Show simple item record

 
dc.contributorVall d'Hebron Barcelona Hospital Campus
dc.contributor.authorManikis, Georgios C.
dc.contributor.authorAcs, Balazs
dc.contributor.authorJohansson, Hemming
dc.contributor.authorZerdes, Ioannis
dc.contributor.authorMatikas, Alexios
dc.contributor.authorMezheyeuski, Artur
dc.date.accessioned2025-04-22T07:48:36Z
dc.date.available2025-04-22T07:48:36Z
dc.date.issued2025-03-07
dc.identifier.citationZerdes I, Matikas A, Mezheyeuski A, Manikis G, Acs B, Johansson H, et al. Machine learning-based spatial characterization of tumor-immune microenvironment in the EORTC 10994/BIG 1-00 early breast cancer trial. npj Breast Cancer. 2025 Mar 7;11:23.
dc.identifier.issn2374-4677
dc.identifier.urihttp://hdl.handle.net/11351/12970
dc.descriptionMachine learning; Tumor-immune microenvironment; Breast cancer
dc.description.abstractBreast cancer (BC) represents a heterogeneous ecosystem and elucidation of tumor microenvironment components remains essential. Our study aimed to depict the composition and prognostic correlates of immune infiltrate in early BC, at a multiplex and spatial resolution. Pretreatment tumor biopsies from patients enrolled in the EORTC 10994/BIG 1-00 randomized phase III neoadjuvant trial (NCT00017095) were used; the CNN11 classifier for H&E-based digital TILs (dTILs) quantification and multiplex immunofluorescence were applied, coupled with machine learning (ML)-based spatial features. dTILs were higher in the triple-negative (TN) subtype, and associated with pathological complete response (pCR) in the whole cohort. Total CD4+ and intra-tumoral CD8+ T-cells expression was associated with pCR. Higher immune-tumor cell colocalization was observed in TN tumors of patients achieving pCR. Immune cell subsets were enriched in TP53-mutated tumors. Our results indicate the feasibility of ML-based algorithms for immune infiltrate characterization and the prognostic implications of its abundance and tumor-host interactions.
dc.language.isoeng
dc.publisherNature Portfolio
dc.relation.ispartofseriesnpj Breast Cancer;11
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceScientia
dc.subjectMama - Càncer - Aspectes immunològics
dc.subjectMama - Càncer - Tractament
dc.subjectLimfòcits
dc.subjectCèl·lules canceroses
dc.subjectAprenentatge automàtic
dc.subject.meshBreast Neoplasms
dc.subject.mesh/immunology
dc.subject.meshLymphocytes, Tumor-Infiltrating
dc.subject.meshMachine Learning
dc.subject.meshNeoadjuvant Therapy
dc.subject.meshPrognosis
dc.titleMachine learning-based spatial characterization of tumor-immune microenvironment in the EORTC 10994/BIG 1-00 early breast cancer trial
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1038/s41523-025-00730-1
dc.subject.decsneoplasias de la mama
dc.subject.decs/inmunología
dc.subject.decslinfocitos infiltrantes de tumor
dc.subject.decsaprendizaje automático
dc.subject.decstratamiento neoadyuvante
dc.subject.decspronóstico
dc.relation.publishversionhttps://doi.org/10.1038/s41523-025-00730-1
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.audienceProfessionals
dc.contributor.organismesInstitut Català de la Salut
dc.contributor.authoraffiliation[Zerdes I] Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. Theme Cancer, Karolinska Comprehensive Cancer Center and University Hospital, Stockholm, Sweden. [Matikas A] Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. Breast Center, Theme Cancer, Karolinska Comprehensive Cancer Center and University Hospital, Stockholm, Sweden. [Mezheyeuski A] Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden. 5 Molecular Oncology Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain. [Manikis G] Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Greece. [Acs B] Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden. [Johansson H] Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
dc.identifier.pmid40055382
dc.identifier.wos001439371400001
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record