Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorCabrera Perez, Raquel
dc.contributor.authorRàfols-Mitjans, Alexis
dc.contributor.authorRoig-Molina, Ángela
dc.contributor.authorBeltramone, Silvia
dc.contributor.authorBATLLE MORERA, LAURA
dc.contributor.authorVives, Joaquim
dc.date.accessioned2023-11-21T12:43:15Z
dc.date.available2023-11-21T12:43:15Z
dc.date.issued2023-11-10
dc.identifier.citationCabrera-Pérez R, Ràfols-Mitjans A, Roig-Molina Á, Beltramone S, Vives J, Batlle-Morera L. Human Wharton’s jelly-derived mesenchymal stromal cells promote bone formation in immunodeficient mice when administered into a bone microenvironment. J Transl Med. 2023 Nov 10;21:802.
dc.identifier.issn1479-5876
dc.identifier.urihttps://hdl.handle.net/11351/10633
dc.descriptionBone microenvironment; Bone regeneration; Multipotent mesenchymal stromal cells
dc.description.abstractBackground Wharton’s Jelly (WJ) Mesenchymal Stromal Cells (MSC) have emerged as an attractive allogeneic therapy for a number of indications, except for bone-related conditions requiring new tissue formation. This may be explained by the apparent recalcitrance of MSC,WJ to differentiate into the osteogenic lineage in vitro, as opposed to permissive bone marrow (BM)-derived MSCs (MSC,BM) that readily commit to bone cells. Consequently, the actual osteogenic in vivo capacity of MSC,WJ is under discussion. Methods We investigated how physiological bone environments affect the osteogenic commitment of recalcitrant MSCs in vitro and in vivo. To this end, MSC of BM and WJ origin were co-cultured and induced for synchronous osteogenic differentiation in vitro using transwells. For in vivo experiments, immunodeficient mice were injected intratibially with a single dose of human MSC and bone formation was evaluated after six weeks. Results Co-culture of MSC,BM and MSC,WJ resulted in efficient osteogenesis in both cell types after three weeks. However, MSC,WJ failed to commit to bone cells in the absence of MSC,BM’s osteogenic stimuli. In vivo studies showed successful bone formation within the medullar cavity of tibias in 62.5% of mice treated with MSC, WJ. By contrast, new formed trabeculae were only observed in 25% of MSC,BM-treated mice. Immunohistochemical staining of human COXIV revealed the persistence of the infused cells at the site of injection. Additionally, cells of human origin were also identified in the brain, heart, spleen, kidney and gonads in some animals treated with engineered MSC,WJ (eMSC,WJ). Importantly, no macroscopic histopathological alterations, ectopic bone formation or any other adverse events were detected in MSC-treated mice. Conclusions Our findings demonstrate that in physiological bone microenvironment, osteogenic commitment of MSC,WJ is comparable to that of MSC,BM, and support the use of off-the-shelf allogeneic MSC,WJ products in bone repair and bone regeneration applications.
dc.language.isoeng
dc.publisherBMC
dc.relation.ispartofseriesJournal of Translational Medicine;21
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScientia
dc.subjectCèl·lules mare mesenquimàtiques
dc.subjectTeixit ossi
dc.subjectCèl·lules - Proliferació
dc.subject.meshMesenchymal Stem Cells
dc.subject.meshWharton Jelly
dc.subject.meshOsteogenesis
dc.subject.meshCell Proliferation
dc.titleHuman Wharton’s jelly-derived mesenchymal stromal cells promote bone formation in immunodeficient mice when administered into a bone microenvironment
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1186/s12967-023-04672-9
dc.subject.decscélulas madre mesenquimatosas
dc.subject.decsgelatina de Wharton
dc.subject.decsosteogénesis
dc.subject.decsproliferación celular
dc.relation.publishversionhttps://doi.org/10.1186/s12967-023-04672-9
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Cabrera-Pérez R] Servei de Teràpia Cel·lular i Avançada, Blood and Tissue Bank (BST), Barcelona, Spain. Grup de Recerca d’Enginyeria Tissular Musculoesquelètica, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. [Ràfols-Mitjans A, Beltramone S, Batlle-Morera L] Centre for Genomic Regulation (CRG), Genomic Regulation, Stem Cells and Cancer Program, The Barcelona Institute of Science and Technology, Barcelona, Spain. [Roig-Molina Á] Grup de Recerca d’Enginyeria Tissular Musculoesquelètica, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. [Vives J] Servei de Teràpia Cel·lular i Avançada, Blood and Tissue Bank (BST), Barcelona, Spain. Grup de Recerca d’Enginyeria Tissular Musculoesquelètica, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
dc.identifier.pmid37950242
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record