Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorMartínez-Vallejo, Patricia
dc.contributor.authorGOTERRIS, LIDIA
dc.contributor.authorMuixí, Marc
dc.contributor.authorRubio Maturana, Carles
dc.contributor.authorDANTAS DE OLIVEIRA, ALLISSON
dc.contributor.authorZarzuela Serrat, Francesc
dc.contributor.authorMediavilla Pérez, Alejandro
dc.contributor.authorSilgado, Aroa
dc.contributor.authorSulleiro, Elena
dc.contributor.authorJOSEPH, JOAN
dc.date.accessioned2025-03-14T13:29:33Z
dc.date.available2025-03-14T13:29:33Z
dc.date.copyright2024
dc.date.issued2025
dc.identifier.citationRubio Maturana C, Dantas de Oliveira A, Zarzuela F, Mediavilla A, Martínez-Vallejo P, Silgado A, et al. Evaluation of an Artificial Intelligence-Based Tool and a Universal Low-Cost Robotized Microscope for the Automated Diagnosis of Malaria. Int J Environ Res Public Health. 2025;22(1):47.
dc.identifier.issn1660-4601
dc.identifier.urihttp://hdl.handle.net/11351/12763
dc.descriptionArtificial intelligence; Automated diagnosis; Malaria
dc.description.abstractThe gold standard diagnosis for malaria is the microscopic visualization of blood smears to identify Plasmodium parasites, although it is an expert-dependent technique and could trigger diagnostic errors. Artificial intelligence (AI) tools based on digital image analysis were postulated as a suitable supportive alternative for automated malaria diagnosis. A diagnostic evaluation of the iMAGING AI-based system was conducted in the reference laboratory of the International Health Unit Drassanes-Vall d’Hebron in Barcelona, Spain. iMAGING is an automated device for the diagnosis of malaria by using artificial intelligence image analysis tools and a robotized microscope. A total of 54 Giemsa-stained thick blood smear samples from travelers and migrants coming from endemic areas were employed and analyzed to determine the presence/absence of Plasmodium parasites. AI diagnostic results were compared with expert light microscopy gold standard method results. The AI system shows 81.25% sensitivity and 92.11% specificity when compared with the conventional light microscopy gold standard method. Overall, 48/54 (88.89%) samples were correctly identified [13/16 (81.25%) as positives and 35/38 (92.11%) as negatives]. The mean time of the AI system to determine a positive malaria diagnosis was 3 min and 48 s, with an average of 7.38 FoV analyzed per sample. Statistical analyses showed the Kappa Index = 0.721, demonstrating a satisfactory correlation between the gold standard diagnostic method and iMAGING results. The AI system demonstrated reliable results for malaria diagnosis in a reference laboratory in Barcelona. Validation in malaria-endemic regions will be the next step to evaluate its potential in resource-poor settings.
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesInternational Journal of Environmental Research and Public Health;22(1)
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScientia
dc.subjectIntel·ligència artificial - Aplicacions a la medicina
dc.subjectMicroscòpia clínica
dc.subjectMalària - Diagnòstic
dc.subjectRobòtica en medicina
dc.subject.meshArtificial Intelligence
dc.subject.meshMicroscopy
dc.subject.meshMalaria
dc.subject.mesh/diagnosis
dc.subject.meshRobotics
dc.titleEvaluation of an Artificial Intelligence-Based Tool and a Universal Low-Cost Robotized Microscope for the Automated Diagnosis of Malaria
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.3390/ijerph22010047
dc.subject.decsinteligencia artificial
dc.subject.decsmicroscopía
dc.subject.decsmalaria
dc.subject.decs/diagnóstico
dc.subject.decsrobótica
dc.relation.publishversionhttps://doi.org/10.3390/ijerph22010047
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Rubio Maturana C, Mediavilla A, Martínez-Vallejo P, Goterris L] Servei de Microbiologia, Vall d’Hebron Hospital Universitari, Barcelona, Spain. Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Department of Microbiology and Genetics, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain. [Dantas de Oliveira A] Computational Biology and Complex Systems Group, Physics Department, Universitat Politècnica de Catalunya (UPC), Castelldefels, Spain. [Zarzuela F, Muixí M, Joseph-Munné J] Servei de Microbiologia, Vall d’Hebron Hospital Universitari, Barcelona, Spain. Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. [Silgado A, Sulleiro E] Servei de Microbiologia, Vall d’Hebron Hospital Universitari, Barcelona, Spain. Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain. Department of Microbiology and Genetics, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain. Centro de Investigación Biomédica en Red Enfermedades
dc.identifier.pmid39857500
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record