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Abstract 

Background  Several studies have described potential microRNA (miRNA) biomarkers associated with migraine, but 
studies are scarcely reproducible primarily due to the heterogeneous variability of participants. Increasing evidence 
shows that disease-related intrinsic factors together with lifestyle (environmental factors), influence epigenetic mech‑
anisms and in turn, diseases. Hence, the main objective of this exploratory study was to find differentially expressed 
miRNAs (DE miRNA) in peripheral blood mononuclear cells (PBMC) of patients with migraine compared to healthy 
controls in a well-controlled homogeneous cohort of non-menopausal women.

Methods  Patients diagnosed with migraine according to the International Classification of Headache Disorders 
(ICHD-3) and healthy controls without familial history of headache disorders were recruited. All participants com‑
pleted a very thorough questionnaire and structured-interview in order to control for environmental factors. RNA was 
extracted from PBMC and a microarray system (GeneChip miRNA 4.1 Array chip, Affymetrix) was used to determine 
the miRNA profiles between study groups. Principal components analysis and hierarchical clustering analysis were 
performed to study samples distribution and random forest (RF) algorithms were computed for the classification 
task. To evaluate the stability of the results and the prediction error rate, a bootstrap (.632 + rule) was run through all 
the procedure. Finally, a functional enrichment analysis of selected targets was computed through protein–protein 
interaction networks.

Results  After RF classification, three DE miRNA distinguished study groups in a very homogeneous female cohort, 
controlled by factors such as demographics (age and BMI), life-habits (physical activity, caffeine and alcohol con‑
sumptions), comorbidities and clinical features associated to the disease: miR-342-3p, miR-532-3p and miR-758-5p. 
Sixty-eight target genes were predicted which were linked mainly to enriched ion channels and signaling pathways, 
neurotransmitter and hormone homeostasis, infectious diseases and circadian entrainment.

Conclusions  A 3-miRNA (miR-342-3p, miR-532-3p and miR-758-5p) novel signature has been found differentially 
expressed between controls and patients with migraine. Enrichment analysis showed that these pathways are closely 
associated with known migraine pathophysiology, which could lead to the first reliable epigenetic biomarker set. 
Further studies should be performed to validate these findings in a larger and more heterogeneous sample.
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Background
Migraine is a genetically-driven, chronic brain disease 
that ranks second on the most disabling neurological 
disorders of the Global Burden of Disease Study [1, 2]. 
If not adequately diagnosed and treated, migraine can 
increase in frequency and transform, through a chroni-
fication process, into chronic migraine (CM), which is 
defined by having 15 or more headache days per month 
[3], where patients’ burden increases exponentially [4]. 
Multiple factors, including both genetic and environ-
mental mechanisms seem to play a role in migraine and 
its chronification [5–7] process, although the suscep-
tibility of headache attack recurrence mainly depends 
on the brain-sensorial adaptability of both internal and 
external stimuli [8, 9]. Moreover, migraine stills rep-
resent a clinical challenge because, up to date, disease 
diagnosis, evolution and treatment response cannot be 
predicted due to the lack of reliable biomarkers.

From large-scale genome-wide association studies 
(GWAS) performed in the last decades, we have learnt 
that migraine has a polygenic heritability pattern and, 
up to now, we have identified more than 120 risk loci 
associated to migraine [10], mainly codifying for neu-
ronal and vascular functions. However, the effect size 
of each individual reported gene is relatively modest 
and most of these genes have regulatory effects on gene 
expression rather than protein coding. Environmen-
tal factors may also modulate the expression of DNA. 
Therefore, the study of epigenetics which are the envi-
ronmental influenced genetic regulatory mechanisms 
[11] could provide further understanding on migraine 
pathophysiology as well as, give insight to the dynamic 
aspect of the disease specifically contributing to its 
chronification [12].

Among the epigenetic regulatory mechanisms, micro-
RNAs (miRNA) are a subtype of noncoding RNA of ∼22 
nucleotides long that act as key regulators of genetic 
expression by inhibiting transcription or promoting 
degradation of selected messenger RNAs (mRNAs). A 
single miRNA sequence could regulate multiple mRNA, 
exerting a pleiotropic modulation of cellular processes. 
miRNA have been found intracellularly and in all body 
fluids, including plasma, saliva and urine [13]. Access-
ing the central nervous system (CNS) is too invasive 
and there is an increasing evidence that a relationship 
between peripheral blood mononuclear cells (PBMC) and 
brain-based epigenetic activity exists [14]. Thus, PBMC 
gene expression may reflect both central and peripheral 
neurological mechanisms in migraine, induced, for exam-
ple in migraine by the activation and neuroinflammation 
of the trigeminocervical pain pathway [15]. In fact, previ-
ous studies in headache disorders have shown that tran-
scriptional changes of PBMC can reflect alterations in the 

sensitization of the peripheral and/or central pain path-
way [16, 17].

