Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorSaldanha, Oliver Lester
dc.contributor.authorZhu, Jiefu
dc.contributor.authorMüller-Franzes, Gustav
dc.contributor.authorCarrero, Zunamys
dc.contributor.authorPayne, Nicholas
dc.contributor.authorEscudero, Lorena
dc.contributor.authorPerez-Lopez, Raquel
dc.date.accessioned2025-04-01T08:44:11Z
dc.date.available2025-04-01T08:44:11Z
dc.date.issued2025-02-06
dc.identifier.citationSaldanha OL, Zhu J, Müller-Franzes G, Carrero ZI, Payne NR, Escudero Sánchez L, et al. Swarm learning with weak supervision enables automatic breast cancer detection in magnetic resonance imaging. Commun Med. 2025 Feb 6;5:38.
dc.identifier.issn2730-664X
dc.identifier.urihttp://hdl.handle.net/11351/12859
dc.descriptionSwarm learning; Breast cancer; Magnetic resonance imaging
dc.description.abstractBackground Over the next 5 years, new breast cancer screening guidelines recommending magnetic resonance imaging (MRI) for certain patients will significantly increase the volume of imaging data to be analyzed. While this increase poses challenges for radiologists, artificial intelligence (AI) offers potential solutions to manage this workload. However, the development of AI models is often hindered by manual annotation requirements and strict data-sharing regulations between institutions. Methods In this study, we present an integrated pipeline combining weakly supervised learning—reducing the need for detailed annotations—with local AI model training via swarm learning (SL), which circumvents centralized data sharing. We utilized three datasets comprising 1372 female bilateral breast MRI exams from institutions in three countries: the United States (US), Switzerland, and the United Kingdom (UK) to train models. These models were then validated on two external datasets consisting of 649 bilateral breast MRI exams from Germany and Greece. Results Upon systematically benchmarking various weakly supervised two-dimensional (2D) and three-dimensional (3D) deep learning (DL) methods, we find that the 3D-ResNet-101 demonstrates superior performance. By implementing a real-world SL setup across three international centers, we observe that these collaboratively trained models outperform those trained locally. Even with a smaller dataset, we demonstrate the practical feasibility of deploying SL internationally with on-site data processing, addressing challenges such as data privacy and annotation variability. Conclusions Combining weakly supervised learning with SL enhances inter-institutional collaboration, improving the utility of distributed datasets for medical AI training without requiring detailed annotations or centralized data sharing.
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesCommunications Medicine;5
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScientia
dc.subjectMama - Càncer - Imatgeria per ressonància magnètica
dc.subjectAprenentatge profund
dc.subjectIntel·ligència artificial - Aplicacions a la medicina
dc.subject.meshBreast Neoplasms
dc.subject.mesh/diagnostic imaging
dc.subject.meshMagnetic Resonance Imaging
dc.subject.meshDeep Learning
dc.titleSwarm learning with weak supervision enables automatic breast cancer detection in magnetic resonance imaging
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1038/s43856-024-00722-5
dc.subject.decsneoplasias de la mama
dc.subject.decs/diagnóstico por imagen
dc.subject.decsimagen por resonancia magnética
dc.subject.decsaprendizaje profundo
dc.relation.publishversionhttps://doi.org/10.1038/s43856-024-00722-5
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Saldanha OL] Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany. Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany. [Zhu J] Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany. [Müller-Franzes G, Carrero ZI] Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany. [Payn NR] Department of Radiology, Clinical School, Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK. [Escudero Sánchez L] Department of Radiology, Clinical School, Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK. Cancer Research UK Cambridge Centre, Cambridge, UK. [Perez-Lopez R] Radiomics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
dc.identifier.pmid39915630
dc.identifier.wos001415025600001
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record