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A B S T R A C T   

Background: Air pollution exposure is associated with impaired neurodevelopment, altered structural brain 
morphology in children, and neurodegenerative disorders. Differential susceptibility to air pollution may be 
influenced by genetic features. 
Objectives: To evaluate whether the apolipoprotein E (APOE) genotype or the polygenic risk score (PRS) for 
Alzheimer’s Disease (AD) modify the association between air pollution exposure during pregnancy and child
hood and structural brain morphology in preadolescents. 
Methods: We included 1186 children from the Generation R Study. Concentrations of fourteen air pollutants were 
calculated at participants’ home addresses during pregnancy and childhood using land-use-regression models. 
Structural brain images were collected at age 9–12 years to assess cortical and subcortical brain volumes. APOE 
status and PRS for AD were examined as genetic modifiers. Linear regression models were used to conduct single- 
pollutant and multi-pollutant (using the Deletion/Substitution/Addition algorithm) analyses with a two-way 
interaction between air pollution and each genetic modifier. 
Results: Higher pregnancy coarse particulate matter (PMcoarse) and childhood polycyclic aromatic hydrocarbons 
exposure was differentially associated with larger cerebral white matter volume in APOE ε4 carriers compared to 
non-carriers (29,485 mm3 (95% CI 6,189; 52,781) and 18,663 mm3 (469; 36,856), respectively). Higher preg
nancy PMcoarse exposure was differentially associated with larger cortical grey matter volume in children with 
higher compared to lower PRS for AD (19436 mm3 (825, 38,046)). 
Discussion: APOE status and PRS for AD possibly modify the association between air pollution exposure and brain 
structural morphology in preadolescents. Higher air pollution exposure is associated with larger cortical volumes 
in APOE ε4 carriers and children with a high PRS for AD. This is in line with typical brain development, sug
gesting an antagonistic pleiotropic effect of these genetic features (i.e., protective effect in early-life, but 
neurodegenerative effect in adulthood). However, we cannot discard chance findings. Future studies should 
evaluate trajectorial brain development using a longitudinal design.   
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1. Introduction 

Air pollution is one of the biggest environmental and human health 
threats in the world (Cohen et al., 2017; European Environment Agency, 
2020). Studies have assessed the relationship between air pollution 
exposure and brain structural morphology in children, finding alter
ations in (sub)cortical brain regions at different ages (Beckwith et al., 
2020; Peterson et al., 2015; Guxens et al., 2018; Mortamais et al., 2017; 
Lubczyńska et al., 2021). Results showed alterations in cortical and 
subcortical brain regions in relation to exposure to different air pollut
ants from various sources of traffic-related air pollution (Beckwith et al., 
2020; Peterson et al., 2015; Guxens et al., 2018; Mortamais et al., 2017; 
Lubczyńska et al., 2021). Neuroinflammation and oxidative stress have 
been shown as potential biological mechanisms behind these associa
tions (Block et al., 2012; Saenen et al., 2019). However, the exact 
mechanisms by which air pollution exposure is associated with brain 
development in children are not yet fully understood. Moreover, the 
interactions between genetics, air pollution, and neurodevelopment 
have been poorly studied. It is important to investigate genetic in
teractions in this association as early as childhood, to better understand 
neurological diseases later in life such as Alzheimer’s disease (AD) 
(Calderón-Garcidueñas et al., 2020). Two possible genetic modifiers are 
the apolipoprotein E (APOE) gene and the polygenic risk score (PRS) for 
AD. 

The APOE gene is involved in lipid homeostasis and cholesterol 
metabolism, and carriers of the epsilon 4 (ε4) allele are at higher risk of 
neurodegenerative processes (Calderón-Garcidueas et al., 2012; Kloske 
and Wilcock, 2020; Piers, 2018; Fernandez et al., 2019; Liu et al., 2013). 
The ε4 allele is the strongest known common genetic risk factor for AD 
and has been studied as a possible genetic modifier of the association 
between air pollution and brain morphology (Calderón-Garcidueas 
et al., 2012; Liu et al., 2013; Alemany et al., 2018; Oudin et al., 2019; 
Schikowski et al., 2015; Cacciottolo et al., 2017). Animal models iden
tified that accumulation of Aβ amyloid (hallmark of AD) may explain the 
more prominent association between air pollution exposure and neu
rodegeneration in carriers of the APOE ε4 allele and a recent study found 
associations between air pollution and AD biomarkers (Cacciottolo 
et al., 2017; Youmans et al., 2012; Alemany et al., 2021). Most studies 
have been conducted in adults, finding associations between air pollu
tion exposure and neurodegenerative features in APOE ε4 carriers or 
finding no modifying effect of APOE status (Calderón-Garcidueas et al., 
2012; Oudin et al., 2019; Schikowski et al., 2015; Cacciottolo et al., 
2017; Alemany et al., 2021). Research is limited in children. To the best 
of our knowledge, only one study evaluated APOE ε4 status as a genetic 
modifier of the association between air pollution exposure during 
childhood and brain morphology outcomes (Alemany et al., 2018). 
Authors concluded that higher exposure to polycyclic aromatic hydro
carbons (PAHs) and nitrogen dioxide (NO2) was more strongly associ
ated with smaller caudate volumes in APOE ε4 carriers as compared to 
non-carriers in Spanish school-aged children (Alemany et al., 2018). 

Genome-wide association studies (GWAS) have identified a multi
tude of genetic loci (single nucleotide polymorphisms, SNP) for many 
neurodegenerative diseases, including AD. (Bellenguez et al., 2020; 
Wightman et al., 2021) The PRS for AD is the combination of the disease 
burden per locus transformed into a single score and is used to assess the 
genetic burden of an individual to AD. It captures the majority of 
common SNP effects and thus explains a larger fraction of the SNP 
heritability as compared to the APOE genotype (Lamballais et al., 2020; 
Leonenko et al., 2021). Few studies have assessed PRS for AD in relation 
to brain morphology, with only two looking at children and none at air 
pollution exposure (Lamballais et al., 2020; Lupton et al., 2016; Axelrud 
et al., 2018; Mormino et al., 2016; Foley et al., 2017). 