Several pilot studies have described miRNAs as poten-
tial peripheral biomarkers of migraine disease [18–26]. 
Nevertheless, studies are scarcely comparable and repro-
ducible not only because of the lack of standardized 
protocols, biological matrix or sample size but mainly 
because of the heterogeneous population and clini-
cal variability included. Increasing evidence shows that 
disease-related intrinsic factors altogether with lifestyle 
factors may influence epigenetic mechanisms and iden-
tifying them is crucial to find unbiased reliable factors 
associated with a specific disease [27–29].

Hence, the goal of this exploratory study is to find dif-
ferentially expressed miRNAs (DE miRNA) in PBMC of 
patients with migraine compared to healthy controls in 
a well-controlled homogeneous non-menopausal female 
cohort.

Methods
Participants and protocol approval
The study was approved by our Institutional Review 
Board (PR(IR)224/2016). All participants provided writ-
ten informed consent before participation. We recruited 
patients treated for migraine in the Headache Outpa-
tient Clinic. Patients had a diagnosis of migraine with or 
without aura, confirmed by a neurologist according to 
the International Classification of Headache Disorders, 
3rd edition (ICHD-3) [3]. Healthy controls (HC) were 
recruited among hospital staff and non-related acquaint-
ances of patients who denied past or first-degree familial 
history of any recurrent primary or secondary headache 
disorder. To diminish confounding factors, the inclusion 
criteria were: female sex, 18–45  years old (non-meno-
pausal) and Mediterranean ethnicity for all participants. 
Moreover, patients could not have received prophylac-
tic treatment for migraine prevention or if they received 
it, it had been done for a brief period of time more than 
one year or more before the study and without following 
national guidelines of effective dosage and duration. Due 
to the strict inclusion criteria, participants were included 
from August 2016 to September 2017.

As miRNAs can be modulated by different lifestyle 
habits and disease characteristics, recruited participants 
completed a very thorough and complete questionnaire 
and structured-interview to collect demographic infor-
mation including: age, sex, ethnicity, educational level, 
marital status, gross income; clinical information includ-
ing: habits of caffeine, tobacco and drugs consumption, 
physical activity level using the International Physical 
Activity Questionnaire (IPAQ-SF) [30]; life-time comor-
bidities, medications use, menstrual status and migraine 
information including disease duration, acute medication 
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use, monthly headache frequency and family history of 
headache. We registered headache pain, accompanying 
symptoms and menstrual cycle the day of the blood sam-
ple extraction. We only analyzed samples from migraine 
patients with at least 48 h of a headache-free period prior 
day of the blood extraction. In addition, all patients had 
to fill in the following scales: Allodynia Symptom Check-
list (ASC-12) [31], Headache Impact Test-6 (HIT-6) [32], 
Migraine Disability Assessment Test (MIDAS) [33], Beck 
Depression Inventory 2nd Edition (BDI-II) [34], State-
Trait Anxiety Inventory (STAI) [35] and Perceived stress 
scale (PSS) [36]. Patients were asked to complete head-
ache diary 30 days before extraction to confirm migraine 
diagnosis (screening period). We also excluded patients 
who fulfilled acute medication overuse headache criteria 
during the screening period.

Blood extraction, PBMC isolation and RNA extraction
For blood extraction patients were asked to fast for 6 h, 
minimize their exercise/activity and not take analge-
sic medication 24  h prior to blood extraction. Periph-
eral blood was collected by antebrachial vein puncture 
using three, 8 mL, BD Vacutainer® CPT™ Cell Prepara-
tion Tubes with Sodium Citrate (BD, Franklin Lakes, 
NJ, USA) and processed within 2 h following the manu-
facturer’s instruction to isolate PBMC pellets that were 
immediately stored at -80ºC till miRNA extraction. To 
minimize variability due to manipulation, the miRNA 
extraction was made by the same laboratory technician 
in the same facilities. For miRNA extraction, we used the 
Qiagen miRNeasy Mini Kit (Qiagen, Valencia, CA, USA), 
following the manufacturer’s instruction. RNA concen-
tration was measured using Nanodrop 2000 (NanoDrop 
Technologies, Wilmington, DE). RNA integrity number 
(RIN) was determined the kit Agilent RNA 6000 Nano 
by the Bioanalyzer Agilent 2100 (Agilent Technologies, 
Santa Clara, CA, USA). We excluded from analysis sam-
ples with RIN under 6.

Microarray hybridization
Microarrays service was outsourced and carried out in at 
High Technology Unit at Vall d’Hebron Research Insti-
tute (HTU-VHIR), Barcelona (Spain). For this study, we 
used the Affymetrix GeneTitan microarray platform and 
the Genechip miRNA array plate 4.1. Starting material 
was 550 ng of total RNA of each sample. MiRNA in the 
sample was labelled using Flash Tag Biotin HSR RNA 
Labelling kit following the manufacturer’s instructions.

Statistical analysis
All statistical analysis were conducted in R v4.2.0 [37] and 
figures were produced using the package ggplot2 v.3.3.6 
[38]. A statistical power calculation was not conducted 

prior to the study because the sample size was based on 
the available data for this exploratory analysis. However, 
to increase the likelihood of finding differential miRNA 
expression profiles for this study, we selected participants 
from a well-controlled homogeneous non-menopausal 
female cohort. P-values < 0.05 were considered as statisti-
cally significant and are reported for a two-tailed test.

Clinical analysis
Nominal variables (aura and presence of allodynia) were 
reported as frequencies (percentages) while median and 
interquartile range (IQR) were reported for quantitative 
variables: age, BMI, IPAQ-SF, caffeine and alcohol con-
sumptions, STAI, BDI-II, PSS, disease evolution time, 
ASC-12, monthly headache frequency (MHD), monthly 
acute medication intake (MAMI), MIDAS and HIT-
6. Normality assumption of quantitative variables was 
checked through visual methods (Q-Q plots) and nor-
mality tests (Shapiro–Wilk test). Statistical significance 
between study groups (HC vs. patients with migraine) 
was assessed by unpaired t-test for BMI, caffeine con-
sumption, STAI and PSS was used and unpaired Wil-
coxon rank-sum test was used for the other quantitative 
variables that did not follow any normality assumption.

Bioinformatic analysis
The statistical analysis of the Genechip miRNA array 
plate 4.1 was performed using libraries developed for 
the microarray analysis in the Bioconductor Project [39]. 
At the moment of the analysis, there were no specific 
packages for miRNA 4.1 arrays available, thus we pro-
grammed our own package. Quality control (QA) was 
assessed with the package arrayQualityMetrics before 
the normalization process [40]. Additionally, principal 
components analysis (PCA) and hierarchical clustering 
analysis (HCA) were performed to study samples distri-
bution and detect technical problems, including batch 
effect. Each array (CEL file) was preprocessed and back-
ground corrected, normalized and summarized using 
RMA (Robust Multiarray Average) through Bioconduc-
tor packages [41, 42].

The identification of differentially expressed miRNA 
(DE miRNAs) was based on adjusting linear model with 
empirical Bayes moderated t-statistic, conducted by the 
limma package [43] in the comparison between controls 
and patients with migraine. Models were adjusted by 
covariates using surrogate variables estimation [44]. DE 
miRNAs that had more than 0.5-fold increase/decrease 
relative to controls were chosen for further analysis. The 
minimum of 0.5-fold expression difference cut-off has 
been chosen based on the several miRNA profiling stud-
ies using microarrays; confirming that subtle changes in 
miRNA expression, such as a 0.5-fold difference, have a 
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significant biological impact [45–48]. Results were fur-
ther corrected for multi-testing using the Benjamini–
Hochberg procedure for control the false discovery rate 
(FDR) [49]. Features that met both criteria (adjusted 
t-test and ± 0.5 fold change) were combined in a sin-
gle matrix of DE miRNAs that underwent classification 
analysis.

We used Random Forests (RF) models for the classifi-
cation task, a machine learning method widely used in 
the microarray analysis [50–52]. RF algorithm uses an 
ensemble of classification trees, internally and randomly 
constructed using a bootstrap sample of the data. Then, 
the algorithm merges all constructed tree altogether (for-
est) in order to get an accurate and stable prediction [53, 
54]. Once we obtained the forest, the construction of the 
classifier is performed by a feature reduction algorithm, 
where the less important features are successively elimi-
nated and out of the bag (OOB) error is continuously 
analyzed. To evaluate the stability of the results and the 
prediction error rate, a bootstrap (0.632 + rule) was run 
through all the procedure. All classification task and 
bootstrap were performed through the varSelRF R pack-
age [55, 56].

Target genes of selected DE miRNAs were predicted by 
using the miRDB database through the multimiR pack-
age [57] and functional and pathway enrichment analysis 
was performed using the pathfindR package [58]. Path-
findR identifies gene sets that form active subnetworks 
in a protein–protein interaction network (PIN) in order 

to identify distinct active subnetworks and then perform 
enrichment analyses on these subnetworks. For assign-
ing a significance value for each predicted target gene 
(pathfindR input), all Homo sapiens miRNA-target gene 
predictions were obtained: 1,954,039 miRNA-gene pre-
dictions from all H. sapiens miRNAs listed in the miRDB 
(2,656 miRNAs). Then, the significance for each pre-
dicted gene was computed as the probability of observing 
a score greater than or equal to the score of this target 
gene over all H. sapiens miRNA-target gene scores [59]. 
For genes that were targeted by more than one miRNA, 
the lowest significance was kept.

Results
Clinical characteristics of the patients
Participant recruitment is represented in Fig.  1. Since 
August 2016, a total of 76 (49 patients with migraine and 
27 HC) participants were recruited. For this exploratory 
study, RNA was extracted from 69 samples that fulfilled 
inclusion/exclusion criteria. Among these, 37 showed a 
RIN < 6 and were discarded. Therefore, 32 participants 
(12 HC, 20 patients) were considered for the analysis 
with a median age of 33.2 [28.0, 39.8] years old. No sta-
tistically significant differences were found neither in 
demographical variables nor life-habits measurements 
between groups. In terms of comorbidities, we only 
found that patients with migraine presented a statisti-
cally significantly greater trait-anxiety score (HC: 31.0 
[27.0, 38.2] vs. migraine: 39.5 [37.2, 55.8]; p = 0.007). In 

Fig. 1  Patients’ recruitment flowchart. We recruited participants from August 2016 to September 2017. HC: healthy controls; RIN: RNA integrity 
number; QA: quality assessment
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patients, median MHD was 10.5 [8.0, 24.2] days/month 
(d/mo) and median MAMI was 7.5 [4.0, 9.0] d/mo. Main 
demographic and clinical characteristics are shown in 
Table 1.

No statistically significant differences were found in 
terms of RNA quality (RIN, median [IQR]) between 
study groups: 6.9 [6.5, 7.8] HC vs. 6.7 [6.3, 7.2] patients; 
p = 0.420.

MiRNA microarray expression profiling
During microarrays QA, we distinguished two sam-
ples (from patients) with higher values of intensity in all 
their probe sets. Similarly, normalized unscaled stand-
ard errors values and relative log expression values for 
the same two samples diverged from the rest, indicating 
aberrant expression. Hence, we discarded these 2 sam-
ples from further analysis (Fig. 1). Control and migraine 

samples were perfectly segregated along PCA and HCA 
(Fig. 2).

Adjusting by STAI-trait values, we found 191 DE 
miRNA between study groups: 59 over-expressed and 
132 under-expressed transcripts in patients (Fig.  3A). 
Then, RF analysis combined with a feature selecting 
algorithm was used to build the classifier and to iden-
tify the best targets that distinguished between controls 
and migraine. The OOB for the initial model was 0.067 
(91.7% sensitivity, 94.4% specificity) and a 3-miRNA sig-
nature was found as best variables without dropping the 
OBB error substantially: miR-342-3p, miR-532-3p and 
miR-758-5p. Then, as RF algorithms are deterministic, 
performing it on different training samples is the only 
way to generate diversity in the selection. To this end, 
we performed bootstrapping (+ 0.632) in which the ran-
dom forest constructed for a certain number of variables 
was subsampled and compared. The prediction error 

Table 1  Demographics, life habits, comorbidities and migraine characteristics

Continuous data is represented in median [IQR] and categorical data in % (n).

Bold font indicates statistically significant variables

IQR: interquartile range, HC healthy controls, y years, IPAQ-SF short-form of the international physical activity questionnaire, MET metabolic equivalents of task, STAI 
State-Trait Anxiety Inventory, BDI-II Beck depression inventory-second edition, PSS perceived stress scale, ASC-12 12-item allodynia symptom checklist; d/mo days/
month, MIDAS migraine disability assessment, HIT-6 headache impact test
† Statistical significance assessed with unpaired t-test
‡ Statistical significance assessed with unpaired Wilcoxon rank-sum test

HC
(n = 12)

Migraine
(n = 18)

P value

Demographics
  Age, years 30.0 [28.0, 33.5] 36.0 [28.2, 41.0] 0.319‡

  Body mass index, kg/m2 22.7 [21.7, 23.2] 22.9 [20.4, 25.5] 0.594†

Life-habits
  IPAQ-SF, METs/week 3.1 [2.2, 4.2] 3.4 [1.4, 6.2] 0.750‡

  Caffeine consumption, g/week 1.1 [0.9, 1.6] 1.0 [0.2, 1.4] 0.261†

  Alcohol consumption, g/week 15.0 [0.0, 40.0] 0.0 [0.0, 10.0] 0.062‡

Comorbidities
  Anxiety (STAI), score

  State 35.0 [32.0, 41.0] 38.5 [36.2, 52.2] 0.075†

  Trait 31.0 [27.0, 38.2] 39.5 [37.2, 55.8] 0.007†

  Depression (BDI-II), score 4.0 [0.8, 6.2] 8.5 [1.2, 14.8] 0.232‡

  Perceived stress (PSS), score 16.0 [12.8, 22.5] 19.5 [17.0, 32.0] 0.270†

Migraine characteristics
  Duration of migraine disease, y 19.5 [11.0, 27.0]

