| dc.contributor | Vall d'Hebron Barcelona Hospital Campus |
| dc.contributor.author | Llinas-Bertran, Arnau |
| dc.contributor.author | Butjosa-Espín, Maria |
| dc.contributor.author | Barberi, Vittoria |
| dc.contributor.author | Seoane Fernández, Jose Antonio |
| dc.date.accessioned | 2025-03-21T12:07:18Z |
| dc.date.available | 2025-03-21T12:07:18Z |
| dc.date.issued | 2025-04 |
| dc.identifier.citation | Llinas-Bertran A, Butjosa-Espín M, Barberi V, Seoane JA. Multimodal data integration in early-stage breast cancer. The Breast. 2025 Apr;80:103892. |
| dc.identifier.issn | 0960-9776 |
| dc.identifier.uri | http://hdl.handle.net/11351/12829 |
| dc.description | Deep learning; Multi-omics; Multimodal data integration |
| dc.description.abstract | The use of biomarkers in breast cancer has significantly improved patient outcomes through targeted therapies, such as hormone therapy anti-Her2 therapy and CDK4/6 or PARP inhibitors. However, existing knowledge does not fully encompass the diverse nature of breast cancer, particularly in triple-negative tumors. The integration of multi-omics and multimodal data has the potential to provide new insights into biological processes, to improve breast cancer patient stratification, enhance prognosis and response prediction, and identify new biomarkers. This review presents a comprehensive overview of the state-of-the-art multimodal (including molecular and image) data integration algorithms developed and with applicability to breast cancer stratification, prognosis, or biomarker identification. We examined the primary challenges and opportunities of these multimodal data integration algorithms, including their advantages, limitations, and critical considerations for future research. We aimed to describe models that are not only academically and preclinically relevant, but also applicable to clinical settings. |
| dc.language.iso | eng |
| dc.publisher | Elsevier |
| dc.relation.ispartofseries | The Breast;80 |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.source | Scientia |
| dc.subject | Marcadors tumorals |
| dc.subject | Mama - Càncer - Tractament |
| dc.subject | Mama - Càncer - Imatgeria |
| dc.subject | Mama - Càncer - Prognosi |
| dc.subject.mesh | Biomarkers, Tumor |
| dc.subject.mesh | Breast Neoplasms |
| dc.subject.mesh | /drug therapy |
| dc.subject.mesh | Multimodal Imaging |
| dc.subject.mesh | Neoplasm Staging |
| dc.title | Multimodal data integration in early-stage breast cancer |
| dc.type | info:eu-repo/semantics/article |
| dc.identifier.doi | 10.1016/j.breast.2025.103892 |
| dc.subject.decs | marcadores tumorales |
| dc.subject.decs | neoplasias de la mama |
| dc.subject.decs | /farmacoterapia |
| dc.subject.decs | imagen multimodal |
| dc.subject.decs | estadificación de neoplasias |
| dc.relation.publishversion | https://doi.org/10.1016/j.breast.2025.103892 |
| dc.type.version | info:eu-repo/semantics/publishedVersion |
| dc.audience | Professionals |
| dc.contributor.organismes | Institut Català de la Salut |
| dc.contributor.authoraffiliation | [Llinas-Bertran A, Butjosa-Espín M, Seoane JA] Cancer Computational Biology Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. [Barberi V] Breast Cancer Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain |
| dc.identifier.pmid | 39922065 |
| dc.identifier.wos | 001424560700001 |
| dc.relation.projectid | info:eu-repo/grantAgreement/ES/PE2017-2020/RYC2019-026576-I |
| dc.relation.projectid | info:eu-repo/grantAgreement/ES/PE2017-2020/PID2020-115097RA-I00 |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess |