Cells
Dendritic cells (DCs) are professional antigen-presenting cells
involved in tissue homeostasis. Several populations of DCs are
present in the eye but the majority of them reside in connective
tissues (e.g., cornea, sclera, choroid) with only few in neurons
(Forrester et al., 2010). A small number of DCs were reported to
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be in the peripapillary and peripheral marginal retina in mice (Xu
et al., 2007). DC are early responders to retinal injury. Lehmann
et al. (2010) reported that CD11c+CD11b+ DCs responded
rapidly to optic nerve injury and light-induced photoreceptor
injury. They increased in number and accumulated at the injury
site and became MHC-II+ (Lehmann et al., 2010), suggesting that
DCs are key players in retinal injury and wound healing.

Dendritic cells are known to play a critical role in
inflammation-driven fibrosis in multiple organs (Rahman and
Aloman, 2013; Bocchino et al., 2021). Ahadome et al. (2016)
showed that classical DC contributed to ocular mucosal fibrosis
through the retinoic acid pathway in a model of allergic eye
disease. Impaired DC maturation can lead to inadequate T-cell
response and contribute to organ fibrosis as observed in COVID-
19 patients (Borcherding et al., 2021). It has been reported that
DCs contribute to scar formation in liver fibrosis and multiple
sclerosis directly through secreting metalloproteinase and their
inhibitors (Rahman and Aloman, 2013).

The critical role of DC in retinal inflammation has been
documented by many studies (Xu et al., 2007; Forrester et al.,
2010). In our two-stage laser-induced subretinal fibrosis, a
large number of MHC-II+ cells were detected inside the lesion
(Figure 4A) but their DC identity is unknown. The role of DC in
subretinal fibrosis thus remains to be elucidated (Figure 2).

Neutrophils
Neutrophils are known to be associated with acute inflammation
and are one of the first immune cells recruited to the site of injury
or infection. Neutrophil respiratory burst through the NADH
oxidase system is essential for efficient pathogen elimination.
In addition, neutrophil granules contain various enzymes [e.g.,
lactoferrin, neutrophil gelatinase-associated lipocalin (lipocalin-
2), gelatinase, etc.], which can participate in bacterial killing

(Segal, 2005). Although the number of neutrophils declines
rapidly after the initial phase of acute inflammation, neutrophil
elastase and neutrophil extracellular traps (NETs) are known
to critically contribute to inflammation-mediated organ fibrosis
(Martínez-Alemán et al., 2017) including lung inflammation and
fibrosis in COVID-19 patients (Wang et al., 2020; Figure 2).

The role of neutrophils in inflammation-mediated retinal
fibrosis has not been systemically investigated. We and others
have shown that retinal inflammation in the CCL2 or CCR2
deficient experimental autoimmune uveitis (EAU) mice is
dominated by neutrophils (Sonoda et al., 2011; Chen et al., 2012).
Interestingly, inflammation-induced intraretinal fibrovascular
membrane is reduced in CCR2 KO (Chen et al., 2012) and
CCL2/CX3CR1 double knockout mice (Zhao et al., 2014a).
In oxygen-induced retinopathy (OIR), vascular remodeling is
associated with neutrophil infiltrating and NETs can remove
diseased endothelial cells and remodel unhealthy vessels (Binet
et al., 2020). Data from the EAU and OIR studies appear to
suggest that neutrophils may promote retinal vascular repair and
reduce pathological fibrosis. In nAMD, the circulating level of
neutrophils is higher compared to age-matched healthy controls
(Niazi et al., 2019). We found that the plasma level of lipocalin-
2 is increased in nAMD patients with macular fibrosis (Chen
et al., 2020), suggesting a link between dysregulated neutrophil
activation and macular fibrosis. In the two-stage laser-induced
mouse model of subretinal fibrosis, we detected GR-1+ cells
around and inside the lesion (Figure 4B). Further studies will be
needed to understand the role of neutrophils in inflammation-
induced retinal fibrosis.

Natural Killer Cells
Natural Killer (NK) cells are cytotoxic lymphocytes critically
involved in innate immunity. It has been suggested that NK

FIGURE 4 | Innate immune cells in the subretinal fibrotic lesion. Representative images, and their zoom in images, of the lesion (left panel) and non-lesion (right
panel) areas of RPE flatmounts stained for collagen-1, DAPI and MHCII (A), Gr-1 (B), CD335/Nkp46 (C). Scale bars = 25 µm; Zoom images Scale bars = 10 µm.
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cells promote angiogenesis and ameliorate fibrosis in the liver
and heart (Radaeva et al., 2006). On the other hand, NK
cell accumulation could promote chronic kidney inflammation
(Turner, 2017) and this has also been seen in severe COVID-19
patients with pulmonary fibrosis (Bi, 2022).

In the eye, infiltration and malfunction of NK cells have been
reported in patients with non-infectious uveitis such as Behcet’s
disease (Kucuksezer et al., 2015), Vogt-Koyanagi-Harada disease
(Levinson et al., 2016), and in viral uveitis (Hamzaoui et al., 1990).
CNV is a serious complication of chorioretinitis/posterior uveitis,
particularly in the forms affecting the outer retina-RPE-choroid
interface (Baxter et al., 2013). The inflammation-induced CNV
can become a fibrovascular membrane if remains untreated (Kim
et al., 1987; Chen et al., 2012) but the role of NK cells in the
development of uveitis-related retinal fibrovascular membrane
remains to be investigated. In patients with proliferative DR
(Obasanmi et al., 2020) and nAMD (Lechner et al., 2015), the
percentage of CD56+ NK cells was not altered compared to that
in healthy controls. In our two-stage laser-induced subretinal
fibrosis, we detected Nkp46+ NK cells in the fibrotic lesion
site (Figure 4C). A previous study showed that NK cells could
produce VEGF when co-cultured with RPE (Hijioka et al., 2008).
However, another study showed that human iPS-derived RPE
greatly suppressed NK cell activation (Sugita et al., 2018). Further
studies are required to understand the role of NK cells in
subretinal fibrosis.

Mast Cells
Mast cells (MCs) are granulocytes involved, at different levels,
in immune responses such as allergy responses, wound healing,
angiogenesis, and immune tolerance (Krystel-Whittemore et al.,
2016). MCs are particularly abundant within the mucosal and
connective tissues of the skin, lungs, guts and are in proximity
to small venules and capillaries. Their activation leads to the
release of various mediators (e.g., histamine, tryptase, chymase),
cytokines and chemokines (Krishnaswamy et al., 2005). MCs
have been implicated in the pathogenesis of fibrotic conditions
in the liver, kidney, skin, and lung (Overed-Sayer et al.,
2014). Mechanistically, MCs can promote inflammation by
releasing various vasodilators and proinflammatory mediators,
and producing profibrotic factors such as bFGF, PDGF, and TGF-
β (Monument et al., 2015). MCs can also activate fibroblasts
through cell-to-cell communication via gap junction (Yamamoto
et al., 2000). MC activation has been observed in COVID-19
patients and is believed to contribute to cytokine storm and
related organ damage and fibrosis (Conti et al., 2020).

In the eye, MCs are primarily found in the choroid but absent
in the retina (McMenamin, 1997). Elegant studies from Gerard
A. Lutty’s group demonstrated that the number and degradation
of MC are increased in all forms of AMD including early AMD,
GA, and nAMD (Bhutto et al., 2016). They further showed that
mast cell-derived tryptase plays a critical role in the development
and progression of the GA (McLeod et al., 2017). MC activation
and degradation are also reported to contribute to pathological
angiogenesis in OIR (Matsuda et al., 2017). In patients with
idiopathic epiretinal membrane and idiopathic macular hole,
MCs were detected in the bursa premacularis (Sato et al., 2019)

suggesting that they may be involved in the development of
epiretinal membrane. The implication of MCs in subretinal
wound healing and fibrosis remains elusive (Figure 2).

Eosinophils
Eosinophils are major effectors of the innate immune system
and are involved in a range of inflammatory conditions such
as hypereosinophilic syndrome or asthma and eosinophilic
esophagitis. Activated eosinophils are an important source of
pro-fibrotic and proangiogenic factors like TGF-ß, IL-13, CCL-
18, FGF-9, VEGF, and VCAM-1 (Wynn, 2008; Aceves, 2014).
They are known to play a role in endomyocardial fibrosis (Spry,
1989) and pulmonary fibrosis, including SARS-CoV-2-induced
respiratory inflammation and fibrosis (Kim et al., 2021, 19).

In the eye, eosinophils are known to play a role in
allergic conjunctivitis (Trocme and Aldave, 1994), and Wegner’s
granulomatosis (Trocme, 1991), although little is known about
their involvement in ocular fibrosis. Intraocular eosinophils
were detected in Toxocara canis and Ascaris suum infected eyes
(Rockey et al., 1979) but not in human CNV (Grossniklaus et al.,
2005, 7). Since eosinophils are one of the major sources of pro-
fibrotic mediators, further studies will be needed to elucidate their
role in retinal fibrosis (Figure 2).

Adaptive Immunity
T Lymphocytes
During inflammation, infiltrating lymphocytes, in particular,
T helper cells can influence the healing and scarring process
(Zhang and Zhang, 2020). A previous study reported that
CD4 T cell depletion decreased wound strength, resilience and
toughness; whereas CD8 T cell depletion increased wound
strength, resilience and toughness (Davis et al., 2001). The tissue-
educated different subsets of T cells can secrete various mediators
and growth factors that influence the microenvironment and
directly affect the activity of macrophages and myofibroblasts,
key cells for wound healing and fibrosis. It is believed that
wound healing and fibrosis are orchestrated by Th2 cells,
which secrete anti-inflammatory and pro-fibrotic factors such
as IL-4, IL-5, and IL-13. These type 2 cytokines induce
excessive deposition of proteins crucial for ECM remodeling,
including pro-collagens, matrix metalloproteinase, etc. (Kryczka
and Boncela, 2015). Th2 cytokines can induce pro-healing
M2 macrophage differentiation. The cytokine IL-5 can activate
eosinophils to release fibrotic factors IL-13 and TGF-ß (Le
Moine et al., 1999). Regulatory T cells can also facilitate
wound healing through upregulation of epidermal growth factor
receptor expression (Nosbaum et al., 2016). Other T helper cells,
including Th22, Th9, Th17, and T regulatory cells are all known
to play a role in organ fibrosis (Zhang and Zhang, 2020). For
example, CD4 and CD8 T cell accumulation and elevated levels of
IL-17 and type 1 cytokines have been observed in severe COVID-
19 patients, similar to idiopathic pulmonary fibrosis patients
(Wu et al., 2020).

In the chronic phase of EAU, the development of intraretinal
fibrovascular membrane is related to higher levels of IL-
17 production, CD4 T cell and arginase-1+ macrophage
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accumulation (Chen et al., 2012), suggesting that both Th17
response and M2-type macrophages may play a role (Figure 2).

Previously, we reported that the percentage of CD4, but not
CD8 T cells was significantly higher in nAMD patients with
macular fibrosis compared to those without macular fibrosis
(Lechner et al., 2015). Moreover, the levels of IL-4 were higher
in nAMD patients suggesting an activated Th2 response (Yu
et al., 2016) although direct evidence supporting the role
of Th2 response in macular fibrosis secondary to nAMD is
lacking (Figure 2).

B Lymphocytes
B cells are mainly involved in humoral immunity by producing
antibodies. Compelling evidence suggests that B cells play
an important role in inflammation-mediated fibrosis through
antibody-independent mechanisms (Shen and Fillatreau, 2015).
B cell deficient mice are resistant to silica-induced lung fibrosis
(Arras et al., 2006), and carbon tetrachloride-induced liver
fibrosis (Thapa et al., 2015). Mechanistically, active B cells can
produce cytokines (e.g., TNF-α, IL-9) and chemokines (e.g.,
CCL7) that shift pro-fibrotic immune response; they can also
interact with T cells, macrophages and myofibroblasts promoting
fibrosis (Zhu et al., 2017a).

The role of B cells in non-infectious uveitis is well recognized
(Smith et al., 2016). B cells have been shown to infiltrate the
retina/choroid in choroiditis-related subretinal fibrosis (Kim
et al., 1987). B cells were detected in the epiretinal membranes
from proliferative DR (Tang et al., 1993). Retinal autoantibodies
have been detected in AMD patients (Adamus et al., 2014). In
our previous study, we did not observe any significant difference
in circulating B cell population between nAMD patients and
healthy controls. The number of circulating B cells in nAMD
patients with and without macular fibrosis also did not differ
(Lechner et al., 2015). The role of B cells in retinal fibrosis remains
elusive (Figure 2).

CONCLUSION

When the retina or subretinal space suffers from a one-off
mild injury, retinal glial cells and the complement system
can heal and repair the damage to restore homeostasis. Once
the injury is removed, inflammation will resolve, and the
damages will be healed by gliosis without significant immune
cell infiltration (“cold fibrosis”). However, when subretinal insult
persists, circulating immune cells will be summoned leading
to chronic inflammation that is executed by active microglia,
the complement system, and various infiltrating immune cells
(e.g., macrophages, neutrophils, T cells, etc.). The initial phase
of immune cell infiltration is dominated by innate immune cells
such as neutrophils and monocytes. As the disease progresses to
chronic stages, retina-exposed innate immune cells will educate
T and B cells in the regional lymph nodes. These educated T
and B cells may migrate to the damaged retina and participate
in wound healing. Within the retina, they will be further
activated by alarmins released from damaged cells with the
aim to clean the dead cells, remove debris and promote repair,

although their activation will be regulated by remaining neurons
and RPE cells. The wound will be filled with myofibroblasts
(recruited or transdifferentiated through EMT, EndoMT, and
MMT), EMC deposition and infiltrating innate and adaptive
immune cells (“hot fibrosis”). Improved knowledge of how
the immune cells orchestrate retinal/subretinal wound healing
response, in particular, why and how the response is disrupted
and/or dysregulated, could lead to the development of new
therapeutic strategies to prevent or treat retinal fibrosis.

Future studies should aim to understand the cellular and
molecular pathways involved in retinal wound healing, in
particular the crosstalk between neurons and the immune
system in the healthy and the damaged retina. knowledge
of how chronic insult (e.g., oxidative stress in RRD and
AMD) breaches the retinal IP, and how it affects the crosstalk
between neurons and the immune system will be critical to
uncovering molecular pathways underlying dysregulated retinal
inflammation during wound healing.

The outstanding questions for developing preventive or
therapeutic strategies for subretinal or intraretinal fibrosis
include: (1) what are the signals that recruit and retain circulating
immune cells in different stages of retinal wound healing? (2)
how are the phenotype and function of infiltrating immune cells
regulated by the retinal microenvironment at different stages
of wound healing? (3) which immune cells are the key drivers
of retinal fibrosis and what pro-fibrotic molecules that they
produce?
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