Since foetuses and children do not have fully developed defence 
mechanisms, air pollutants could cross the placental- and blood-brain- 
barrier, alter healthy brain development, and manifest in neurological 
disorders (Block et al., 2012; Grandjean and Landrigan, 2014; Costa 

et al., 2017; Bové et al., 2019). Further, early-life processes like brain 
development could be influenced by the genetic burden for AD, although 
findings from epidemiological research are inconsistent (Lamballais 
et al., 2020; Axelrud et al., 2018; Vinueza-Veloz et al., 2020; Shaw et al., 
2007; Chang et al., 2016; Quiroz et al., 2015). Some studies have found 
associations between AD genetic burden and various brain regions in 
children (Axelrud et al., 2018; Shaw et al., 2007; Chang et al., 2016; 
Quiroz et al., 2015), but another one conducted in the same cohort as the 
present study did not (Lamballais et al., 2020). In this study, we aim to 
evaluate how APOE status and PRS for AD modify the association be
tween air pollution exposure during pregnancy and childhood and brain 
structural morphology in preadolescents. We attempt to replicate the 
findings of Alemany et al. 2018 and extend them by including more air 
pollutants, global and subcortical brain volumes, and evaluating the PRS 
for AD as a potential genetic modifier in a larger sample size. 

2. Methods 

2.1. Study population and design 

The current study is embedded in a population-based birth cohort 
study based in Rotterdam, the Netherlands: the Generation R Study 
(Kooijman et al., 2016). The study followed women from pregnancy 
onward and enrolled a total of 9778 women during pregnancy or right 
after delivery. Children were born between April 2002 and January 
2006. In our study, we included mothers with a singleton pregnancy 
whose children had available genotype data and a European ethnic 
origin (N = 2796). Using a European population improves the perfor
mance of the PRS and allows for correct assessment of the APOE geno
type with neurodevelopmental burden, since this is dependent on 
ancestry (Baker and Escott-Price, 2020; Naslavsky et al., 2022). When 
children were between 9 and 12 years old, those still involved in the 
study were invited to participate in a magnetic resonance imaging (MRI) 
scanning session (White et al., 2018). Among our study population, air 
pollution data and good quality T1-weighted imaging data was available 
for 1186 children (Fig. A1). Ethical approval for the study was granted 
by the Medical Ethics Committee of the Erasmus Medical Centre in 
Rotterdam, the Netherlands. Informed consent was given by mothers. 

2.2. Air pollution exposure 

Concentrations of various air pollutants were estimated for the 
pregnancy (i.e., from conception until birth) and childhood (i.e., from 
birth until MRI scanning session) periods using standardized procedures 
that are detailed in previous literature (Guxens et al., 2018, 2021; De 
Hoogh et al., 2013; Jedynska et al., 2014; Yang et al., 2015; Beelen et al., 
2013). Briefly, two-week measurements were done thrice (warm, cold, 
and intermediate seasons) spread across the Netherlands and Belgium. 
NO2 and nitrogen oxides (NOx) were measured in 80 sites and particu
late matter (PM) with aerodynamic diameter <10 μm (PM10) and <2.5 
μm (PM2.5) in 40 of these sites. PM with aerodynamic diameter between 
10 and 2.5 μm was calculated by subtracting PM2.5 from PM10 (PMcoarse). 
Absorbance of PM2.5 fraction (PM2.5 absorbance), oxidative potential of 
PM2.5 (OP) evaluated using two acellular methods: dithiothreitol 
(OPDTT) and electron spin resonance (OPESR), and composition of PM2.5 
consisting of organic carbon (OC), PAHs, copper (Cu), iron (Fe), silicon 
(Si), and zinc (Zn), were measured from PM2.5 filters. 

Results of the three two-week measurements were averaged for every 
pollutant. Those concentrations were adjusted for temporal variability 
using data from a continuous reference site, resulting in one mean 
annual concentration for the year of measurement. Then, the concen
trations of each air pollutant were estimated at each geocoded address 
that the study participants have lived at using land use regression (LUR) 
models. LUR models were built using linear regression models to 
determine the combination of land use predictors (e.g., traffic intensity 
on the nearest road, population density) that best explained the annual 
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concentration level of each pollutant. Considering the time that each 
participant spent at every address and weighting the pollution concen
trations accordingly, the mean air pollution concentration during 
pregnancy and childhood of each pollutant and for each participant was 
calculated. For those participants recruited after birth, the address at 
birth was considered representative for the pregnancy period. Lastly, as 
historical data of the pollutants was unavailable, extrapolation to the 
exact periods of study was not possible, and thus the assumption that the 
spatial contrast remained constant over time was made based on pre
vious studies (Eeftens et al., 2011; Gulliver et al., 2013). 

2.3. Brain structural morphology 

Prior to the actual MRI scanning session, each child underwent a 
mock session to familiarize themselves with the environment (White 
et al., 2018). The MRI scans were performed with a 3 T General Electric 
scanner (Discovery MR750W, GE Worldwide, Milwaukee, WI) using an 
8-channel receive-only head coil. Average age of the child at MRI session 
was 10.2 years. 