  Aura 38.9% (7)

  Allodynia 72.2% (13)

  ASC-12, score 4.5 [2.2, 6.0]

  Monthly headache frequency, d/mo 10.5 [8.0, 24.2]

  Monthly acute medication intake, d/mo 7.5 [4.0, 9.0]

Migraine-related clinical burden
  Disability (MIDAS), score 28.5 [17.2, 47.8]

  Headache-related impact (HIT-6), score 63.5 [61.2, 69.0]
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rate among the bootstrap samples was 0.142. The same 
3-miRNA signature were consistently selected (stability) 
in all the sub-samples, with miR-532-3p being selected in 
the 60% of cases. Figure 3B shows the heatmap from the 

selected DE miRNA between groups where the expres-
sion from all of them were under-expressed in patients: 
miR-342-3p (log2FC: -0.551), miR-532-3p (log2FC: 
-1.109) and miR-758-5p (log2FC: -0.508).

Fig. 2  Principal component analysis (A) and unsupervised hierarchical clustering (B) of miRNA normalized expression data. Unsupervised 
hierarchical clustering (B) was computed through euclidian distances between samples. HC: healthy controls; MIG: patients with migraine, PC: 
principal component

Fig. 3  Volcano plot (A) and heatmap (B) of differentially expressed miRNA between healthy controls and patients with migraine. Scattered points 
from the volcano plot (A) represent miRNAs: the x-axis is the log twofold-change for the ratio healthy controls vs patients with migraine, whereas 
the y-axis is the log 10 P-value. Colored dots (blue and green) are differentially miRNA statistically significantly over- (right) and under-expressed 
(left) in patients compared to controls. Blue dots are differentially expressed miRNA with a log twofold-change > 0.50. A heatmap (B) of the 3-miRNA 
signature selected from the classification algorithm (RF). Columns represent individual arrays, while rows represent specific DE miRNA. The Z-score 
depicts a measure of distance, in standard deviations, away from the mean. The relative value for each miRNA is depicted by color intensity, with 
yellow indicating over-expression and red indicating under-expression. HC: healthy controls; MIG: patients with migraine
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Targets prediction and functional enrichment analysis
Predicted target genes associated with the 3-miRNA sig-
nature were retrieved from the miRBD database through 
the multimiR package. Each target significance was com-
puted according to the prediction score retrieved from 
the miRDB (see Methods section). Then, a total of 68 
target genes were identified: 42 genes from miR-342-3p, 
26 genes from miR-532-3p and 9 genes from miR-758-5p. 
While four common target genes were found between 
miR-342-3p and miR-532-3p: ATXN7 (ataxin 7), CDKL5 
(cyclin dependent kinase like 5), PAPPA (Pappalysin 1) 
and RRM2 (Ribonucleotide Reductase Regulatory Subu-
nit M2); two common targets were found between miR-
342-3p, miR-758-5p: DHRSX (Dehydrogenase/Reductase 
X-Linked), NUFIP2 (Nuclear FMR1 Interacting Pro-
tein 2); and 3 common targets between miR-532-3p and 
miR-758-5p: DSG3 (Desmoglein 3), PTP4A1 (Protein 
Tyrosine Phosphatase 4A1), TET3 (Tet  Methylcytosine 
Dioxygenase 3). No common target gene was found for 
all three miRNAs.

Functional enrichment analysis of miRNA-target genes 
predicted from the miRDB was performed through 
active-subnetwork-oriented analysis via pathfindR and 
a total of 24 enriched KEGG pathways were identified 
(Table  2). Top pathway was calcium signaling pathway 
and a total of 9 different target genes were involve in all 
significantly enriched pathways: CACNA1C, HTR2C, 
EP300, PTGER4, ID4, RICTOR and EEA1 from miR-
342-3p; PRKCA and DTX4 from miR-532-3p and ID2 
from miR-758-5p.

Discussion
In this exploratory study, we found 191 differentially 
expressed miRNAs (59 over-expressed and 132 under-
expressed transcripts) between controls and patients 
with migraine in a very homogeneous female cohort, 
controlled by factors as demographics, life-habits and 
comorbidities (Table 1, Fig. 3A). After transcripts classi-
fication task, we finally selected three DE miRNAs that 
distinguished study groups: miR-342-3p, miR-532-3p and 
miR-758-5p. All three DE miRNAs were under-expressed 

Table 2  Enriched KEGG pathways of predicted target from the 3-miRNA differentially expressed signature

Adj. p-value are the lowest enrichment p-value obtained through multiple iterations. The target genes are the predicted genes (targets of at least one DE miRNA) 
involved in the given enriched pathway

KEGG Kyoto Encyclopedia of Genes and Genomes, Adj. p-value adjusted p-value corrected for multi-testing using the Benjamini–Hochberg procedure (FDR)

ID KEGG Pathway Adj. p-value Target genes

hsa04020 Calcium signaling pathway  < 0.0001 CACNA1C, HTR2C, PRKCA

hsa04330 Notch signaling pathway 0.001 DTX4, EP300

hsa04750 Inflammatory mediator regulation of TRP channels 0.002 HTR2C, PTGER4, PRKCA

hsa04720 Long-term potentiation 0.002 CACNA1C, EP300, PRKCA

hsa05031 Amphetamine addiction 0.003 CACNA1C, PRKCA

hsa04540 Gap junction 0.005 HTR2C, PRKCA

hsa04350 TGF-beta signaling pathway 0.006 ID2, ID4, EP300

hsa04912 GnRH signaling pathway 0.006 PRKCA, CACNA1C

hsa04713 Circadian entrainment 0.007 CACNA1C, PRKCA

hsa04925 Aldosterone synthesis and secretion 0.007 PRKCA, CACNA1C

hsa04916 Melanogenesis 0.008 EP300, PRKCA

hsa04066 HIF-1 signaling pathway 0.010 EP300, PRKCA

hsa04726 Serotonergic synapse 0.011 CACNA1C, HTR2C, PRKCA

hsa04935 Growth hormone synthesis, secretion and action 0.013 EP300, PRKCA, CACNA1C

hsa04919 Thyroid hormone signaling pathway 0.014 EP300, PRKCA

hsa04270 Vascular smooth muscle contraction 0.015 CACNA1C, PRKCA

hsa04728 Dopaminergic synapse 0.018 PRKCA, CACNA1C

hsa04261 Adrenergic signaling in cardiomyocytes 0.025 CACNA1C, PRKCA

hsa04921 Oxytocin signaling pathway 0.027 PRKCA, CACNA1C

hsa04150 mTOR signaling pathway 0.028 RICTOR, PRKCA

hsa05161 Hepatitis B 0.033 EP300, PRKCA

hsa04310 Wnt signaling pathway 0.034 EP300, PRKCA

hsa05164 Influenza A 0.039 EP300, PRKCA

hsa05152 Tuberculosis 0.046 EP300, EEA1
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in patients compared to controls (Fig.  3B). Sixty-eight 
target genes were predicted from this 3-miRNA signature 
and in the functional analysis, we found that they mainly 
enriched ion channels and signaling pathways (calcium, 
notch, TRP, TGF-beta, GnRH, HIF-1, thyroid, oxy-
tocin, mTOR and Wnt), neurotransmitter and hormone 
homeostasis (aldosterone, serotonin, growth hormone, 
dopamine and adrenaline), infectious diseases (Hepatitis, 
Influenza and tuberculosis) and circadian entrainment 
(Table 2).

MiRNAs may have the potential to accurately diag-
nose disorders at an early stage. For instance, it has been 
found that levels of miR-182 in the peripheral blood 
of patients with gliomas increase with disease grade, 
which had allowed to researchers to patent a diagnostic 
kit for early diagnosis of human glioma (patent num-
ber: CN101792793A) [60]. This is beneficial for patients 
in order to receive earlier and more individual targeted 
treatment therapies, a milestone in migraine since we 
already know that if it is not adequately diagnosed and 
treated, migraine frequency increases until disease chron-
ification [61]. Moreover, there is increasing evidence 
that the later we start treating migraine, less effective is 
the treatment and more difficult it becomes to reverse 
the disease [5, 62]. In regards to CNS diseases, specific 
DE miRNAs have also been identified and validated in 
order to diagnose multiple sclerosis (US9187785B2) [63], 
Alzheimer’s disease (EP2733220A1) [64, 65] or major 
depressive disorder (EP2529222A4) [66]. MiRNAs have 
also been given considerable attention as a therapeutic 
targets/agent. In recent years, miRNA-based therapeu-
tic approaches have been developed in CNS diseases, 
especially pre-clinical studies in neurodegenerative dis-
orders [67], although clinical trials have not started yet 
[68]. Hence, these patents and previous studies in other 
diseases highlight that investigating miRNA profiles in 
migraine will lead us not only to a better understanding 
of their pathogenesis, but also to help develop diagnostic 
kits, identify specific cluster of patients, explore disease 
onset, monitor migraine attacks, personalize therapeutic 
treatment and revert disease chronification.

