Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorColl, Llucia
dc.contributor.authorCarbonell Mirabent, Pere
dc.contributor.authorCastillo Justribo, Joaquin
dc.contributor.authorGalan, Ingrid
dc.contributor.authorNos, Carlos
dc.contributor.authorAuger, Cristina
dc.contributor.authorAlberich, Manel
dc.contributor.authorPareto, Deborah
dc.contributor.authorCobo-Calvo, Alvaro
dc.contributor.authorVidal-Jordana, Angela
dc.contributor.authorComabella Lopez, Manuel
dc.contributor.authorRodriguez Acevedo, Breogan
dc.contributor.authorZabalza, Ana
dc.contributor.authormidaglia, luciana
dc.contributor.authorRio, Jordi
dc.contributor.authorSastre Garriga, Jaume
dc.contributor.authorRovira, Alex
dc.contributor.authorTintore, Mar
dc.contributor.authorTUR, CARMEN
dc.contributor.authorArrambide, Georgina
dc.contributor.authorMontalban, Xavier
dc.date.accessioned2024-06-11T10:09:48Z
dc.date.available2024-06-11T10:09:48Z
dc.date.copyright2023
dc.date.issued2024-07
dc.identifier.citationColl L, Pareto D, Carbonell-Mirabent P, Cobo-Calvo Á, Arrambide G, Vidal-Jordana Á, et al. Global and Regional Deep Learning Models for Multiple Sclerosis Stratification From MRI. J Magn Reson Imaging. 2024 Jul;60(1):258–67.
dc.identifier.issn1522-2586
dc.identifier.urihttps://hdl.handle.net/11351/11572
dc.descriptionDeep learning; Multiple sclerosis; Structural MRI
dc.description.abstractBackground The combination of anatomical MRI and deep learning-based methods such as convolutional neural networks (CNNs) is a promising strategy to build predictive models of multiple sclerosis (MS) prognosis. However, studies assessing the effect of different input strategies on model's performance are lacking. Purpose To compare whole-brain input sampling strategies and regional/specific-tissue strategies, which focus on a priori known relevant areas for disability accrual, to stratify MS patients based on their disability level. Study Type Retrospective. Subjects Three hundred nineteen MS patients (382 brain MRI scans) with clinical assessment of disability level performed within the following 6 months (~70% training/~15% validation/~15% inference in-house dataset) and 440 MS patients from multiple centers (independent external validation cohort). Field Strength/Sequence Single vendor 1.5 T or 3.0 T. Magnetization-Prepared Rapid Gradient-Echo and Fluid-Attenuated Inversion Recovery sequences. Assessment A 7-fold patient cross validation strategy was used to train a 3D-CNN to classify patients into two groups, Expanded Disability Status Scale score (EDSS) ≥ 3.0 or EDSS < 3.0. Two strategies were investigated: 1) a global approach, taking the whole brain volume as input and 2) regional approaches using five different regions-of-interest: white matter, gray matter, subcortical gray matter, ventricles, and brainstem structures. The performance of the models was assessed in the in-house and the independent external cohorts. Statistical Tests Balanced accuracy, sensitivity, specificity, area under receiver operating characteristic (ROC) curve (AUC). Results With the in-house dataset, the gray matter regional model showed the highest stratification accuracy (81%), followed by the global approach (79%). In the external dataset, without any further retraining, an accuracy of 72% was achieved for the white matter model and 71% for the global approach. Data Conclusion The global approach offered the best trade-off between internal performance and external validation to stratify MS patients based on accumulated disability. Evidence Level 4 Technical Efficacy Stage 2.
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofseriesJournal of Magnetic Resonance Imaging;60(1)
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.sourceScientia
dc.subjectAprenentatge automàtic
dc.subjectEsclerosi múltiple - Prognosi
dc.subjectImatgeria per ressonància magnètica
dc.subject.meshMultiple Sclerosis
dc.subject.mesh/diagnosis
dc.subject.meshMagnetic Resonance Imaging
dc.subject.meshDeep Learning
dc.titleGlobal and Regional Deep Learning Models for Multiple Sclerosis Stratification From MRI
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1002/jmri.29046
dc.subject.decsesclerosis múltiple
dc.subject.decs/diagnóstico
dc.subject.decsimagen por resonancia magnética
dc.subject.decsaprendizaje profundo
dc.relation.publishversionhttps://doi.org/10.1002/jmri.29046
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Coll L, Carbonell-Mirabent P, Cobo-Calvo Á, Arrambide G, Vidal-Jordana Á, Comabella M, Castilló J, Rodríguez-Acevedo B, Zabalza A, Galán I, Midaglia L, Nos C, Río J, Sastre-Garriga J, Montalban X, Tintoré M, Tur C] Centre d’Esclerosi Múltiple de Catalunya (CEMCAT), Barcelona, Spain. Vall d’Hebron Hospital Universitari, Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain. [Pareto D, Auger C, Alberich M, Rovira À] Secció de Neuroradiologia, Servei de Radiologia, Vall d’Hebron Hospital Universitari, Barcelona, Spain. Universitat Autònoma de Barcelona, Bellaterra, Spain
dc.identifier.pmid37803817
dc.identifier.wos001079314200001
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record