Structural T1-weighted images of the whole brain were collected 
using the following sequence parameters: TR = 8.77 ms, TE = 3.4 ms, TI 
= 600 ms, flip angle = 10◦, field of view = 220 mm × 220 mm, 
acquisition matrix = 220 × 220, slice thickness = 1 mm, number of 
slices = 230, voxel size = 1 mm × 1 mm x 1 mm, and ARC acceleration 
= 2 (White et al., 2013, 2018). FreeSurfer Image Analysis Suite 6.0 was 
used to process the MRI data (by conducting cortical reconstruction and 
volumetric segmentation) and pre-processing steps were taken (Fischl, 
2012; Muetzel et al., 2018, 2019). Global brain volumes (cerebral white 
matter, cortical and subcortical grey matter, corpus callosum, and cer
ebellum) were extracted and subcortical brain volumes (pallidum, pu
tamen, caudate nucleus, thalamus, amygdala, hippocampus, and 
nucleus accumbens) were automatically labelled. Volumes across the 
left and right hemispheres were summed in case of bilateral volumes. To 
check the processing of the MRI data, visual inspection of FreeSurfer 
reconstructions was done using a standard protocol (Hibar et al., 2015). 
Briefly, several slices in all three planes were examined for accuracy of 
the pial and white matter surfaces. In cases where major problems in the 
surface reconstructions were observed, data was flagged as unusable and 
excluded from analyses. 

2.4. Genotyping, APOE status, and polygenic risk score 

Collection of DNA samples, calling procedures for genotyping, and 
quality control in the Generation R Study are described elsewhere 
(Lamballais et al., 2020; Medina-Gomez et al., 2015). To summarize, 
DNA samples of the child were collected from umbilical cord blood at 
birth or by venepuncture during a research centre visit when the child 
was around six years (Medina-Gomez et al., 2015). Genotyping was done 
using Illumina HumanHap 610 or 660 Quad chips and PLINK was used 
for DNA quality control (Medina-Gomez et al., 2015). Data has been 
imputed to the HRC 1.1 reference with the Michigan Imputation Service 
(Das et al., 2016). SNPs with a minor allele frequency below 1% or 
imputation quality (R2) below 0.80 were excluded from further analysis. 

The APOE status of each participant was determined based on the 
allelic combinations of two SNPs: rs429358 and rs7412. These SNPs 
represent the major APOE allelic variants ε2, ε3, and ε4. The ε4 allele is 
defined by presence of the cytosine allele at both SNPs (Radmanesh 
et al., 2014). Children were classified as an APOE ε4 carrier if they had at 
least one cytosine allele at both SNP locations and as a non-carrier if they 
had two thymine alleles in at least one SNP location (Table A1). 

The polygenic scores were based on a large GWAS for AD (Jansen 
et al., 2019). PRSice-2 was used to compute the PRS (Choi and O’Reilly, 
2019). This method sums up the number of SNP alleles that are carried 
by the participant, weighted by the SNP allele effect size estimated in 
previous GWAS. We used a clumping procedure to only consider inde
pendent SNPs using the default PRSice settings of a 0.1 r2 threshold 

within a 250 kb window. The APOE region was excluded (chr19: 
44.4–46.5 Mb), as previous research has shown that prediction accuracy 
is improved when APOE is modelled separately as opposed to being 
included in the PRS (Leonenko et al., 2021). To avoid including SNPs in 
the PRS with uncertain associations with AD, we only included 233 in
dependent SNPs (Table A2), which previously showed robust evidence 
for an association with AD (p < 0.000035). This threshold was chosen, 
as it was the most optimal for predicting AD in the original GWAS 
(Jansen et al., 2019). The PRS were standardized to a mean of 0 and a 
standard deviation (SD) of 1. 

2.5. Potential confounding variables 

The potential confounding variables were defined a priori based on 
previous literature and the availability of information on the variables in 
the Generation R Study (Guxens et al., 2018, 2021; Lubczyńska et al., 
2020, 2021; Alemany et al., 2018). Parental age at enrolment (years), 
psychological distress during pregnancy (measured using the Brief 
Symptom Inventory (Derogatis, 1993)), education level during preg
nancy (primary, secondary, or higher), and country of birth (The 
Netherlands or other), maternal smoking during pregnancy (never, until 
pregnancy known, or continued use during pregnancy), alcohol use 
during pregnancy (never, until pregnancy known, or continued use 
during pregnancy), and parity (nulliparous, one child, or two or more 
children), monthly household income (<900€, 900–1600€, 
1600–2200€, or >2200€) and family status (parents married, parents 
living together, or mono-parental) were collected by questionnaires 
during pregnancy. Parental weight and height (in kg and cm, respec
tively) were measured or self-reported in the first trimester of the 
pregnancy, and body mass index (BMI) was subsequently calculated 
(kg/cm2). Child sex (boy or girl) was collected from hospital records. 
Maternal intelligence quotient (IQ) score was assessed at child’s age of 
six years using the Ravens Advanced Progressive Matrices test, set I 
(Raven, 1962). Child age (years) was collected at the MRI scanning 
session. 

2.6. Statistical analysis 

Missing values of potential confounding variables were imputed 25 
times to limit selection bias following standard procedures for multiple 
imputation (Table A3). (Sterne et al., 2009; Spratt et al., 2010) This was 
done on the dataset including subjects that have data available on 
exposure, outcome, and genetic information (N = 1186). The percentage 
of missing values was below 19% for all potential confounding variables. 
Distributions in the imputed and observed datasets were comparable 
(Table A4). 

Children included in the analyses were more likely to be younger, 
have parents that were older and had a higher education, have mothers 
who had a lower psychological distress, never smoked during preg
nancy, and have a higher IQ, and a family with a higher monthly 
household income than those not included (Table A5). To correct for 
selection bias, inverse probability weighting was performed by using 
information available for the European ancestry population (N = 2796) 
to predict the probability of participation in the present study. The in
verse of those probabilities were used as weights in analyses to ensure 
representative results for the initial European population (Weisskopf 
et al., 2015; Weuve et al., 2012). The variables used to create the weights 
and the distribution of the weights can be found in Table A6 and Fig. A2. 

We analysed the potential modifying effect of APOE ε4 status or PRS 
for AD on the association between air pollution exposure and brain 
morphology outcomes following a two-step approach. In the first step, 
we ran single-pollutant models of each air pollutant during pregnancy 
and childhood separately with each global and subcortical brain vol
ume, using multiple linear regression models that include a two-way 
interaction between APOE ε4 status or PRS for AD and each air 
pollutant. In the second step, we ran a multi-pollutant analysis including 
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all 14 pollutants during pregnancy and childhood separately and the 
two-way interaction term between the genetic modifier and each air 
pollutant using the Deletion/Substitution/Addition (DSA) algorithm on 
the twentieth imputed dataset (Methods A1) (Agier et al., 2016). We 
only performed the multi-pollutant analysis for a specific outcome if an 
interaction term was found statistically significant (p < 0.05) for at least 
one pollutant associated with that outcome in the single-pollutant 
models. The DSA algorithm is an iterative selection method that se
lects the variables most predictive of the outcome by cross-validation, 
considering the correlation matrix, and correcting for multiple testing. 
In case of the correlation between two pollutants being >0.90, only the 
pollutant with the better LUR model performance (higher R2 value) was 
included to avoid collinearity. Following this criterion, PM10, Fe, and 
OPESR were excluded for pregnancy and PM10, Fe, and NO2 for child
hood. Since the DSA algorithm is based on cross-validation, each DSA 
model was run 200 times and the final models were selected based on a 
frequency of occurrence of 10% of the time or more. 

All models were first unadjusted, and then adjusted for all potential 
confounding variables described above. The assumptions of the linear 
regression models were fulfilled, which included linearity between each 
exposure and each outcome, as well as the normality of the residuals, 
homoscedasticity, non-collinearity of covariates, and the absence of 
influential observations. Models for subcortical grey matter, corpus 
callosum, cerebellum, and the other subcortical brain volumes were 
additionally adjusted for intracranial volume to ensure relativity to head 
size. This was not done for cerebral white matter and cortical grey 
matter volumes due to the high correlations with intracranial volume 
(>0.80). If we observed an association between an air pollutant and 
cerebral white matter or cortical grey matter volume after the multi- 
pollutant analysis, we re-ran the association between that air pollutant 
and intracranial volume to explore if the observed association with 
white matter or cortical grey matter volume could be explained by a 
global effect. As a sensitivity analysis, we performed a linear regression 
model that included all pregnancy and childhood exposures that were 
significant predictors of a specific outcome in the multi-pollutant anal
ysis. Statistical analyses were carried out using R (version 3.6.0, R Core 
Team (2019)). 

3. Results 

Mothers were 32.2 years on average, mostly had a high education 
(69.3%), and were Dutch (88.0%), and the monthly income was high for 
81.1% of households (Table 1). APOE ε4 carriers had mothers with a 
higher IQ score and children with a higher PRS for AD had mothers with 
a higher IQ score, who had more children, and a family with a higher 
monthly household income (Table A7). A total of 28.5% were APOE ε4 
carriers (Table 1 and A1). Median levels of exposure for PM2.5 were 17.0 
and 16.7 μg/m3 and for NO2 were 34.4 and 31.6 μg/m3 during preg
nancy and childhood, respectively (Table 2). Correlations between the 
air pollutants during pregnancy and childhood were moderate and range 
from 0.43 for NO2 to 0.62 for PAHs (Table 2). Correlations among the air 
pollutants ranged from 0.03 (between PAHs and OPESR during child
hood) to 0.98 (between PM2.5 absorbance and PM10 during both preg
nancy and childhood) (Fig. A3). 

3.1. APOE as a genetic modifier 

In the single-pollutant analysis, higher exposure to several air pol
lutants during pregnancy was differentially associated with larger ce
rebral white matter, cortical grey matter, and corpus callosum volumes, 
and with smaller subcortical grey matter, putamen, thalamus, hippo
campus, and nucleus accumbens volumes in APOE ε4 carriers compared 
to non-carriers (interaction P-value < 0.05, Table 3 and A8). Results in 
Table 3 only show the significant associations found in the single- 
pollutant analyses, exhaustive associations for all other exposures and 
outcomes can be seen in Table A8. Following the multi-pollutant 

analysis, only PMcoarse exposure during pregnancy remained differen
tially associated with larger cerebral white matter volume in APOE ε4 
carriers compared to non-carriers (29,485 mm3 (95% CI 6,189; 52,781) 
per 5 μg/m3 increase in PMcoarse). Cerebral white matter volume was 
958 mm3 (95% CI -14,264; 12,348) smaller in non-carriers and 28,527 
mm3 (95% CI 9,125; 47,928) larger in APOE ε4 carriers per 5 μg/m3 

increase in PMcoarse (Fig. 1, Table 3 and A9). 
Regarding air pollution exposure during childhood, in the single- 

pollutant analysis, higher exposure to several air pollutants was differ
entially associated with larger cerebral white matter and cortical grey 
matter volumes, and with smaller subcortical grey matter, cerebellum, 
putamen, caudate nucleus, thalamus, and nucleus accumbens volumes 
in APOE ε4 carriers compared to non-carriers (Table 3 and A8). Results 
in Table 3 only show the significant associations found in the single- 
pollutant analyses, exhaustive associations for all other exposures and 
outcomes can be seen in Table A8. Following the multi-pollutant 

Table 1 
Characteristics of the study population (N = 1186).  

GeneticFeatures 

APOE ε4 carriers 28.5 
PRS for ADa 2.1 ± 6.0 

Maternal Characteristics 

Age (years) 32.2 ± 4.0 
Pre-pregnancy BMI (kg/m2) 23.0 ± 3.8 
Psychological distress 0.2 ± 0.2 
Education level 

Primary education or lower 0.9 
Secondary education 29.8 
Higher education 69.3 

Country of birth 
The Netherlands 88.0 
Other 12.0 

Smoking during pregnancy 
Never 79.2 
Until pregnancy known 10.0 
Continued use 10.8 

Alcohol during pregnancy 
Never 27.9 
Until pregnancy known 15.7 
Continued use 56.4 

Parity 
0 child 60.7 
1 child 31.4 
2+ children 7.9 

IQ score 102.1 ± 12.1 

PartnerCharacteristics 

Age (years) 34.1 ± 4.7 
Pre-pregnancy BMI (kg/m2) 25.0 ± 3.2 
Psychological distress 0.1 ± 0.1 
Education level 

Primary education or lower 2.3 
Secondary education 34.3 
Higher education 63.4 

Country of birth 
The Netherlands 89.5 
Other 10.5 

HouseholdCharacteristics 

Monthly household income (€) 
<900 0.8 
900 - 1600 5.6 
1600 - 2200 12.5 
>2200 81.1 

Family status 
Parents married 50.9 
Parents living together 45.2 
Mono parental 3.9  

a value in 10–4. Abbreviations: APOE, Apolipoprotein E, BMI, body mass index, 
IQ, intelligence quotient, PRS for AD, polygenic risk score for Alzheimer’s dis
ease. Values are percentage for categorical and mean ± standard deviation for 
continuous variables. 
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analysis, only PAHs exposure during childhood remained differentially 
associated with larger cerebral white matter volume in APOE ε4 carriers 
compared to non-carriers (18,663 mm3 (95% CI 469; 36,856) per 5 μg/ 
m3 increase in PAHs). Cerebral white matter volume was 826 mm3 (95% 
CI − 8,733; 10,385) larger in non-carriers and 19,488 mm3 (95% CI 
3,894; 35,083) larger in APOE ε4 carriers per 5 μg/m3 increase in PAHs 
(Fig. 1, Table 3 and A9). 

No associations were found between pregnancy PMcoarse or child
hood PAHs and intracranial volume (Table A10). When we analysed 
simultaneously PMcoarse exposure during pregnancy and PAHs exposure 
during childhood with cerebral white matter, we found that PMcoarse 
remained associated with larger cerebral white matter volume (25,125 
mm3 (95% CI 937; 49,313) per 5 μg/m3 increase in PMcoarse). Childhood 
exposure to PAHs was no longer associated with larger cerebral white 
matter volume (13,259 mm3 (95% CI − 5,610; 32,129) per 5 μg/m3 in
crease in PAHs). 

3.2. PRS for AD as a genetic modifier 

In the single-pollutant analysis, higher exposure to several air pol
lutants during pregnancy was differentially associated with larger 
cortical grey matter volume and smaller subcortical grey matter, pal
lidum, putamen, thalamus, amygdala, and hippocampus volumes for 
each increase in PRS for AD (Table 3 and A8). Results in Table 3 only 
show the significant associations found in the single-pollutant analyses, 
exhaustive associations for all other exposures and outcomes can be seen 
in Table A8. Following the multi-pollutant analysis, only PMcoarse 
remained differentially associated with larger cortical grey matter vol
ume per increment increase in PRS for AD (19,436 mm3 (95% CI 825; 
38,046) per 5 μg/m3 increase in PMcoarse). Cortical grey matter volume 
was 739 mm3 (95% CI -12,070; 13,548) larger in children with an 
average PRS for AD and 12,380 mm3 (95% CI -1,091; 25,852) larger in 
children with a high PRS for AD per 5 μg/m3 increase in PMcoarse (Fig. 1, 
Table 3 and A9). 

Higher air pollution exposure during childhood was differentially 
associated with smaller subcortical grey matter, corpus callosum, cere
bellum, pallidum, putamen, caudate nucleus, thalamus, and hippo
campus volumes for each increase in PRS for AD in the single-pollutant 
analysis (Table 3 and A8). No associations remained after the multi- 
pollutant analysis. 

No associations were found between pregnancy PMcoarse or child
hood PAHs and intracranial volume (Table A10). 

4. Discussion 

Our study found a possible modifying effect of APOE status and the 
PRS for AD on the association between air pollution exposure during 
early-life and brain structural morphology in preadolescents. PMcoarse 
exposure during pregnancy and PAHs exposure during childhood were 
associated with larger cerebral white matter volume in APOE ε4 carriers 
compared to non-carriers. When adjusting simultaneously for PMcoarse 
exposure during pregnancy and PAHs exposure during childhood, only 
PMcoarse remained associated with larger cerebral white matter volume. 
PMcoarse exposure during pregnancy was associated with larger cortical 
grey matter volume in children with higher PRS for AD. 

Our findings on the possible effect modification of the APOE geno
type and PRS for AD are in the unexpected direction. Previous research 
in independent cohorts has shown that white and grey matter volumes 
generally increase throughout infancy and childhood, with most grey 
matter volumes peaking at adolescence (Lubczyńska et al., 2021; 
Wierenga et al., 2014, 2018; Lenroot and Giedd, 2006; Tiemeier et al., 
2010; Herting et al., 2018). Typical developmental trends for total white 
matter and cortical grey matter volume in children aged 9–12 years are 
therefore expected to be increasing. Further, previous research has 
shown that increases in air pollution exposure is associated with smaller 
cortical grey and white matter volumes, and we hypothesized that the 
genetic modifiers amplify this (Beckwith et al., 2020; Peterson et al., 
2015). Thus, our findings introduce the possibility of a beneficial effect 
of the genetic modifiers in early life. This would align with the antag
onistic pleiotropic effect hypothesis proposed for the APOE gene, which 
encompasses the idea that genetic modifiers show benefits during early 
life, but become risk factors for adverse neurodevelopment with 
increasing age (Mondadori et al., 2007). Alemany et al. 2018 also found 
that higher air pollution exposure during childhood was associated with 
smaller caudate nucleus volume in APOE ε4 carriers in Spanish children 
aged 7–11 years. Even if smaller caudate was associated with lower 
cognitive function and more behavioural problems in their study, the 
decrease in caudate nucleus volume in this age range is in line with 
typical development in preadolescence (Alemany et al., 2018; Wierenga 
et al., 2014). Thus, the findings from Alemany et al. 2018 would also be 
in line with a potential antagonistic pleiotropic effect (Alemany et al., 
2018). Research on the effects of the APOE genotype on cognitive 
function has also highlighted this possible beneficial role of the ε4 allele 
in early life, although this was not confirmed in a meta-analysis (Mon
dadori et al., 2007; Ihle et al., 2012). The antagonistic pleiotropic effect 
hypothesis could explain why we see changes in brain morphology 

Table 2 
Levels of air pollution exposure during pregnancy and childhood in the study population (N = 1186).  

Pollutant Units Pregnancy Childhood Correlationa 

median p25 p75 median p25 p75 

NO2 (μg/m3) 34.4 32.0 37.2 31.6 28.5 34.8 0.43 
NOX (μg/m3) 48.4 40.0 62.6 42.4 37.5 51.9 0.53 
PM10 (μg/m3) 26.9 26.1 28.4 26.2 25.5 27.3 0.50 
PM2.5 (μg/m3) 17.0 16.6 17.3 16.7 16.5 17.1 0.55 
PMcoarse (μg/m3) 10.0 9.1 10.7 9.2 8.4 10.1 0.50 
PM2.5 abs (10− 5m− 1) 1.6 1.5 1.8 1.5 1.4 1.7 0.50 
OPDTT (nmol DTT/min/m3) 1.3 1.2 1.4 1.3 1.2 1.3 0.54 
OPESR (arbitrary units/m3) 1029.1 995.7 1107.4 1002.0 947.4 1061.8 0.55 
OC (μg/m3) 1.8 1.5 2.0 1.6 1.3 1.8 0.55 
PAHs (ng/m3) 0.9 0.7 1.1 0.9 0.8 1.1 0.62 
Cu (ng/m3) 4.7 4.4 5.0 4.5 4.1 4.9 0.50 
Fe (ng/m3) 119.7 113.8 130.6 114.4 102.9 125.2 0.49 
Si (ng/m3) 88.6 87.8 90.7 88.4 87.5 90.4 0.56 
Zn (ng/m3) 19.2 17.7 21.9 18.7 17.3 21.3 0.54 

Abbreviations: Cu, copper; Fe, iron; NO2, nitrogen dioxide; NOx, nitrogen oxides; OC, organic carbon; OP, oxidative potential (evaluated using two acellular methods: 
OPDTT; dithiothreitol and OPESR, electron spin resonance); p25, 25th percentile; p75, 75th percentile; PAHs, polycyclic aromatic hydrocarbons; PM, particulate matter 
with different aerodynamic diameters: <10 μm (PM10); <2.5 μm (PM2.5), and between 10 μm and 2.5 μm (PMcoarse); PM2.5 abs, absorbance of PM2.5 filters; Si; silicon, 
Zn; zinc. 

a Pearson’s correlation between the air pollution exposure during the pregnancy and childhood periods. 
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volumes in line with typical development with increased exposure to 
some air pollutants in APOE ε4 carriers and children with higher PRS for 
AD. However, not all research is in line with this hypothesis, and 
therefore it should be interpreted with caution (Henson et al., 2020). 
While some studies have found associations between the genetic burden 
for AD and various brain regions (Axelrud et al., 2018; Shaw et al., 2007; 
Chang et al., 2016; Quiroz et al., 2015), a previous study including 
children from the Generation R Study found no evidence of a link be
tween the APOE genotype with global brain structure in children, as well 
as no evidence of a genetic burden of PRS for AD on cognitive func
tioning throughout childhood (Lamballais et al., 2020). Research further 
suggests that the genetic burden of the APOE genotype might only be 
apparent in adulthood or old age as a result of cumulative processes 
(Lamballais et al., 2020). Therefore, the neurodegenerative impacts of 
air pollution exposure might only become measurable after early life 
(Lamballais et al., 2020; Tzioras et al., 2019). Another possible expla
nation could be that the observed associations reflect accelerated 

maturation for age and thus eventually in later life an earlier decline. In 
order to test this hypothesis we would need longitudinal data, preferably 
over the lifespan, although accelerated longitudinal models could 
potentially address this question (Kelly et al., 2022). However, the brain 
volumes of our study sample generally fall in line with the expected 
range for normal development, and therefore our data do not indicate 
much larger volumes than expected (Lubczyńska et al., 2021; Wierenga 
et al., 2014, 2018; Lenroot and Giedd, 2006; Tiemeier et al., 2010; 
Herting et al., 2018). To further understand the role of these genetic 
modifiers in neurodevelopment, future studies include older ages and 
combine neuroimaging and neuropsychological assessments for a more 
exhaustive brain morphology measurement. 

Several air pollutants were associated with brain morphology in the 
single-pollutant models with a modifying effect of APOE status or PRS 
for AD, but only PMcoarse during pregnancy and PAHs during childhood 
were selected in the multi-pollutant analysis. Further, simultaneous 
analysis of these two pollutants with cerebral white matter volume 

Table 3 
Differential associations between an increment increase in air pollution exposure during pregnancy or childhood with global brain volumes (mm3) for APOE status (A) 
or PRS for AD (B) (N = 1186). Only associations with a significant two-way interaction term between APOE status (A) or PRS for AD (B) and air pollution are reported 
herea.   

(A) APOE status (B) PRS for AD 

Pregnancy Childhood Pregnancy Childhood 

Coef. 95% CI Coef. 95% CI Coef. 95% CI Coef. 95% CI 

Cerebral WhiteMatter 

NOX 8,176 (1,494; 14,858) 8,199 (1,071; 15,327) – – – – 
PM10 34,920 (4,006; 65,833) – – – – – – 
PM2.5 50,168 (8,877; 91,458) 76,629 (22,919; 130,338) – – – – 
PMcoarse 29,485 (6,189; 52,781)b 25,940 (1,264; 50,615) – – – – 
PM2.5 abs – – 17,987 (246; 35,729) – – – – 
PAHs – – 18,663 (469; 36,856)b – – – – 

Cortical Grey Matter 

NO2 – – 11,369 (2,387; 20,350) – – – – 
NOX 9,674 (2,516; 16,831) 9,340 (1,712; 16,968) – – – – 
PM10 39,401 (6,278; 72,524) 40,025 (4,423; 75,627) – – – – 
PM2.5 52,202 (7,967; 96,437) 81,646 (24,144; 139,148) – – – – 
PMcoarse 28,933 (3,956; 53,910) – – 19,436 (825; 38,046)b – – 
PM2.5 abs 18,015 (338; 35,691) 25,135 (6,168; 44,101) – – – – 
PAHs – – – – – – – – 
Si – – 35,727 (2,367; 69,087) – – – – 

Subcortical Grey Matter 

NO2 -906 (-1,569; -243) – – -992 (-1,531; -453) – – 
NOX -616 (-1,054; -178) – – -536 (-868; -204) -423 (-789; -56) 
PM10 -2,970 (-4,995; -946) -2,612 (-4,791; -433) -2,119 (-3,614; -625) -1,976 (-3,652; -300) 
PM2.5 -3,438 (-6,147; -729) -5,290 (-8,815; -1,766) -2,501 (-4,424; -579) -3,945 (-6,585; -1,305) 
PM2.5 abs -1,610 (-2,690; -529) -1,366 (-2,530; -202) -1,431 (-2,293; -570 -1,392 (-2,406; -378) 
OPESR -1,904 (-3,619; -189) -2,021 (-3,821; -222) -2,073 (-3,540; -607) -2,047 (-3,817; -277) 
Cu -2,432 (-4,286; -578) -2,670 (-4,665; -676) -2,060 (-3,523; -596) -1,803 (-3,494; -112) 
Fe -1,986 (-3,536; -435) -1,774 (-3,189; -359) -1,732 (-2,927; -538) – – 
Si -2,316 (-4,121; -512) -2,760 (-4,801, -720) -2,140 (-3,523; -756) -2,574 (-4,474; -673) 
Zn -1,021 (-1,793; -248) – – -591 (-1,170; -12) – – 
Corpus Callosum 
NOX 80 (11, 149) – – – – – – 
PM10 390 (70, 710) – – – – – – 
PMcoarse 319 (79, 559) – – – – – – 
Cu – – – – – – -266 (-533; 0) 
Cerebellum         
PM2.5 – – -12,733 (-25,391; -76) – – -10,462 (-19,930; -994) 

Abbreviations: Coef. Coefficient, APOE, apolipoprotein E, CI, confidence interval, Cu, copper, Fe, iron, NO2, nitrogen dioxide, NOx, nitrogen oxides, OPESR, oxidative 
potential evaluated using electron spin resonance, PAHs, polycyclic aromatic hydrocarbons, PM, particulate matter with aerodynamic diameters: less than 10 μm 
(PM10), less than 2.5 μm (PM2.5), and between 10 μm and 2.5 μm (PMcoarse), PM2.5 abs, absorbance of PM2.5, PRS for AD, polygenic risk score for Alzheimer’s disease, Si, 
silicon, Zn, zinc. Coefficients and 95% CI were obtained with multiple linear regression analyses and calculated per increments of: 10 μg/m3for PM10, 5 μg/m3for PM2.5 
and PMcoarse, 10-5 m-1for PM2.5 abs, 10 μg/m3for NO2, 20 μg/m3for NOX, 1000 arbitrary units/m3for OPESR, 1 ng/m3for PAHs, 5 ng/m3for Cu, 100 ng/m3for Fe, 100 ng/ 
m3for Si, and 10 ng/m3for Zn. Models were adjusted for parental age, psychological distress, education level, and country of birth, maternal smoking and alcohol use 
during pregnancy, monthly household income, family status, parental height and body mass index, child gender, maternal intelligence quotient, and child age at 
magnetic resonance imaging session. Models for subcortical grey matter, corpus callosum, and cerebellum were also adjusted for intracranial volume. 

a Exhaustive results for all pollutants and outcomes can be found in Table A8. 
b Associations that remained after the multi-pollutant analysis with the Deletion/Substitution/Addition algorithm. 
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showed that the exposure to PMcoarse during pregnancy seems to be more 
relevant. PMcoarse is mainly emitted from anthropogenic sources like 
motor vehicles or fuel combustion (U.S. EPA, 2019). Exposure to 
PMcoarse has shown HPA-axis activation and gene expression alterations 
in the brain (Block et al., 2012; U.S. EPA, 2019; Suades-González et al., 
2015). Exposure to PAHs, which are released as a by-product when there 
is an incomplete combustion of fossil fuels, has been linked to neuro
developmental disorders (Guxens et al., 2021; Suades-González et al., 
2015). In contrast to current literature that highlights the adverse effects 
of these pollutants on the brain, our results show that increased exposure 
of these specific pollutants is related to typical neurodevelopment in 
APOE ε4 carriers and children with a higher PRS for AD. It is important 
to recognize that exposure to solely PMcoarse and PAHs does not reflect 
actual air quality conditions, since humans are exposed to a wide 
mixture of primary and secondary air pollutants (U.S. EPA, 2019). In our 
study, PMcoarse and PAHs may be considered more as markers of 
traffic-related air pollution. A possible explanation as to why these 
pollutants were selected in the multi-pollutant models could be due to 
factors related to the statistical approach used as opposed to true bio
logical reasons. 

Our study has several important strengths. We included a 

neuroimaging study with a large sample size providing precise mea
surements of brain regions. We used advanced statistical methods to 
limit possible selection and attrition bias through multiple imputation 
and inverse probability weighting. Many socioeconomic and lifestyle 
factors that have shown to potentially be associated with air pollution 
and brain outcomes in children were adjusted for. Exposure levels dur
ing two critical periods of development for a large amount of air pol
lutants were calculated through standardized assessment methods that 
considered changes of residency. Also, the interaction between air 
pollution and the genetic modifiers could be assessed simultaneously in 
an advanced multi-pollutant approach that corrected for multiple 
testing. 

There are also some limitations that merit discussion. In spite of the 
relatively large sample size, we recognize the possibility of our associ
ations being due to chance because of difficulties in accurately finding 
and replicating results when looking at interactions between genes and 
environmental factors (Duncan et al., 2014; Duncan and Keller, 2011). 
First, our single-pollutant analyses strategy encompassed many models 
for each genetic modifier. We adjusted for multiple testing related to the 
exposures using the DSA algorithm, which has shown good performance 
in false discovery proportion. However, we did not adjust for multiple 

Fig. 1. Associations between PMcoarse exposure during pregnancy (A) or PAHs exposure during childhood (B) and cerebral white matter volume according to APOE 
status, and between PMcoarse exposure during pregnancy and cortical grey matter volume according to PRS for AD (C) from the twentieth imputed dataset (n = 1186). 
Only the remaining associations with a significant two-way interaction term between APOE status (A, B) or PRS for AD (C) after the multi-pollutant analysis are 
shown. 
Coefficients and 95% confidence interval were obtained with multiple linear regression analyses. (A) and (B) show the associations for APOE ε4 carriers (solid line) 
and non-carriers (dashed line) and (C) shows the associations for the mean (large, dashed line), +1 SD (solid line), and − 1 SD (small, dashed line) PRS for AD. Shaded 
areas indicate the 95% confidence interval. A positive slope indicates that an increase in the air pollutant is associated with larger structural brain morphology 
volumes. The intersect is at the air pollution level where the sum of the air pollutant and genetic effect is null. Models were adjusted for parental age, psychological 
distress, education level, and country of birth, maternal smoking and alcohol use during pregnancy, monthly household income, family status, parental height and 
body mass index, child gender, maternal intelligence quotient, and child age at magnetic resonance imaging session. Plots are comparable for all other imputed 
datasets [data not shown]. Abbreviations: APOE, apolipoprotein E, PAHs, polycyclic aromatic hydrocarbons, PM, particulate matter with aerodynamic diameter 
between 10 μm and 2.5 μm (PMcoarse), PRS for AD, polygenic risk score for Alzheimer’s disease, SD, standard deviation. 
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testing related to the outcomes and having many testable hypotheses 
increases the possibility of chance findings (Duncan et al., 2014; Khoury, 
2017). When interpreting results we also need to take into account the 
large number of non-significant associations that were shown. Second, 
even though the sample size was larger as compared to previous studies, 
it may have been too small to detect real genetic effects reliably, since 
detecting interactions effect require large sample sizes (into the ten-to 
hundred-thousandths) to improve reliability of findings (Munafò et al., 
2014). Third, difficulties lie in the rudimentary understanding of 
genotype-to-phenotype pathways in neurological disorders, especially 
with regards to the limited knowledge on the modifying effect of genetic 
features on the association between air pollution exposure and brain 
morphology. The pathways for gene-and-environment interactions are 
extremely complex and disorders like AD are likely influenced by a 
multitude of genetic variants. Thus, even though we included both APOE 
status and the PRS for AD, two of the most prominent common genetic 
factors related to AD, this is likely not enough to explain the genetic 
complexity of the disorder. Further, even though 233 SNPs that showed 
robust evidence for AD were included in the PRS for AD, most SNPs may 
have limited relevance to brain development which may limit the in
teractions we see. Also, the APOE ε2 allele is known to be neuro
protective, but we were unable to use these subjects in a sensitivity 
analysis to further understand the possible modifying effect of the APOE 
genotype due to the small sample size (N = 7) (Goldberg et al., 2020). 
Another limitation is related to the air pollution concentrations which 
were determined when children were between 3.5 and 9 years of age. 
We were unable to extrapolate air pollution levels to the specific periods 
of interest, introducing the possibility of exposure misclassification 
(especially during the pregnancy period) due to temporal variation. 
However, the assumption was made that the concentrations of the pol
lutants remained stable over time based on research supporting this 
done in the Netherlands between 1999 and 2007 and in Great Britain 
between 1991 and 2009 (Eeftens et al., 2011; Gulliver et al., 2013). 
Lastly, our outcome assessment was based on a single measurement from 
the MRI scanning session. Combining neuroimaging and neuropsycho
logical assessments and including repeated measurements and a longi
tudinal analysis design throughout childhood, adulthood and old age in 
future studies can help elucidate how the trajectory of the brain struc
ture development is affected by air pollution exposure and the potential 
genetic modifiers. This might give a clearer idea of how the associations 
evolve over time, especially since neurological impacts of air pollution 
exposure and the burden of genetic modifiers may follow a cumulative 
trend that only becomes measurable in the course of time. 

In conclusion, we found evidence suggesting genetic susceptibility of 
both APOE status and PRS for AD on the association between air 
pollution exposure and brain structural morphology in preadolescent 
children from the Generation R Study. Both genetic factors seem to 
modify the association towards the typical development of the brain, 
which was unexpected but in line with antagonistic pleiotropic effects. 
The brain is a complex organ that undergoes many developmental 
changes, making interpretation of results with regards to healthy versus 
pathological development difficult (Block et al., 2012). Nevertheless, 
our study is one of the first to attempt to characterize gene-environment 
interactions related to air pollution and brain morphology in children. 
Future studies should research the possibility of the antagonistic pleio
tropic effect and consider a longitudinal design for studying the trajec
tory of brain development. 
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