Several authors have made an effort in previous studies 
to identify potential miRNAs as peripheral biomarkers of 
migraine [12]. Numerous miRNAs have been described 
associated with pain-free patients with migraine in 
comparison to healthy controls: miR-382-5p (over-
expressed in serum and PBMC) [21, 23]; miR-34a-5p 
(over-expressed in serum, saliva and PBMC) [21, 24]; 
miR-27b (over-expressed in plasma) [25]; miR-181a, let-
7b, and miR-22 (under-expressed in PBMC) [25]; miR-
155, miR-126, and let-7 g (over-expressed in plasma) [18]; 
miR-30 (over-expressed in PBMC) [69]; miR-5189-3p, 
miR-3613-5p, miR-99a-3p, miR-542-3p (over-expressed 

in PBMC) and miR-96-5p (under-expressed) [26]. Results 
are heterogenous and study-dependent but not only 
because there are differences in lab procedures, biologi-
cal matrix or sample size but mainly because of the large 
degree of heterogeneity between study groups. Published 
studies only controlled by demographic factors (age and 
sex) but did not consider neither participants selection 
nor analysis with an adjustment by covariates other fac-
tors such as comorbidities and lifestyle habits. Epigenet-
ics have been established as a molecular link between 
genetic function and the environment. Hence, epigenetic 
marks constitute a malleable language by which internal 
and external factors can influence the genome and, for 
that reason, it is crucial to be able to separate correlative 
from causal changes in order to understand and quan-
tify the effect of the epigenetic function in diseases [70]. 
Nowadays, we have more evidence that lifestyle factors 
such as diet [71], smoking [72], alcohol [73, 74], stress 
[75], physical activity [29, 76], treatments [77–79] and 
comorbidities [80, 81] have a great impact on the dyna-
misms of epigenetic marks. Controlling them will allow 
us to identify transcripts associated with a disease that 
are not unmasked for other factors.

Functional analysis showed that targeted genes associ-
ated to the 3-miRNA signature enriched pathways have 
been previously described and associated with migraine 
pathophysiology. One of the most enriched targets is 
CACNA1C which encodes for the alpha-1 subunit of 
a voltage-dependent calcium channel. Calcium chan-
nels mediate the influx of calcium ions into the cell upon 
membrane polarization and they are encoded by different 
subunits of the CACNA1 gene (CACNA1A-S) [82, 83]. 
From migraine pathophysiology, we already know that 
the trigeminovascular system (TVS) can be activated by 
cortical spreading depression (CSD). Mutations in CAC-
NA1A can disrupt ionic homeostasis, increasing the sus-
ceptibility to CSD and inducing migraine attacks [84]. 
Moreover, a CACNA1A variant has also been associated 
with migraine with aura in the last migraine association 
study [10]. So, a down-regulation of CACNA1C gene 
could be also associated with these ionic disturbances in 
neuronal synapses; indicating that miR-342-3p has a reli-
able effect on migraine pathophysiology.

Other enriched pathways codifying for vascular func-
tions which may have and important role in migraine 
etiopathogenesis were the notch signaling pathway, the 
inflammatory mediator regulation of TRP channels and 
the HIF-1 signaling pathway. Notch receptors (Notch1-
4) are a family of type-1 transmembrane proteins which 
are essential for embryonic development. Mutations 
in the Notch pathway genes, like NOTCH2 and JAG1, 
are associated with vascular abnormalities [85]. In 
migraine, there is evidence that distinct polymorphisms 
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of NOTCH4 gene significantly modify clinical char-
acteristics of migraine phenotype [86]. The Transient 
Receptor Potential (TRP) channels are a superfamily of 
integral membrane proteins well-described in pain con-
ditions that functions as cation channels: TRPA, TRPC, 
TRPM, TRPP, TRPL, and TRPV [87–89]. These chan-
nels contribute to a several physiological processes rang-
ing from thermosensation and pain to the regulation of 
Ca2 + levels in the endoplasmic reticulum. TRP chan-
nels are also expressed in the meningeal nociceptors 
and it has been proved that their activation, promotes 
the release of the neuropeptide calcitonin gene related 
peptide (CGRP) [90]. The role of CGRP in migraine has 
been exhaustively described in both preclinical and clini-
cal studies during the last decades [91] and the CGRP 
antagonism has shown to be efficacious for the treat-
ment of migraine [92–94]. However, the mechanism by 
which CGRP is released during migraine is unclear, and 
for that reason, TRP channels remain a focus of interest 
for their potential contribution to attacks [95]. Moreover, 
from our experience in clinical trials and real-world stud-
ies there are patients with migraine who do not respond 
to treatments, even target-driven one such as anti-CGRP 
therapies [96], suggesting that CGRP is not the only 
mechanism driving migraine attacks [97, 98]. In regards 
to hypoxia-inducible factor 1 (HIF-1), it is a transcrip-
tion factor that functions as a master regulator of oxygen 
homeostasis. Since HIF-1α is implicated in neuropro-
tection and inflammation inhibition, a recent study has 
demonstrated that roxadustat administration, an anti-
anemia medication, ameliorated migraine-like behaviors 
and inhibited central pain sensitization in nitroglycerin-
injected mice, which was mainly mediated by HIF-1α/
NF-κB/inflammation pathway [99].

