| dc.contributor | Vall d'Hebron Barcelona Hospital Campus |
| dc.contributor.author | Manikis, Georgios C. |
| dc.contributor.author | Acs, Balazs |
| dc.contributor.author | Johansson, Hemming |
| dc.contributor.author | Zerdes, Ioannis |
| dc.contributor.author | Matikas, Alexios |
| dc.contributor.author | Mezheyeuski, Artur |
| dc.date.accessioned | 2025-04-22T07:48:36Z |
| dc.date.available | 2025-04-22T07:48:36Z |
| dc.date.issued | 2025-03-07 |
| dc.identifier.citation | Zerdes I, Matikas A, Mezheyeuski A, Manikis G, Acs B, Johansson H, et al. Machine learning-based spatial characterization of tumor-immune microenvironment in the EORTC 10994/BIG 1-00 early breast cancer trial. npj Breast Cancer. 2025 Mar 7;11:23. |
| dc.identifier.issn | 2374-4677 |
| dc.identifier.uri | http://hdl.handle.net/11351/12970 |
| dc.description | Machine learning; Tumor-immune microenvironment; Breast cancer |
| dc.description.abstract | Breast cancer (BC) represents a heterogeneous ecosystem and elucidation of tumor microenvironment components remains essential. Our study aimed to depict the composition and prognostic correlates of immune infiltrate in early BC, at a multiplex and spatial resolution. Pretreatment tumor biopsies from patients enrolled in the EORTC 10994/BIG 1-00 randomized phase III neoadjuvant trial (NCT00017095) were used; the CNN11 classifier for H&E-based digital TILs (dTILs) quantification and multiplex immunofluorescence were applied, coupled with machine learning (ML)-based spatial features. dTILs were higher in the triple-negative (TN) subtype, and associated with pathological complete response (pCR) in the whole cohort. Total CD4+ and intra-tumoral CD8+ T-cells expression was associated with pCR. Higher immune-tumor cell colocalization was observed in TN tumors of patients achieving pCR. Immune cell subsets were enriched in TP53-mutated tumors. Our results indicate the feasibility of ML-based algorithms for immune infiltrate characterization and the prognostic implications of its abundance and tumor-host interactions. |
| dc.language.iso | eng |
| dc.publisher | Nature Portfolio |
| dc.relation.ispartofseries | npj Breast Cancer;11 |
| dc.rights | Attribution 4.0 International |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ |
| dc.source | Scientia |
| dc.subject | Mama - Càncer - Aspectes immunològics |
| dc.subject | Mama - Càncer - Tractament |
| dc.subject | Limfòcits |
| dc.subject | Cèl·lules canceroses |
| dc.subject | Aprenentatge automàtic |
| dc.subject.mesh | Breast Neoplasms |
| dc.subject.mesh | /immunology |
| dc.subject.mesh | Lymphocytes, Tumor-Infiltrating |
| dc.subject.mesh | Machine Learning |
| dc.subject.mesh | Neoadjuvant Therapy |
| dc.subject.mesh | Prognosis |
| dc.title | Machine learning-based spatial characterization of tumor-immune microenvironment in the EORTC 10994/BIG 1-00 early breast cancer trial |
| dc.type | info:eu-repo/semantics/article |
| dc.identifier.doi | 10.1038/s41523-025-00730-1 |
| dc.subject.decs | neoplasias de la mama |
| dc.subject.decs | /inmunología |
| dc.subject.decs | linfocitos infiltrantes de tumor |
| dc.subject.decs | aprendizaje automático |
| dc.subject.decs | tratamiento neoadyuvante |
| dc.subject.decs | pronóstico |
| dc.relation.publishversion | https://doi.org/10.1038/s41523-025-00730-1 |
| dc.type.version | info:eu-repo/semantics/publishedVersion |
| dc.audience | Professionals |
| dc.contributor.organismes | Institut Català de la Salut |
| dc.contributor.authoraffiliation | [Zerdes I] Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. Theme Cancer, Karolinska Comprehensive Cancer Center and University Hospital, Stockholm, Sweden. [Matikas A] Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. Breast Center, Theme Cancer, Karolinska Comprehensive Cancer Center and University Hospital, Stockholm, Sweden. [Mezheyeuski A] Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden. 5 Molecular Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. [Manikis G] Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece. [Acs B] Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden. [Johansson H] Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden |
| dc.identifier.pmid | 40055382 |
| dc.identifier.wos | 001439371400001 |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess |