Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorPiella, Gemma
dc.contributor.authorFarré, Nicolau
dc.contributor.authorEsono, Daniel
dc.contributor.authorCordobés, Miguel Ángel
dc.contributor.authorVazquez-Corral, Javier
dc.contributor.authorBilbao, Itxarone
dc.contributor.authorGómez Gavara, Concepción
dc.date.accessioned2024-10-10T09:55:35Z
dc.date.available2024-10-10T09:55:35Z
dc.date.issued2024-07-31
dc.identifier.citationPiella G, Farré N, Esono D, Cordobés MÁ, Vázquez-Corral J, Bilbao I, et al. LiverColor: An Artificial Intelligence Platform for Liver Graft Assessment. Diagnostics (Basel). 2024 Jul 31;14(15):1654.
dc.identifier.issn2075-4418
dc.identifier.urihttps://hdl.handle.net/11351/12045
dc.descriptionHepatic steatosis; Liver assessment; Mobile app
dc.description.abstractHepatic steatosis, characterized by excess fat in the liver, is the main reason for discarding livers intended for transplantation due to its association with increased postoperative complications. The current gold standard for evaluating hepatic steatosis is liver biopsy, which, despite its accuracy, is invasive, costly, slow, and not always feasible during liver procurement. Consequently, surgeons often rely on subjective visual assessments based on the liver’s colour and texture, which are prone to errors and heavily depend on the surgeon’s experience. The aim of this study was to develop and validate a simple, rapid, and accurate method for detecting steatosis in donor livers to improve the decision-making process during liver procurement. We developed LiverColor, a co-designed software platform that integrates image analysis and machine learning to classify a liver graft into valid or non-valid according to its steatosis level. We utilized an in-house dataset of 192 cases to develop and validate the classification models. Colour and texture features were extracted from liver photographs, and graft classification was performed using supervised machine learning techniques (random forests and support vector machine). The performance of the algorithm was compared against biopsy results and surgeons’ classifications. Usability was also assessed in simulated and real clinical settings using the Mobile Health App Usability Questionnaire. The predictive models demonstrated an area under the receiver operating characteristic curve of 0.82, with an accuracy of 85%, significantly surpassing the accuracy of visual inspections by surgeons. Experienced surgeons rated the platform positively, appreciating not only the hepatic steatosis assessment but also the dashboarding functionalities for summarising and displaying procurement-related data. The results indicate that image analysis coupled with machine learning can effectively and safely identify valid livers during procurement. LiverColor has the potential to enhance the accuracy and efficiency of liver assessments, reducing the reliance on subjective visual inspections and improving transplantation outcomes.
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesDiagnostics;14(15)
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScientia
dc.subjectFetge - Trasplantació
dc.subjectEsteatosi hepàtica - Imatgeria
dc.subjectAprenentatge automàtic
dc.subject.meshLiver Transplantation
dc.subject.meshMachine Learning
dc.subject.meshFatty Liver
dc.subject.mesh/diagnostic imaging
dc.titleLiverColor: An Artificial Intelligence Platform for Liver Graft Assessment
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.3390/diagnostics14151654
dc.subject.decstrasplante de hígado
dc.subject.decsaprendizaje automático
dc.subject.decshígado graso
dc.subject.decs/diagnóstico por imagen
dc.relation.publishversionhttps://doi.org/10.3390/diagnostics14151654
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Piella G, Farré N, Esono D, Cordobés MÁ] Engineering Department, Universitat Pompeu Fabra, Barcelona, Spain. [Vázquez-Corral J] Centre de Visió per Computador i Departament d'Informàtica, Universitat Autònoma de Barcelona, Bellaterra, Spain. [Bilbao I, Gómez-Gavara C] Servei de Cirurgia Hepatobiliopancreàtica i Trasplantaments, Vall d’Hebron Hospital Universitari, Barcelona, Spain. Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
dc.identifier.pmid39125531
dc.identifier.wos001286946200001
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record