The relationship between hormones and neurotrans-
mitters with migraine is not entirely clear, but we do 
know it exists and plays a fundamental role in its patho-
physiology. On one hand, thyroid hormones, along with 
PTX3 and, insulin resistance share common mechanisms 
in the development of endothelial dysfunction [100], a 
vascular pathophysiological genetically driven mecha-
nism of migraine [101]. Moreover, differentially pattern 
levels have been found between controls and patients 
with migraine of the hypothalamic-tuberoinfundibu-
lar system (prolactin and growth hormone) [102]. On 
the other hand, the gonadotropin releasing hormone 
(GnRH) controls the release of sexual hormones although 
estrogens can negatively regulate the GnRH from the 
hypothalamus at the time of the preovulatory surge, sug-
gesting that estrogen could be related to the increase in 
migraine prevalence in relation with puberty and ovu-
lation in women [103, 104]. Other hypothalamic hor-
mone linked to migraine is the Oxytocin (OT). OT has 

been used to relieve migraine attacks through intrana-
sal or intravenous administration [105] since OT recep-
tors included in the trigeminal ganglia and neurons can 
inhibit the release of CGRP [106].

Altogether, the 3-miRNA signature found could be 
a reliable biomarker for migraine diagnosis not only 
because they are differentially expressed between female 
patients and controls, but they are also involved in 
enriched biological processes which have been previously 
described in migraine pathophysiology. So, the under-
expression of these transcripts may cause a dysregulated 
expression of genes associated with the vascular dysfunc-
tion and neurohormonal imbalances characterized by 
patients with migraine.

This study has limitations. First, RNA-seq is the most 
commonly used NGS technique to explore differences 
at transcript level to date. RNA-seq is able to detect 
novel transcripts with higher specificity and sensitiv-
ity. However, at the moment of designing and planning 
the current study, arrays where the more standardized 
technology. In addition, the RNA-Seq procedure has a 
few disadvantages compared to arrays: a lack of opti-
mized and standardized protocols for analysis [107, 
108]; the size of RNA-Seq files is considerably larger; 
and RNA-seq requires highly intensive and expensive 
computation infrastructure and analytics, as well as, 
longer analysis times [108, 109]. Nevertheless, arrays 
technologies are still a reliable technology to study 
gene expression with results comparable to RNA-seq 
[110]. Second, we did not evaluate the hypothesis that 
the miRNA profile could be related to the phenotype of 
circulating PBMC phenotype, rather than a differential 
miRNA expression. Several changes in PBMC profile 
related to migraine have been reported but, as differ-
ent methodologies were used, the overall results are 
inconclusive. For instance, a meta-analysis of studies 
from 1966 to 1999 addressing immunological changes 
related to migraine did not find clear alterations in cir-
culating leukocytes or other immunological parameters 
[111]. More recently, a relative lymphocytosis has been 
reported in chronic migraine associated with medi-
cation overuse headache, that was considered prob-
ably related to a chronic inflammatory state and stress 
response rather than specifically to migraine [112, 
113]. Finally, the sample was small, and highly selected 
and homogeneous, only considering non-menopausal 
women in order to reduce sample size and confounding 
factors. Moreover, the group of individuals diagnosed 
with migraine was not totally homogeneous in terms of 
disease pathophysiology (e.g., either episodic or chronic 
migraine and either the presence or absence of aura). 
Hence, this 3-miRNA signature should be validated in 
a larger sample size and more heterogeneous cohort. 
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However, data gathered in this exploratory study will be 
used to calculate the required sample size for the sub-
sequent discovery and validation (RT-qPCR) studies. 
Due to lack of power in small sample size experiments, 
true effects are often missed and many of the detected 
effects will probably not be further validated. Therefore, 
the objective of this study was to to perform an explor-
atory study using the same in- and exclusion criteria for 
a miRNA high-throughput screen [114].

Conclusion
A 3-miRNA signature (miR-342-3p, miR-532-3p and 
miR-758-5p) has been found differentially expressed 
between controls and patients with migraine in a very 
homogeneous cohort of non-menopausal women, con-
trolled by factors such as demographics, life-habits and 
comorbidities. Enrichment analysis show that these 
three miRNAs are closely associated with migraine 
pathophysiology, maybe becoming the first reliable bio-
marker of disease. Further studies will be performed 
to validate them in a larger and more heterogeneous 
sample.
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