Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorBuñuales, María
dc.contributor.authorGarduno, Angeles
dc.contributor.authorChillon, Miguel
dc.contributor.authorGONZALEZ-APARICIO, MANUELA
dc.contributor.authorEspelosin, Maria
dc.contributor.authorBosch, Assumpció
dc.date.accessioned2024-10-31T07:07:05Z
dc.date.available2024-10-31T07:07:05Z
dc.date.issued2024-09
dc.identifier.citationBunuales M, Garduno A, Chillon M, Bosch A, Gonzalez-Aparicio M, Espelosin M, et al. Characterization of brain transduction capability of a BBB-penetrant AAV vector in mice, rats and macaques reveals differences in expression profiles. Gene Ther. 2024 Sep;31(9):455–66.
dc.identifier.issn1476-5462
dc.identifier.urihttps://hdl.handle.net/11351/12158
dc.descriptionCharacterization of brain; Adeno-associated viral vectors; Expression profiles
dc.description.abstractDifferent screening methods are being developed to generate adeno-associated viral vectors (AAV) with the ability to bypass the blood-brain barrier (BBB) upon intravenous administration. Recently, the AAV9P31 stood out as the most efficient version among a library of peptide-displaying capsids selected in C57BL/6 mice using RNA-driven biopanning. In this work we have characterized in detail its biodistribution in different mouse strains (C57BL/6 and Balb/c), as well as in Sprague Dawley rats and non-human primates (Macaca fascicularis). Using GFP and NanoLuc reporter genes, we confirmed homogeneous infection and transgene expression across the CNS of mice injected intravenously with AAV9P31. A more restricted pattern was observed upon either intracerebroventricular or intraparenchymal injection. Following intravenous delivery, region- and cell-specific differential patterns of transduction were observed in the mouse brain, including a preferential transduction of astrocytes and neurons in the cerebral cortex and striatum, whereas neurons were the only transduced cell type in subcortical locations across the hippocampus, thalamus, hypothalamus, mesencephalon, brainstem and cerebellum. Furthermore, transduced microglial cells were never found in any CNS location. Peripheral organs transduced upon intravenous administration included lung, liver, peritoneum, heart and skeletal muscle. However, a comparable performance of AAV9P31 to bypass the BBB in rats and macaques was not observed, although a more limited neuronal transduction was found in the brainstem of rats upon intravenous delivery. Finally, intracerebroventricular delivery in macaques resulted in neuronal transduction in cortical, subcortical structures and cerebellum following a patchy pattern. In conclusion, the widespread CNS transduction obtained in mice upon intravenous delivery of AAV9P31 represents a powerful tool for modeling a wide variety of neurological disorders as well as an appealing choice for the evaluation of gene therapy-based therapeutics.
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.ispartofseriesGene Therapy;31(9)
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScientia
dc.subjectRates (Animals de laboratori)
dc.subjectPrimats (Animals de laboratori)
dc.subjectVectors de clonatge
dc.subjectTransformació genètica
dc.subjectSistema nerviós - Malalties
dc.subject.meshNervous System Diseases
dc.subject.meshTransduction, Genetic
dc.subject.meshGenetic Vectors
dc.subject.meshMice
dc.titleCharacterization of brain transduction capability of a BBB-penetrant AAV vector in mice, rats and macaques reveals differences in expression profiles
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1038/s41434-024-00466-w
dc.subject.decsenfermedades del sistema nervioso
dc.subject.decstransducción genética
dc.subject.decsvectores genéticos
dc.subject.decsratas
dc.relation.publishversionhttps://doi.org/10.1038/s41434-024-00466-w
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Bunuales M, Garduno A, Gonzalez-Aparicio M, Espelosin M] Division of DNA and RNA medicine, CIMA. University of Navarra, Pamplona, Spain. [Chillon M] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain. Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain. [Bosch A] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain. Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
dc.identifier.pmid39039204
dc.identifier.wos001273982300002
dc.relation.projectidinfo:eu-repo/grantAgreement/ES/PE2017-2020/PID2019-104034RB-I00
dc.relation.projectidinfo:eu-repo/grantAgreement/ES/PEICTI2021-2023/RD21%2F0017%2F0008
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record