| dc.contributor | Vall d'Hebron Barcelona Hospital Campus |
| dc.contributor.author | Wilson, Fiona |
| dc.contributor.author | Seoane Ramallo, Alejandro |
| dc.contributor.author | Jaikuna, Tanwiwat |
| dc.contributor.author | Azria, David |
| dc.contributor.author | Chang-Claude, Jenny |
| dc.contributor.author | De Santis, Maria Carmen |
| dc.contributor.author | Gutiérrez-Enríquez, Sara |
| dc.contributor.author | Reyes López, Victoria |
| dc.date.accessioned | 2024-10-30T10:29:28Z |
| dc.date.available | 2024-10-30T10:29:28Z |
| dc.date.issued | 2024-09-07 |
| dc.identifier.citation | Jaikuna T, Wilson F, Azria D, Chang-Claude J, De Santis MC, Gutiérrez-Enríquez S, et al. Optimising inter-patient image registration for image-based data mining in breast radiotherapy. Phys Imaging Radiat Oncol. 2024 Set 7;32:100635. |
| dc.identifier.issn | 2405-6316 |
| dc.identifier.uri | https://hdl.handle.net/11351/12155 |
| dc.description | Breast radiotherapy; Image-based data mining; Spatial normalisation |
| dc.description.abstract | Background and purpose
Image-based data mining (IBDM) requires spatial normalisation to reference anatomy, which is challenging in breast radiotherapy due to variations in the treatment position, breast shape and volume. We aim to optimise spatial normalisation for breast IBDM.
Materials and methods
Data from 996 patients treated with radiotherapy for early-stage breast cancer, recruited in the REQUITE study, were included. Patients were treated supine (n = 811), with either bilateral or ipsilateral arm(s) raised (551/260, respectively) or in prone position (n = 185). Four deformable image registration (DIR) configurations for extrathoracic spatial normalisation were tested. We selected the best-performing DIR configuration and further investigated two pathways: i) registering prone/supine cohorts independently and ii) registering all patients to a supine reference. The impact of arm positioning in the supine cohort was quantified. DIR accuracy was estimated using Normalised Cross Correlation (NCC), Dice Similarity Coefficient (DSC), mean Distance to Agreement (MDA), 95 % Hausdorff Distance (95 %HD), and inter-patient landmark registration uncertainty (ILRU).
Results
DIR using B-spline and normalised mutual information (NMI) performed the best across all evaluation metrics. Supine-supine registrations yielded highest accuracy (0.98 ± 0.01, 0.91 ± 0.04, 0.23 ± 0.19 cm, 1.17 ± 1.18 cm, 0.51 ± 0.26 cm for NCC, DSC, MDA, 95 %HD, and ILRU), followed by prone-prone and supine-prone registrations. Arm positioning had no significant impact on registration performance. For the best DIR strategy, uncertainty of 0.44 and 0.81 cm in the breast and shoulder regions was found.
Conclusions
B-spline algorithm using NMI and registered supine and prone cohorts independently provides the most optimal spatial normalisation strategy for breast IBDM. |
| dc.language.iso | eng |
| dc.publisher | Elsevier |
| dc.relation.ispartofseries | Physics and Imaging in Radiation Oncology;32 |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.source | Scientia |
| dc.subject | Mama - Càncer - Imatgeria |
| dc.subject | Mama - Càncer - Radioteràpia |
| dc.subject | Registre d'imatges |
| dc.subject.mesh | Breast Neoplasms |
| dc.subject.mesh | /radiotherapy |
| dc.subject.mesh | Image Processing, Computer-Assisted |
| dc.title | Optimising inter-patient image registration for image-based data mining in breast radiotherapy |
| dc.type | info:eu-repo/semantics/article |
| dc.identifier.doi | 10.1016/j.phro.2024.100635 |
| dc.subject.decs | neoplasias de la mama |
| dc.subject.decs | /radioterapia |
| dc.subject.decs | procesamiento de imágenes asistido por ordenador |
| dc.relation.publishversion | https://doi.org/10.1016/j.phro.2024.100635 |
| dc.type.version | info:eu-repo/semantics/publishedVersion |
| dc.audience | Professionals |
| dc.contributor.organismes | Institut Català de la Salut |
| dc.contributor.authoraffiliation | [Jaikuna T] Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Christie NHS Foundation Trust Hospital, Manchester, United Kingdom. Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. [Wilson F] Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Christie NHS Foundation Trust Hospital, Manchester, United Kingdom. [Azria D] University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute ICM, Université Montpellier, INSERM 1194 IRCM, Montpellier, France. [Chang-Claude J] Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Germany. [De Santis MC] Radiation Oncology, Fondazione IRCCS Isituto Nazionale dei Tumori, Milan, Italy. [Gutiérrez-Enríquez S] Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. [Seoane A] Servei de Física i Protecció Radiològica, Vall d’Hebron Hospital Universitari, Barcelona, Spain. [Reyes V] Servei d’Oncologia Radioteràpica, Vall d’Hebron Hospital Universitari, Barcelona, Spain |
| dc.identifier.pmid | 39310222 |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess |